Dietary Vitamin A Improved the Flesh Quality of Grass Carp (Ctenopharyngodon idella) in Relation to the Enhanced Antioxidant Capacity through Nrf2/Keap 1a Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Sample Collection and Biochemical Analysis
2.3. Histology Observation
2.4. Quantitative Real-Time PCR Analysis
2.5. Western Blotting Measurement
2.6. Statistical Analysis
3. Results
3.1. Proximate Compositions and Physicochemical Characteristics of Muscle
3.2. Free Amino Acid Contents and Fatty Acid Profile in Muscle
3.3. Antioxidant Related Parameters in Muscle
3.4. Nrf2 and TOR Signaling in Muscle
3.5. Dietary Vitamin A Requirements for On-Growing Grass Carp
4. Discussion
4.1. Vitamin A Improved Fish Flesh Quality
4.2. Vitamin A Enhanced the Muscle Antioxidant Capacity of Fish
4.3. Vitamin A Requirement for On-Growing Grass Carp
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Różanowska, M.; Cantrell, A.; Edge, R.; Land, E.J.; Sarna, T.; Truscott, T.G. Pulse radiolysis study of the interaction of retinoids with peroxyl radicals. Free Radic. Biol. Med. 2005, 39, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.D.; Zhou, X.Q.; Zhang, L.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Vitamin A deficiency impairs intestinal physical barrier function of fish. Fish Shellfish Immun. 2019, 87, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Tilami, S.K.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish Sci. Aquac. 2017, 26, 243–253. [Google Scholar] [CrossRef]
- Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Morachis-Valdez, G.; Dublán-García, O.; López-Martínez, L.X.; Galar-Martínez, M.; Saucedo-Vence, K.; Gómez-Oliván, L.M. Chronic exposure to pollutants in Madín Reservoir (Mexico) alters oxidative stress status and flesh quality in the common carp Cyprinus carpio. Environ. Sci. Pollut. R. 2015, 22, 9159–9172. [Google Scholar] [CrossRef] [PubMed]
- Marti, S.; Realini, C.E.; Bach, A.; Pérez-Juan, M.; Devant, M. Effect of vitamin A restriction on performance and meat quality in finishing Holstein bulls and steers. Meat Sci. 2011, 89, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.J.; Dikeman, M.E.; Arnett, A.M.; Hunt, M.C. Effects of dietary vitamin A restriction during finishing on color display life, lipid oxidation, and sensory traits of longissimus and triceps brachii steaks from early and traditionally weaned steers. Meat Sci. 2009, 81, 15–21. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Gou, Z.; Chen, F.; Fan, Q.; Lin, X.; Ye, J.; Zhang, C.; Jiang, S. Effects of maternal and dietary vitamin A on growth performance, meat quality, antioxidant status, and immune function of offspring broilers. Poult. Sci. 2020, 99, 3930–3940. [Google Scholar] [CrossRef]
- Jennings, S.; Stentiford, G.D.; Leocadio, A.M.; Jeffery, K.R.; Metcalfe, J.D.; Katsiadaki, I.; Auchterlonie, N.A.; Mangi, S.C.; Pinnegar, J.K.; Ellis, T.; et al. Aquatic food security: Insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish Fish. 2016, 17, 893–938. [Google Scholar] [CrossRef] [Green Version]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- Hu, C.; Chen, S.; Pan, C.; Huang, C. Effects of dietary vitamin A or β-carotene concentrations on growth of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Aquaculture 2006, 253, 602–607. [Google Scholar] [CrossRef]
