¹H-NMR Metabolic Profiling, Antioxidant Activity, and Docking Study of Common Medicinal Plant-Derived Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Preparation and Collection
2.1.1. Honey Samples
2.1.2. Preparation of Reference Slides
2.1.3. Qualitative Analysis of Pollen in Honey Samples
2.2. Multivariate and Statistical Analysis
2.2.1. Metabolites Extraction
2.2.2. H-NMR Analysis
2.2.3. Multivariate and Statistical Analysis
2.3. Antioxidant Activity
2.3.1. DPPH (Diphenyl-1-picrylhydrazyl) Assay
2.3.2. ABTS Antioxidant Assay
2.3.3. 5-Lipoxygenase Inhibitor Screening Assay
2.3.4. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.3.5. Determination of Metal Chelating Activity
2.3.6. Statistical Evaluations of In Vitro Experiments
2.4. In Silico and Modeling Investigation
2.5. Identification of Isolated Compounds
3. Results
3.1. NMR Analysis
3.2. Multivariate Data Analysis
3.3. Antioxidant Capacity
3.3.1. DPPH Radical Scavenging Activity and Metal Chelating Activity
3.3.2. ORAC Antioxidant Capacity and Lipoxygenase Inhibition Activity
3.4. Molecular Modeling Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feger, W.; Brandauer, H.; Ziegler, H. Analytical Investigation of Murcott (Honey) Tangerine Peel Oil. J. Essent. Oil Res. 2003, 15, 143–147. [Google Scholar] [CrossRef]
- Tan, F.C.; Swain, S.M. Functional Characterization of AP3, SOC1 and WUS Homologues from Citrus (Citrus sinensis). Physiol. Plant. 2007, 131, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Gharib, F.A.; Badr, S.E.A.; Al-Ghazali, B.A.S.; Zahran, M.K. Chemical Composition, Antioxidant and Antibacterial Activities of Lavender and Marjoram Essential Oils. Egypt. J. Chem. 2013, 56, 1–24. [Google Scholar]
- Abdalla, M.M.F.; Abd El-Naby Zeinab, M. Inbreeding and Fertility in Egyptian Clover, Trifolium Alexandrinum. J. Pharmacogn. Phyther. 2012, 4, 16–25. [Google Scholar] [CrossRef]
- Jamróz, M.K.; Paradowska, K.; Zawada, K.; Makarova, K.; Kaźmierski, S.; Wawer, I. 1H and 13C NMR-Based Sugar Profiling with Chemometric Analysis and Antioxidant Activity of Herbhoneys and Honeys. J. Sci. Food Agric. 2014, 94, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Kazalaki, A.; Misiak, M.; Spyros, A.; Dais, P. Identification and Quantitative Determination of Carbohydrate Molecules in Greek Honey by Employing 13C NMR Spectroscopy. Anal. Methods 2015, 7, 5962–5972. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R.; Cogliati, C. NMR Characterization of Saccharides in Italian Honeys of Different Floral Sources. J. Agric. Food Chem. 2012, 60, 4526–4534. [Google Scholar] [CrossRef]
- Pascual-Maté, A.; Osés, S.M.; Marcazzan, G.L.; Gardini, S.; Muiño, M.A.F.; Sancho, M.T. Sugar Composition and Sugar-Related Parameters of Honeys from the Northern Iberian Plateau. J. Food Compos. Anal. 2018, 74, 34–43. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.-H.H.; Engeseth, N.J. Identification and Quantification of Antioxidant Components of Honeys from Various Floral Sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef]
- Ciulu, M.; Spano, N.; Pilo, M.I.; Sanna, G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules 2016, 21, 451. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Vlasiou, M.; Kontakos, S.; Drouza, C.; Kontominas, M.G.; Keramidas, A.D. Geographical Discrimination of Pine and Fir Honeys Using Multivariate Analyses of Major and Minor Honey Components Identified by 1H NMR and HPLC along with Physicochemical Data. Eur. Food Res. Technol. 2018, 244, 1249–1259. [Google Scholar] [CrossRef]
