Cordyceps militaris—Fruiting Bodies, Mycelium, and Supplements: Valuable Component of Daily Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Digestive Juices Preparation
2.3. Mushroom Material
2.4. Mycelium from In Vitro Cultures
2.5. Fruiting Bodies from Self-Cultivation
2.6. Analysis of Bioelements
2.7. Preparation of Extracts for Organic Compounds Determination
2.8. Mycochemical Analysis
2.8.1. Indole Compounds, Lovastatin, Ergothioneine, Phenolic Compounds, L-Phenylalanine, Sterols
2.8.2. Cordycepin
2.8.3. Determination of Antioxidant Activity Using a DPPH Assay
2.8.4. Total Phenolic Content
2.9. Extraction in Digestive Juices
2.10. Statistical Analysis
3. Results and Discussion
3.1. Bioelements and Organic Compounds Analysis in Mushroom Material
3.2. Bioelements and Organic Compounds Analysis in Artificial Digestive Juices
3.3. Chemometric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S.K.; Masuda, M.; Sakurai, A.; Sakakibara, M. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects. Fitoterapia 2010, 81, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.S.; Barseghyan, G.S.; Asatiani, M.D.; Wasser, S.P. Chemical composition and medicinal value of fruiting bodies and submerged cultured mycelia of caterpillar medicinal fungus Cordyceps militaris CBS-132098 (Ascomycetes). Int. J. Med. Mushrooms 2015, 17, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.T.; Yang, Y.C.; Li, Y.H.; Mau, J.L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int. J. Med. Mushrooms 2014, 16, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Z.; Ding, J.; Yu, P.Z.; Lei, C.; Zheng, X.J.; Wang, Y. Composition and distribution of the main active components in selenium-enriched fruit bodies of Cordyceps militaris Link. Food Chem. 2013, 137, 164–167. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Liu, F.; Gao, H.; Sun, H.; Meng, M.; Zhang, Y.M. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris. Int. J. Biol. Macromol. 2016, 93, 1090–1099. [Google Scholar] [CrossRef]
- Kim, S.B.; Ahn, B.; Kim, M.; Ji, H.J.; Shin, S.K.; Hong, I.P.; Kim, C.Y.; Hwang, B.Y.; Lee, M.K. Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. J. Ethnopharmacol. 2014, 151, 478–484. [Google Scholar] [CrossRef]
- Li, A.; Song, Y.; Wang, C.; Wang, J. The molecular recognition of cordycepin arabinoside and analysis of changes on cordycepin and its arabinoside in fruiting body and pupa of Cordyceps militaris. Food Chem. 2022, 389, 133070. [Google Scholar] [CrossRef]
- Radhi, M.; Ashraf, S.; Lawrence, S.; Tranholm, A.A.; Wellham, P.A.D.; Hafeez, A.; Khamis, A.S.; Thomas, R.; McWilliams, D.; de Moor, C.H.A. Systematic review of the biological effects of cordycepin. Molecules 2021, 26, 5886. [Google Scholar] [CrossRef]
- Jo, E.; Jang, H.J.; Yang, K.E.; Jang, M.S.; Huh, Y.H.; Yoo, H.S.; Park, J.S.; Jang, I.S.; Park, S.J. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement. Med. Ther. 2020, 20, 1. [Google Scholar] [CrossRef]