- Tous, N.; Lizardo, R.; Theil, P.K.; Vilà, B.; Gispert, M.; Font-i-Furnols, M.; Esteve-Garcia, E. Effect of vitamin A depletion on fat deposition in finishing pigs, intramuscular fat content and gene expression in the longissimus muscle. Livest Sci. 2014, 167, 392–399. [Google Scholar] [CrossRef]
- Yang, Q.; Ding, M.; Tan, B.; Dong, X.; Chi, S.; Zhang, S.; Liu, H. Effects of dietary vitamin A on growth, feed utilization, lipid metabolism enzyme activities, and fatty acid synthase and hepatic lipase mRNA expression levels in the liver of juvenile orange spotted grouper, Epinephelus coioides. Aquaculture 2017, 479, 501–507. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, L.; Jiang, W.; Liu, Y.; Wu, P.; Kuang, S.; Tang, L.; Tang, W.; Zhang, Y.; Zhou, X. Vitamin A deficiency suppresses fish immune function with differences in different intestinal segments: The role of transcriptional factor NF-κB and p38 mitogen-activated protein kinase signalling pathways. Brit. J. Nutr. 2017, 117, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Jafri, A.K.; Chadha, N.K. Growth, reproductive performance, muscle and egg composition in grass carp, Ctenopharyngodon idella (Valenciennes), fed hydrilla or formulated diets with varying protein levels. Aquac. Res. 2004, 35, 1277–1285. [Google Scholar] [CrossRef]
- Moren, M.; Opstad, I.; Berntssen, M.H.G.; Zambonino Infante, J.L.; Hamre, K. An optimum level of vitamin A supplements for Atlantic halibut (Hippoglossus hippoglossus L.) juveniles. Aquaculture 2004, 235, 587–599. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Chen, L.; Feng, L.; Jiang, W.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.; Tang, L.; Tang, W.; Zhang, Y.; et al. Dietary riboflavin deficiency decreases immunity and antioxidant capacity, and changes tight junction proteins and related signaling molecules mRNA expression in the gills of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immun. 2015, 45, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Brinker, A.; Reiter, R. Fish meal replacement by plant protein substitution and guar gum addition in trout feed, Part I: Effects on feed utilization and fish quality. Aquaculture 2011, 310, 350–360. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists International: Washington, DC, USA, 1998. [Google Scholar]
- Carbonera, F.; Bonafe, E.G.; Martin, C.A.; Montanher, P.F.; Ribeiro, R.P.; Figueiredo, L.C.; Almeida, V.C.; Visentainer, J.V. Effect of dietary replacement of sunflower oil with perilla oil on the absolute fatty acid composition in Nile tilapia (GIFT). Food Chem. 2014, 148, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Bahuaud, D.; Mørkøre, T.; Østbye, T.K.; Veiseth-Kent, E.; Thomassen, M.S.; Ofstad, R. Muscle structure responses and lysosomal cathepsins B and L in farmed Atlantic salmon (Salmo salar L.) pre- and post-rigor fillets exposed to short and long-term crowding stress. Food Chem. 2010, 118, 602–615. [Google Scholar] [CrossRef]