- Symeonides, S.; Aroldi, F.; Harris, N.M.; Kestenbaumum, S.; Plummer, R.; Blagden, S. 600TiP A first-in-human study of, NUC-7738, a 3′-dA phosphoramidate, in patients with advanced solid tumours (NuTide: 701). Ann. Oncol. 2020, 31, 501. [Google Scholar] [CrossRef]
- Kang, H.J.; Baik, H.W.; Kim, S.J.; Lee, S.G.; Ahn, H.Y.; Park, J.S.; Park, S.J.; Jang, E.J.; Park, S.W.; Choi, J.Y.; et al. Cordyceps militaris enhances cell-mediated immunity in healthy Korean men. J. Med. Food 2015, 18, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Boontiam, W.; Wachirapakorn, C.; Wattanachai, S. Growth performance and hematological changes in growing pigs treated with Cordyceps militaris spent mushroom substrate. Vet. World 2019, 13, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Hasan, M.M.; Wang, Y.B.; Papadakos, S.P.; Yu, H. Cordycepin as a promising inhibitor of SARS-CoV-2 RNA dependent RNA Polymerase (RdRp). Curr. Med. Chem. 2022, 29, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Aggarwal, R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem. Biol. Drug Des. 2021, 97, 836–853. [Google Scholar] [CrossRef]
- Choi, E.; Oh, J.; Sung, G.H. Beneficial effect of Cordyceps militaris on exercise performance via promoting cellular energy production. Mycobiology 2020, 48, 512–517. [Google Scholar] [CrossRef]
- Paterson, R.; Russell, M. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 2008, 69, 1469–1495. [Google Scholar] [CrossRef]
- Dudgeon, W.D.; Thomas, D.D.; Dauch, W.; Scheett, T.P.; Webster, M.J. The effects of high and low-dose Cordyceps militaris—Containing mushroom blend supplementation after seven and twenty-eight days. Am. J. Sports Sci. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Smith-Ryan, A.E.; Roelofs, E.J.; Trexler, E.T.; Mock, M.G. Cordyceps militaris improves tolerance to high-intensity exercise after acute and chronic supplementation. J. Diet. Suppl. 2017, 14, 42–53. [Google Scholar] [CrossRef]
- Hsieh, S.A.; Lin, T.H.; Wang, J.S.; Chen, J.J.; Hsu, W.K.; Ying, L.C.; Liang, Z.C. The effects of Cordyceps militaris fruiting bodies in micturition and prostate size in benign prostatic hyperplasia patients: A pilot study. Pharmacol. Res. Mod. Chin. Med. 2022, 4, 100143. [Google Scholar] [CrossRef]
- Arvidson, K.; Johansson, E.G. Galvanic current between dental alloys in vitro. Scand. J. Dent. Res. 1985, 93, 467–473. [Google Scholar] [CrossRef]
- Neumann, M.; Goderska, K.; Grajek, K.; Grajek, W. The in vitro models of gastrointestinal tract to study bioavailability of nutriments. Food Sci. Technol. Qual. 2006, 1, 30–45. (In Polish) [Google Scholar]
- Polish Pharmakopeia Edition X; Office for Registration of Medicinal Products, Medical Devices and Biocides: Warszawa, Poland, 2014.
- Oddoux, L. Recherches sur les Mycéliums Secondaires des Homobasidiés en Culture Pure; Imprimerie de Trevoux: Lyon, France, 1957. [Google Scholar]