- Periago, M.J.; Ayala, M.D.; López-Albors, O.; Abdel, I.; Martínez, C.; García-Alcázar, A.; Ros, G.; Gil, F. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Hultmann, L.; Phu, T.M.; Tobiassen, T.; Aas-Hansen, Ø.; Rustad, T. Effects of pre-slaughter stress on proteolytic enzyme activities and muscle quality of farmed Atlantic cod (Gadus morhua). Food Chem. 2012, 134, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, N.S.; Ismail, E.A.R.; El-Naggar, A.R.; Hamouda, M.H.; El-Hamamsy, M. The effect of 12 weeks carnosine supplementation on renal functional integrity and oxidative stress in pediatric patients with diabetic nephropathy: A randomized placebo-controlled trial. Pediatr. Diabetes 2018, 19, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Jiang, W.; Jiang, J.; Zhao, J.; Liu, Y.; Zhang, Y.; Zhou, X.; Feng, L. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp. Fish Shellfish Immun. 2016, 58, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Qu, B.; Feng, L.; Jiang, W.; Kuang, S.; Jiang, J.; Tang, L.; Zhou, X.; Liu, Y. Dietary histidine deficiency induced flesh quality loss associated with changes in muscle nutritive composition, antioxidant capacity, Nrf2 and TOR signaling molecules in on-growing grass carp (Ctenopharyngodon idella). Aquaculture 2020, 526, 735399. [Google Scholar] [CrossRef]
- Jiang, W.; Wen, H.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.; Tang, L.; Tang, W.; Zhang, Y.; et al. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess. Food Chem. 2016, 199, 210–219. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, J.; Feng, L.; Jiang, W.; Wu, P.; Liu, Y.; Jiang, J.; Zhou, X. Effect of dietary glutamine on growth performance, non- specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti- oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian). Fish Physiol. Biochem. 2015, 41, 635–649. [Google Scholar] [CrossRef]
- Liu, D.; Liang, L.; Xia, W.; Regenstein, J.M.; Zhou, P. Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at −3 and 0 °C. Food Chem. 2013, 140, 105–114. [Google Scholar] [CrossRef]
- Johnston, I.A.; Li, X.; Vieira, V.L.A.; Nickell, D.; Dingwall, A.; Alderson, R.; Campbell, P.; Bickerdike, R. Muscle and flesh quality traits in wild and farmed Atlantic salmon. Aquaculture 2006, 256, 323–336. [Google Scholar] [CrossRef]
- Aoki, T.; Ueno, R. Involvement of cathepsins B and L in the post-mortem autolysis of mackerel muscle. Food Res. Int. 1997, 30, 585–591. [Google Scholar] [CrossRef]
- Kuah, M.; Jaya-Ram, A.; Shu-Chien, A.C. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata). BBA Mol. Cell. Biol. Lipids 2015, 1851, 248–260. [Google Scholar]
- Tiruvalluru, M.; Ananthathmakula, P.; Ayyalasomayajula, V.; Nappanveettil, G.; Ayyagari, R.; Reddy, G.B. Vitamin A supplementation ameliorates obesity-associated retinal degeneration in WNIN/Ob rats. Nutrition 2013, 29, 298–304. [Google Scholar] [CrossRef]
- Wang, J.; Jia, R.; Gong, H.; Celi, P.; Zhuo, Y.; Ding, X.; Bai, S.; Zeng, Q.; Yin, H.; Xu, S.; et al. The effect of oxidative stress on the chicken ovary: Involvement of microbiota and melatonin interventions. Antioxidants 2021, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Surai, P. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef] [Green Version]
- Abele, D.; Puntarulo, S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Phys. A 2004, 138, 405–415. [Google Scholar] [CrossRef]
- Kim, J.; Dahms, H.; Rhee, J.; Lee, Y.; Lee, J.; Han, K.; Lee, J. Expression profiles of seven glutathione S-transferase (GST) genes in cadmium-exposed river pufferfish (Takifugu obscurus). Comp. Biochem. Phys. C 2010, 151, 99–106. [Google Scholar] [CrossRef]
- Li, G.; Xie, P.; Li, H.; Chen, J.; Hao, L.; Xiong, Q. Quantitative profiling of mRNA expression of glutathione S-transferase superfamily genes in various tissues of bighead carp (Aristichthys nobilis). J. Biochem. Mol. Toxic. 2010, 24, 250–259. [Google Scholar] [CrossRef]
- Rajput, S.A.; Liang, S.J.; Wang, X.Q.; Yan, H.C. Lycopene protects intestinal epithelium from deoxynivalenol-induced oxidative damage via regulating Keap1/Nrf2 Signaling. Antioxidants 2021, 10, 1493. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhang, L.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.; Tang, L.; Zhou, X. Inconsistently impairment of immune function and structural integrity of head kidney and spleen by vitamin A deficiency in grass carp (Ctenopharyngodon idella). Fish Shellfish Immun. 2020, 99, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Shay, K.P.; Michels, A.J.; Li, W.; Kong, A.N.; Hagen, T.M. Cap-independent Nrf2 translation is part of a lipoic acid-stimulated detoxification stress response. Biochim. Biophys. Acta 2012, 1823, 1102–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Zhou, X.Q.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Feng, L. The effect of dietary folic acid on flesh quality and muscle antioxidant status referring to Nrf2 signalling pathway in young grass carp (Ctenopharyngodon idella). Aquacult. Nutr. 2020, 26, 631–645. [Google Scholar] [CrossRef]
Ingredients | % | Nutrients Content | % |
---|---|---|---|
Fish meal | 15.55 | Crude protein 4 | 29.71 |
Soybean protein concentrate | 26.25 | Crude lipid 4 | 3.58 |
Gelatin | 3.13 | n-3 5 | 0.50 |
α-starch | 24.00 | n-6 5 | 1.00 |
Maize starch | 16.32 | Available phosphorus 5 | 0.84 |
Soybean oil | 1.93 | ||
Cellulose | 5.00 | ||
L-Met (98%) | 0.40 | ||
Ca(H2PO4)2 | 2.87 | ||
Vitamin premix 1 | 1.00 | ||
Mineral premix 2 | 2.00 | ||
Vitamin A premix 3 | 1.00 | ||
Choline chloride (60%) | 0.50 | ||
Ethoxyquin (30%) | 0.05 |
Genes | Forward (5′→3′) | Reverse (5′→3′) | Temperature (°C) | Accession Number |
---|---|---|---|---|
CuZnSOD | CGCACTTCAACCCTTACA | ACTTTCCTCATTGCCTCC | 61.5 | GU901214 |
MnSOD | ACGACCCAAGTCTCCCTA | ACCCTGTGGTTCTCCTCC | 60.4 | GU218534 |