- Wen, T.C.; Li, G.R.; Kang, J.C.; Kang, C.; Hyde, K.D. Optimization of solid-state fermentation for fruiting body growth and cordycepin production by Cordyceps militaris. Chiang Mai J. Sci. 2014, 41, 858–872. [Google Scholar]
- Krakowska, A.; Zięba, P.; Włodarczyk, A.; Kała, K.; Sułkowska-Ziaja, K.; Bernaś, E.; Sękara, A.; Ostachowicz, B.; Muszyńska, B. Selected edible medicinal mushrooms from Pleurotus genus as an answer for human civilization diseases. Food Chem. 2020, 327, 127084. [Google Scholar] [CrossRef] [PubMed]
- Kała, K.; Kryczyk-Poprawa, A.; Rzewińska, A.; Muszyńska, B. Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. Eur. Food Res. Technol. 2020, 246, 713–722. [Google Scholar] [CrossRef]
- Muszyńska, B.; Piotrowska, J.; Krakowska, A.; Gruba, A.; Kała, K.; Sułkowska-Ziaja, K.; Kryczyk, A.; Opoka, W. Study of physiologically active components in different parts of fruiting bodies in varieties of Agaricus bisporus (white mushroom). Eur. Food Res. Technol. 2017, 243, 2135–2145. [Google Scholar] [CrossRef]
- Kała, K.; Krakowska, A.; Szewczyk, A.; Ostachowicz, B.; Szczurek, K.; Fijałkowska, A.; Muszyńska, B. Determining the amount of potentially bioavailable phenolic compounds and bioelements in edible mushroom mycelia of Agaricus bisporus, Cantharellus cibarius, and Lentinula edodes. Food Chem. 2021, 352, 129456. [Google Scholar] [CrossRef] [PubMed]
- Sułkowska-Ziaja, K.; Szewczyk, A.; Galanty, A.; Gdula-Argasińska, J.; Muszyńska, B. Chemical composition and biological activity of extracts from fruiting bodies and mycelial cultures of Fomitopsis betulina. Mol. Biol. Rep. 2018, 45, 2535–2544. [Google Scholar] [CrossRef]
- Kaushik, V.; Singh, A.; Arya, A.; Sindhu, S.C.; Sindhu, A.; Singh, A. Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions. Biotechnol. Rep. 2020, 28, e00557. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Opoka, W.; Muszyńska, B.; Rojowski, J.; Rumian, J. Gastroel-2014. Poland Patent Application P 238239, 18 May 2016. [Google Scholar]
- Muszyńska, B.; Kała, K.; Włodarczyk, A.; Krakowska, A.; Ostachowicz, B.; Gdula-Argasińska, J.; Suchocki, P. Lentinula edodes as a source of bioelements released into artificial digestive juices and potential anti-inflammatory material. Biol. Trace Elem. Res. 2020, 194, 603–613. [Google Scholar] [CrossRef]
- Jędrejko, K.J.; Lazur, J.; Muszyńska, B. Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods 2021, 10, 2634. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Moral, R. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- Van Tam, N.; Wang, C.H. Use of spent mushroom substrate and manure compost for honeydew melon seedlings. J. Plant Growth Regul. 2015, 34, 417–424. [Google Scholar] [CrossRef]
- Pintathong, P.; Chomnunti, P.; Sangthong, S.; Jirarat, A.; Chaiwut, P. The feasibility of utilizing cultured Cordyceps militaris residues in cosmetics: Biological activity assessment of their crude extracts. J. Fungi 2021, 7, 973. [Google Scholar] [CrossRef]