CAT | GAAGTTCTACACCGATGAGG | CCAGAAATCCCAAACCAT | 58.7 | FJ560431 |
GPx1a | GGGCTGGTTATTCTGGGC | AGGCGATGTCATTCCTGTTC | 61.5 | EU828796 |
GPx1b | TTTTGTCCTTGAAGTATGTCCGTC | GGGTCGTTCATAAAGGGCATT | 60.3 | KT757315 |
GPx4a | TACGCTGAGAGAGGTTTACACAT | CTTTTCCATTGGGTTGTTCC | 60.4 | KU255598 |
GPx4b | CTGGAGAAATACAGGGGTTACG | CTCCTGCTTTCCGAACTGGT | 60.3 | KU255599 |
GSTr | TCTCAAGGAACCCGTCTG | CCAAGTATCCGTCCCACA | 58.4 | EU107283 |
GSTp1 | ACAGTTGCCCAAGTTCCAG | CCTCACAGTCGTTTTTTCCA | 59.3 | KM112099 |
GSTp2 | TGCCTTGAAGATTATGCTGG | GCTGGCTTTTATTTCACCCT | 59.3 | KP125490 |
GR | GTGTCCAACTTCTCCTGTG | ACTCTGGGGTCCAAAACG | 59.4 | JX854448 |
Nrf2 | CTGGACGAGGAGACTGGA | ATCTGTGGTAGGTGGAAC | 62.5 | KF733814 |
keap1a | TTCCACGCCCTCCTCAA | TGTACCCTCCCGCTATG | 63.0 | KF811013 |
keap1b | TCTGCTGTATGCGGTGGGC | CTCCTCCATTCATCTTTCTCG | 57.9 | KJ729125 |
TOR | TCCCACTTTCCACCAACT | ACACCTCCACCTTCTCCA | 61.4 | JX854449 |
S6K1 | TGGAGGAGGTAATGGACG | ACATAAAGCAGCCTGACG | 54.0 | EF373673 |
β-actin | GGCTGTGCTGTCCCTGTA | GGGCATAACCCTCGTAGAT | 61.4 | M25013 |
Dietary VA Levels, IU/kg Diet | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
18.69 | 606.8 | 1209 | 1798 | 2805 | 3796 | Linear | Quadratic | ||
Moisture, % | 79.67 a | 78.16 b | 77.75 bc | 77.15 c | 77.93 bc | 78.04 bc | 0.20 | 0.0001 | <0.0001 |
Protein, % | 15.20 d | 16.51 c | 17.11 b | 17.78 a | 17.00 b | 17.02 b | 0.06 | <0.0001 | <0.0001 |
Lipids, % | 10.06 b | 10.92 ab | 12.07 a | 12.17 a | 11.94 a | 11.15 ab | 0.31 | 0.01 | <0.01 |
Cooking loss, % | 16.03 a | 12.56 b | 10.12 c | 10.25 c | 12.25 b | 13.85 b | 0.39 | <0.01 | <0.0001 |
Shear force, N | 1.18 d | 1.30 c | 1.53 a | 1.51 a | 1.42 b | 1.31 c | 0.02 | <0.0001 | <0.0001 |
pH24h | 6.43 b | 6.54 b | 6.72 a | 6.79 a | 6.77 a | 6.53 b | 0.04 | <0.01 | <0.0001 |
Hydroxyproline, mg/g tissue | 0.38 d | 0.46 b | 0.58 a | 0.57 a | 0.43 bc | 0.42 c | 0.01 | 0.09 | <0.0001 |
Carnosine, ng/g tissue | 348.51 c | 409.53 bc | 485.00 a | 485.22 a | 489.94 a | 431.10 ab | 14.96 | 0.0002 | <0.0001 |
Lactic acid, mmol/g protein | 2.58 a | 2.16 b | 2.09 b | 1.63 d | 1.86 c | 1.85 c | 0.04 | <0.0001 | <0.0001 |
Cathepsin B, U/g protein | 3.98 a | 3.57 b | 2.90 c | 2.89 c | 3.23 bc | 3.29 b | 0.08 | <0.0001 | <0.0001 |
Cathepsin L, U/g protein | 1.85 a | 1.72 b | 1.53 cd | 1.44 d | 1.54 cd | 1.58 c | 0.03 | <0.0001 | <0.0001 |
Dietary VA Levels, IU/kg Diet | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
18.69 | 606.8 | 1209 | 1798 | 2805 | 3796 | Linear | Quadratic | ||
Glu | 3.89 d | 4.13 c | 4.34 ab | 4.52 a | 4.20 bc | 4.20 bc | 0.04 | 0.0001 | <0.0001 |
Asp | 2.10 | 2.05 | 2.11 | 2.07 | 2.08 | 2.08 | 0.04 | 0.96 | 0.89 |
Gly | 25.27 | 24.80 | 24.88 | 24.93 | 25.36 | 25.46 | 0.63 | 0.62 | 0.48 |
Ser | 3.66 | 3.74 | 3.79 | 3.70 | 3.68 | 3.71 | 0.09 | 0.98 | 0.53 |
Ala | 11.74 | 11.37 | 11.54 | 11.43 | 11.68 | 11.59 | 0.27 | 0.98 | 0.50 |
Met | 5.13 b | 5.49 b | 5.82 ab | 6.26 a | 5.73 ab | 5.76 ab | 0.15 | <0.01 | <0.01 |
Thr | 9.46 b | 10.84 a | 11.51 a | 11.76 a | 11.40 a | 11.42 a | 0.25 | <0.01 | <0.01 |
Lys | 31.19 c | 34.91 bc | 38.82 ab | 40.19 a | 38.32 ab | 37.83 ab | 0.95 | 0.0001 | 0.0003 |
Arg | 19.56 c | 21.15 bc | 23.76 a | 23.61 a | 22.13 ab | 22.11 ab | 0.49 | <0.01 | 0.0002 |
His | 169.71 | 173.39 | 177.13 | 174.86 | 173.25 | 172.57 | 2.62 | 0.61 | 0.10 |
Val | 6.17 | 6.29 | 6.22 | 6.28 | 6.31 | 6.32 | 0.15 | 0.52 | 0.92 |
Ile | 2.14 | 2.20 | 2.26 | 2.22 | 2.16 | 2.19 | 0.05 | 0.77 | 0.24 |
Leu | 3.09 | 3.06 | 3.13 | 3.10 | 3.14 | 3.12 | 0.07 | 0.55 | 0.89 |
Phe | 3.34 | 3.25 | 3.30 | 3.24 | 3.23 | 3.28 | 0.07 | 0.50 | 0.53 |
Tyr | 5.21 | 5.21 | 5.24 | 5.23 | 5.24 | 5.20 | 0.11 | 0.95 | 0.80 |
Dietary VA Levels, IU/kg Diet | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
18.69 | 606.8 | 1209 | 1798 | 2805 | 3796 | Linear | Quadratic | ||
C14: 0 | 4.56 | 4.56 | 4.64 | 4.54 | 4.74 | 4.91 | 0.12 | 0.05 | 0.25 |
C15: 0 | 0.26 | 0.26 | 0.27 | 0.26 | 0.26 | 0.27 | 0.01 | 0.60 | 0.49 |
C16: 0 | 23.00 ab | 23.22 a | 22.61 ab | 21.23 b | 21.22 b | 22.05 ab | 0.39 | <0.01 | 0.15 |
C17: 0 | 0.24 | 0.25 | 0.24 | 0.24 | 0.25 | 0.25 | 0.02 | 0.85 | 0.85 |
C18: 0 | 5.59 | 5.63 | 5.42 | 5.07 | 5.39 | 5.61 | 0.13 | 0.36 | <0.05 |
C20: 0 | 0.23 | 0.23 | 0.23 | 0.22 | 0.23 | 0.22 | 0.01 | 0.49 | 0.91 |
C23: 0 | 0.28 | 0.29 | 0.29 | 0.28 | 0.29 | 0.31 | 0.02 | 0.28 | 0.72 |
C24: 0 | 0.77 | 0.78 | 0.75 | 0.74 | 0.82 | 0.82 | 0.04 | 0.29 | 0.24 |
C14: 1 | 0.21 | 0.22 | 0.21 | 0.22 | 0.26 | 0.25 | 0.02 | 0.10 | 0.86 |
C16: 1 | 14.02 a | 12.94 ab | 12.27 bc | 11.69 bc | 11.70 bc | 11.55 c | 0.28 | <0.0001 | <0.05 |
C17: 1 | 0.38 | 0.35 | 0.37 | 0.34 | 0.33 | 0.38 | 0.02 | 0.73 | 0.11 |
C18: 1c + t | 22.51 | 23.20 | 23.70 | 24.37 | 24.57 | 23.52 | 0.54 | 0.05 | 0.07 |
C20: 1 | 1.88 | 1.82 | 1.80 | 1.84 | 1.76 | 1.70 | 0.05 | <0.05 | 0.59 |
C22: 1 | 0.20 | 0.19 | 0.20 | 0.21 | 0.21 | 0.19 | 0.01 | 0.98 | 0.32 |
C18: 2c + t | 7.83 | 7.78 | 7.99 | 8.50 | 8.52 | 8.03 | 0.18 | <0.05 | 0.09 |
C20: 2 | 0.43 | 0.43 | 0.40 | 0.40 | 0.41 | 0.38 | 0.02 | 0.06 | 0.97 |
C18: 3n − 6 | 0.67 | 0.65 | 0.67 | 0.66 | 0.66 | 0.64 | 0.02 | 0.53 | 0.63 |
C18: 3n − 3 | 4.60 b | 5.00 ab | 5.03 ab | 5.40 ab | 5.56 a | 5.54 a | 0.19 | <0.01 | 0.37 |
C20: 3n − 6 + C21: 0 | 0.37 | 0.39 | 0.37 | 0.38 | 0.38 | 0.35 | 0.02 | 0.38 | 0.41 |
C20: 3n-3 | 1.06 b | 1.10 ab | 1.19 ab | 1.20 ab | 1.25 a | 1.21 ab | 0.04 | <0.01 | 0.13 |
C20: 4 | 0.41 | 0.42 | 0.40 | 0.40 | 0.40 | 0.39 | 0.02 | 0.25 | 0.93 |
C20: 5 + C22: 0 | 1.11 | 1.08 | 1.04 | 1.03 | 1.06 | 1.00 | 0.04 | 0.13 | 0.79 |
C22: 6 | 9.39 b | 9.20 b | 9.92 ab | 10.78 a | 10.14 ab | 10.42 ab | 0.27 | <0.01 | 0.24 |
ΣSFA | 34.94 a | 35.22 a | 34.46 ab | 32.58 b | 33.19 ab | 34.45 ab | 0.48 | <0.05 | <0.05 |
ΣUFA | 64.65 b | 64.36 b | 65.15 ab | 67.02 a | 66.41 ab | 65.17 ab | 0.48 | <0.05 | <0.05 |
ΣMUFA | 39.19 | 38.73 | 38.53 | 38.66 | 38.83 | 37.59 | 0.49 | 0.09 | 0.59 |
ΣPUFA | 25.87 b | 26.04 b | 27.01 ab | 28.76 a | 27.98 ab | 27.97 ab | 0.45 | <0.01 | 0.08 |
Dietary VA Levels, IU/kg Diet | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
18.69 | 606.8 | 1209 | 1798 | 2805 | 3796 | Linear | Quadratic | ||