- Muszyńska, B.; Kała, K.; Sułkowska-Ziaja, K. Mushrooms as a source of biological active indole compounds. In Indole: Synthesis, Functions and Reactions; Pratt, B., Ed.; Nova Science Publishers: New York, NY, USA, 2019; pp. 61–119. [Google Scholar]
- Yang, F.Q.; Feng, K.; Zhao, J.; Li, S.P. Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 1172–1178. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Calhelha, R.C.; Cirić, A.; van Griensven, L.J.L.D.; Soković, M.; Ferreira, I.C.F.R. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem. Toxicol. 2013, 62, 91–98. [Google Scholar] [CrossRef]
- Chen, R.; Jin, C.; Li, H.; Liu, Z.; Lu, J.; Li, S.; Yang, S. Ultrahigh pressure extraction of polysaccharides from Cordyceps militaris and evaluation of antioxidant activity. Sep. Purif. Technol. 2014, 134, 90–99. [Google Scholar] [CrossRef]
- Chamyuang, S.; Owatworakit, A.; Honda, Y. New insights into cordycepin production in Cordyceps militaris and applications. Ann. Transl. Med. 2019, 7, S78. [Google Scholar] [CrossRef]
- Kang, N.; Lee, H.H.; Park, I.; Seo, Y.S. Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology 2017, 45, 31–38. [Google Scholar] [CrossRef]
- Kontogiannatos, D.; Koutrotsios, G.; Xekalaki, S.; Zervakis, G.I. Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris—A review of various aspects and recent trends towards the exploitation of a valuable fungus. J. Fungi 2021, 7, 986. [Google Scholar] [CrossRef]
- Qin, P.; Li, X.; Yang, H.; Wang, Z.Y.; Lu, D. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules 2019, 24, 2231. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Su, A.; Ma, G.; Tao, T.; Fang, D.; Zhao, L.; Hu, Q. Comparison of bioactive constituents and effects on gut microbiota by in vitro fermentation between Ophicordyceps sinensis and Cordyceps militaris. J. Funct. Foods 2020, 68, 103901. [Google Scholar] [CrossRef]
Bioelements in Mushroom Material | ||||||||
---|---|---|---|---|---|---|---|---|
Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
Mycelium from in vitro cultures | 351 ± 5 b | 1.77 ± 0.06 d | 9.36 ± 0.27 b | 1371 ± 21 e | 332 ± 10 a | nd | 932 ± 15 f | 14.0 ± 0.8 c |
Fruiting bodies (own cultivation) | 312 ± 8 c | 0.982 ± 0.071 f | 7.54 ± 0.51 c | 1306 ± 33 e | 398 ± 7 b | 0.687 ± 0.160 c | 1224 ± 25 c | 10.8 ± 0.6 b |
Medium before cultivation | 504 ± 16 a | 1.41 ± 0.15 e | 12.2 ± 0.7 a | 1868 ± 23 b | 840 ± 5 d | 1.16 ± 0.09 b | 1568 ± 23 b | 20.4 ± 1.2 d |
Medium after cultivation | 208 ± 12 d | nd | 2.06 ± 0.09 e | 231 ± 12 f | 413 ± 8 b | nd | 431 ± 12 g | 5.54 ± 0.79 a |
Fruiting bodies (commercial cultivation) | 366 ± 9 b | 2.58 ± 0.19 b | 4.58 ± 0.07 d | 2025 ± 39 a | 412 ± 8 b | 2.89 ± 0.18 a | 1886 ± 32 a | 16.2 ± 0.9 c |
Food supplement 1 | 492 ± 13 a | 2.22 ± 0.15 c | 8.86 ± 0.73 b | 1630 ± 11 d | 523 ± 10 c | 1.06 ± 0.09 b | 996 ± 18 e | 14.6 ± 1.0 c |
Food supplement 2 | 500 ± 9 a | 2.95 ± 0.16 a | 4.10 ± 0.16 d | 1727 ± 33 c | 817 ± 11 d | 0.945 ± 0.046 bc | 1115 ± 17 d | 7.50 ± 0.56 a |
After Extraction in Digestive Juices | ||||||||
Gastric Juice | ||||||||
Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
Mycelium from in vitro cultures | 174 ± 8 b | 1.28 ± 0.11 a | 4.87 ± 0.47 a | 664 ± 17 c | 191 ± 9 cd | nd | 616 ± 7 b | 6.82 ± 0.75 a |
Fruiting bodies (own cultivation) | 103 ± 4 d | 0.323 ± 0.014 c | 2.34 ± 0.27 c | 601 ± 25 c | 185 ± 12 d | 0.212 ± 0.011 c | 468 ± 29 c | 4.42 ± 0.21 bc |
Fruiting bodies (commercial cultivation) | 141 ± 6 c | 0.912 ± 0.054 b | 3.50 ± 0.23 b | 1108 ± 47 a | 239 ± 6 b | 1.85 ± 0.15 a | 710 ± 31 a | 5.04 ± 0.20 b |
Food supplement 1 | 235 ± 10 a | 0.829 ± 0.051 b | 4.44 ± 0.47 a | 1006 ± 27 ab | 215 ± 10 bc | 0.567 ± 0.078 b | 382 ± 8 d | 5.13 ± 0.82 b |
Food supplement 2 | 160 ± 8 bc | 1.22 ± 0.04 a | 2.09 ± 0.16 c | 920 ± 63 b | 489 ± 11 a | 0.240 ± 0.011 c | 480 ± 33 c | 3.21 ± 0.55 c |
Intestinal Juice | ||||||||
Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
Mycelium from in vitro cultures | 39.1 ± 1.7 c | nd | 1.46 ± 0.18 b | 210 ± 9 e | 39.6 ± 0.9 c | nd | 176 ± 6 d | 3.42 ± 0.15 ab |
Fruiting bodies (own cultivation) | 49.7 ± 5.9 c | nd | 0.648 ± 0.168 c | 438 ± 14 b | 50.1 ± 4.6 c | nd | 301 ± 14 a | 3.99 ± 0.75 a |
Fruiting bodies (commercial cultivation) | 67.4 ± 9.2 b | 0.379 ± 0.024 a | 0.455 ± 0.008 c | 583 ± 27 a | 33.3 ± 1.8 c | 0.752 ± 0.055 b | 250 ± 16 bc | 3.17 ± 0.27 ab |
Food supplement 1 | 97.5 ± 6.3 a | 0.524 ± 0.113 a | 3.23 ± 0.15 a | 336 ± 10 c | 85.0 ± 5.7 b | nd | 289 ± 20 ab | 2.13 ± 0.14 c |
Food supplement 2 | 52.2 ± 3.4 bc | 0.475 ± 0.079 a | 1.53 ± 0.07 b | 285 ± 5 d | 139 ± 14 a | 0.167 ± 0.014 a | 242 ± 16 c | 2.70 ± 0.20 bc |
Mushroom Material | ||||||
---|---|---|---|---|---|---|
Analyzed Compounds | Mycelium from In Vitro Cultures | Fruiting Bodies (Own Cultivation) | Medium after Cultivation | Fruiting Bodies (Commercial Cultivation) | Food Supplement 1 | Food Supplement 2 |
Indole Compounds | ||||||
L-Tryptophan | 5.84 ± 0.18 b | 6.42 ± 0.03 b | nd | 8.71 ± 0.03 a | 7.75 ± 1.56 a | 2.76 ± 0.01 c |
5-Hydroxy-L-tryptophan | 206 ± 3 b | 81.1 ± 4.3 e | 70.7 ± 0.7 f | 185 ± 3 c | 296 ± 3 a | 140 ± 4 d |
Serotonin | nd | 39.4 ± 0.2 b | 33.9 ± 1.2 c | nd | nd | 122 ± 3 a |
Tryptamine | nd | * | nd | nd | nd | nd |
Melatonin | * | * | * | * | * | * |
Phenolic Compounds | ||||||
p-Hydroxybenzoic acid | nd | 0.038 ± 0.001 a | nd | nd | nd | nd |
Quercitrin | 2.54 ± 0.01 b | 2.10 ± 0.01 a | nd | nd | nd | nd |
Rutoside | 1.17 ± 0.02 a | 0.066 ± 0.002 b | nd | nd | nd | nd |
Sterols | ||||||
Ergosterol | 477 ± 1 a | 95.5 ± 0.4 e | 259 ± 1 b | 142 ± 3 d | 155 ± 1 c | 4.28 ± 0.01 f |
Ergosterol peroxide | * | * | nd | * | * | nd |
α-Tocopherol | 148 ± 1 b | 9.83 ± 0.11 d | nd | 96.3 ± 5.2 c | 242 ± 1 a | 5.87 ± 0.02 d |
Other organic Compounds | ||||||
Cordycepin | 6.34 ± 0.40 a | 25.9 ± 0.6 d | 24.3 ± 1.2 d | 57.5 ± 0.4 c | 60.4 ± 0.1 b | 81.4 ± 3.1 a |