ASA, U/g protein | 75.76 c | 83.48 bc | 96.85 a | 92.20 ab | 82.36 bc | 82.68 bc | 2.33 | 0.20 | <0.0001 |
AHR, U/mg protein | 89.54 c | 94.78 abc | 99.75 ab | 101.54 a | 91.49 bc | 90.89 c | 1.83 | 0.93 | 0.0002 |
CuZnSOD, U/mg protein | 2.83 c | 2.96 bc | 3.36 ab | 3.65 a | 3.46 a | 3.30 ab | 0.09 | 0.0001 | 0.0005 |
MnSOD, U/mg protein | 3.82 b | 4.30 ab | 4.35 ab | 4.48 a | 4.20 ab | 4.17 ab | 0.12 | 0.14 | <0.01 |
CAT, U/mg protein | 1.06 c | 1.28 b | 1.48 a | 1.64 a | 1.61 a | 1.62 a | 0.04 | <0.0001 | <0.0001 |
GPx, U/mg protein | 84.96 b | 93.14 ab | 103.73 a | 104.63 a | 104.43 a | 103.25 a | 2.92 | 0.0002 | <0.01 |
GST, U/mg protein | 49.17 | 50.11 | 51.64 | 51.14 | 50.11 | 50.19 | 1.38 | 0.70 | 0.27 |
GR, U/g protein | 17.44 b | 19.64 ab | 19.70 ab | 22.06 a | 21.35 ab | 20.54 ab | 0.83 | <0.01 | <0.05 |
GSH, mg/g protein | 1.33 b | 1.50 ab | 1.63 a | 1.62 a | 1.62 a | 1.60 a | 0.04 | 0.0003 | <0.01 |
Vitamin A, μg/kg tissue | 1.63 c | 5.43 b | 6.74 ab | 5.84 ab | 6.56 ab | 8.29 a | 0.52 | <0.0001 | <0.05 |
Dependent Parameters | Independent Parameters | r | p |
---|---|---|---|
pH24h | Lactic acid content | −0.758 | =0.08 |
Shear force | Hydroxyproline content | +0.894 | <0.05 |
Cathepsin B activity | −0.964 | <0.01 | |
Cathepsin L activity | −0.906 | <0.05 | |
MnSOD activity | MnSOD mRNA level | +0.928 | <0.01 |
CAT activity | CAT mRNA level | +0.980 | <0.01 |
GPx activity | GPx4a mRNA level | +0.999 | <0.01 |
GPx4b mRNA level | +0.936 | <0.01 | |
MnSOD mRNA | Nrf2 mRNA level | +0.938 | <0.01 |
GPx1a mRNA | +0.842 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Zhang, L.; Jiang, W.; Liu, Y.; Jiang, J.; Kuang, S.; Li, S.; Tang, L.; Tang, W.; Zhou, X.; et al. Dietary Vitamin A Improved the Flesh Quality of Grass Carp (Ctenopharyngodon idella) in Relation to the Enhanced Antioxidant Capacity through Nrf2/Keap 1a Signaling Pathway. Antioxidants 2022, 11, 148. https://doi.org/10.3390/antiox11010148
Wu P, Zhang L, Jiang W, Liu Y, Jiang J, Kuang S, Li S, Tang L, Tang W, Zhou X, et al. Dietary Vitamin A Improved the Flesh Quality of Grass Carp (Ctenopharyngodon idella) in Relation to the Enhanced Antioxidant Capacity through Nrf2/Keap 1a Signaling Pathway. Antioxidants. 2022; 11(1):148. https://doi.org/10.3390/antiox11010148
Chicago/Turabian StyleWu, Pei, Li Zhang, Weidan Jiang, Yang Liu, Jun Jiang, Shengyao Kuang, Shuwei Li, Ling Tang, Wuneng Tang, Xiaoqiu Zhou, and et al. 2022. "Dietary Vitamin A Improved the Flesh Quality of Grass Carp (Ctenopharyngodon idella) in Relation to the Enhanced Antioxidant Capacity through Nrf2/Keap 1a Signaling Pathway" Antioxidants 11, no. 1: 148. https://doi.org/10.3390/antiox11010148
APA StyleWu, P., Zhang, L., Jiang, W., Liu, Y., Jiang, J., Kuang, S., Li, S., Tang, L., Tang, W., Zhou, X., & Feng, L. (2022). Dietary Vitamin A Improved the Flesh Quality of Grass Carp (Ctenopharyngodon idella) in Relation to the Enhanced Antioxidant Capacity through Nrf2/Keap 1a Signaling Pathway. Antioxidants, 11(1), 148. https://doi.org/10.3390/antiox11010148