Lovastatin | 29.7 ± 1.1 c | 30.5 ± 1.5 c | 1.90 ± 0.13 d | 36.4 ± 0.1 b | 53.6 ± 0.3 a | 35.4 ± 5.0 b |
Ergothioneine | 10.4 ± 1.7 a | 8.97 ± 0.38 ab | 4.21 ± 0.13 c | 8.74 ± 0.73 ab | 7.93 ± 0.66 b | 2.56 ± 0.06 c |
L-Phenylalanine | 224 ± 2 a | 6.56 ± 0.07 c | nd | nd | nd | 117 ± 4 b |
Antioxidant Activity | ||||||
% DPPH | 7.85 ± 0.16 e | 26.0 ± 0.9 b | 18.5 ± 0.5 c | 38.4 ± 0.4 a | 15.3 ± 0.1 d | 17.2 ± 0.5 c |
Total phenolic content | 34.9 ± 1.2 d | 149 ± 2 a | 91.3 ± 1.6 c | 110 ± 1 b | 150 ± 2 a | 88.8 ± 1.5 c |
After Extraction in Digestive Juices | ||||||
Gastric Juice | ||||||
L-Tryptophan | nd | 17.7 ± 1.1 b | - | 41.5 ± 0.1 a | 13.7 ± 1.6 c | 3.83 ± 0.04 d |
5-Hydroxy-L-tryptophan | 15.2 ± 1.8 c | 10.4 ± 0.8 d | - | 21.3 ± 2.0 b | 37.3 ± 0.7 a | 11.3 ± 0.1 d |
Melatonin | nd | * | - | nd | nd | * |
Ergosterol | 4.63 ± 0.01 c | 4.81 ± 0.01 b | - | 4.69 ± 0.01 c | 7.15 ± 0.07 a | 4.49 ± 0.01 d |
Ergosterol peroxide | * | * | - | * | * | * |
Cordycepin | 1.68 ± 0.02 a | nd | - | nd | nd | nd |
Lovastatin | nd | * | - | nd | * | nd |
Ergothioneine | 21.9 ± 1.0 b | 28.3 ± 0.8 a | - | 19.4 ± 0.3 c | 22.5 ± 1.5 b | 2.82 ± 0.03 d |
L-Phenylalanine | 208 ± 1 a | nd | - | nd | nd | 26.2 ± 0.3 b |
Intestinal Juice | ||||||
L-Tryptophan | 4.07 ± 0.06 c | 7.63 ± 0.03 a | - | 7.44 ± 0.08 b | 7.42 ± 0.07 b | nd |
5-Hydroxy-L-tryptophan | 21.8 ± 2.7 a | 17.1 ± 0.8 b | - | 17.6 ± 1.2 b | 22.3 ± 0.5 a | 3.40 ± 0.27 c |
Melatonin | * | nd | - | * | * | nd |
Ergosterol | 4.57 ± 0.01 c | 4.63 ± 0.02 b | - | 4.63 ± 0.01 b | 8.14 ± 0.04 a | 4.50 ± 0.01 d |
Ergosterol peroxide | * | * | - | * | * | * |
Cordycepin | 8.13 ± 0.24 c | 25.8 ± 0.8 a | - | 25.9 ± 0.1 a | 20.5 ± 0.1 b | 7.03 ± 0.01 d |
Lovastatin | * | nd | - | * | * | nd |
Ergothioneine | 2.94 ± 0.01 c | 1.82 ± 0.13 d | - | 8.53 ± 0.50 a | 5.95 ± 0.20 b | 1.43 ± 0.01 d |
L-Phenylalanine | 18.4 ± 0.4 a | nd | - | nd | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrejko, K.; Kała, K.; Sułkowska-Ziaja, K.; Krakowska, A.; Zięba, P.; Marzec, K.; Szewczyk, A.; Sękara, A.; Pytko-Polończyk, J.; Muszyńska, B. Cordyceps militaris—Fruiting Bodies, Mycelium, and Supplements: Valuable Component of Daily Diet. Antioxidants 2022, 11, 1861. https://doi.org/10.3390/antiox11101861
Jędrejko K, Kała K, Sułkowska-Ziaja K, Krakowska A, Zięba P, Marzec K, Szewczyk A, Sękara A, Pytko-Polończyk J, Muszyńska B. Cordyceps militaris—Fruiting Bodies, Mycelium, and Supplements: Valuable Component of Daily Diet. Antioxidants. 2022; 11(10):1861. https://doi.org/10.3390/antiox11101861
Chicago/Turabian StyleJędrejko, Karol, Katarzyna Kała, Katarzyna Sułkowska-Ziaja, Agata Krakowska, Piotr Zięba, Krystian Marzec, Agnieszka Szewczyk, Agnieszka Sękara, Jolanta Pytko-Polończyk, and Bożena Muszyńska. 2022. "Cordyceps militaris—Fruiting Bodies, Mycelium, and Supplements: Valuable Component of Daily Diet" Antioxidants 11, no. 10: 1861. https://doi.org/10.3390/antiox11101861