- Spiteri, M.; Jamin, E.; Thomas, F.; Rebours, A.; Lees, M.; Rogers, K.M.; Rutledge, D.N. Fast and Global Authenticity Screening of Honey Using 1H-NMR Profiling. Food Chem. 2015, 189, 60–66. [Google Scholar] [CrossRef]
- Schievano, E.; Stocchero, M.; Morelato, E.; Facchin, C.; Mammi, S. An NMR-Based Metabolomic Approach to Identify the Botanical Origin of Honey. Metabolomics 2012, 8, 679–690. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R. Geographical Characterization of Polyfloral and Acacia Honeys by Nuclear Magnetic Resonance and Chemometrics. J. Agric. Food Chem. 2008, 56, 6873–6880. [Google Scholar] [CrossRef]
- Beretta, G.; Caneva, E.; Regazzoni, L.; Bakhtyari, N.G.; Facino, R.M. A Solid-Phase Extraction Procedure Coupled to 1H NMR, with Chemometric Analysis, to Seek Reliable Markers of the Botanical Origin of Honey. Anal. Chim. Acta 2008, 620, 176–182. [Google Scholar] [CrossRef]
- Girelli, C.R.; Del Coco, L.; Fanizzi, F.P. 1H NMR Spectroscopy and Multivariate Analysis as Possible Tool to Assess Cultivars, from Specific Geographical Areas, in EVOOs. Eur. J. Lipid Sci. Technol. 2016, 118, 1380–1388. [Google Scholar] [CrossRef]
- Miguel, M.G.; Antunes, M.D.; Faleiro, M.L. Honey as a Complementary Medicine. Integr. Med. Insights 2017, 12, 1–15. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Fresno, J.M.; Estevinho, M.M.; Sousa-Pimenta, M.; Tornadijo, M.E.; Estevinho, L.M. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics 2020, 9, 774. [Google Scholar] [CrossRef]
- Kuś, P.M. Honey as Source of Nitrogen Compounds: Aromatic Amino Acids, Free Nucleosides and Their Derivatives. Molecules 2020, 25, 847. [Google Scholar] [CrossRef]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant Activities and Total Phenolics of Different Types of Honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Sateriale, D.; Facchiano, S.; Colicchio, R.; Pagliuca, C.; Varricchio, E.; Paolucci, M.; Volpe, M.G.; Salvatore, P.; Pagliarulo, C. In Vitro Synergy of Polyphenolic Extracts from Honey, Myrtle and Pomegranate against Oral Pathogens, S. mutans and R. dentocariosa. Front. Microbiol. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxid. Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef] [PubMed]
- Erlund, I. Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the Total Phenolic, Flavonoid and Proline Contents in Burkina Fasan Honey, as Well as Their Radical Scavenging Activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Suarez, A.F.L.; Tirador, A.D.G.; Villorente, Z.M.; Bagarinao, C.F.; Sollesta, J.V.N.; Dumancas, G.G.; Sun, Z.; Zhan, Z.Q.; Saludes, J.P.; Dalisay, D.S. The Isorhamnetin-Containing Fraction of Philippine Honey Produced by the Stingless Bee Tetragonula biroi Is an Antibiotic against Multidrug-Resistant Staphylococcus aureus. Molecules 2021, 26, 688. [Google Scholar] [CrossRef]
- Nicolson, S.W.; Nepi, M.; Pacini, E. Nectaries and Nectar; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4. [Google Scholar]
- Soria, A.C.; González, M.; De Lorenzo, C.; Martınez-Castro, I.; Sanz, J. Characterization of Artisanal Honeys from Madrid (Central Spain) on the Basis of Their Melissopalynological, Physicochemical and Volatile Composition Data. Food Chem. 2004, 85, 121–130. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant Activity of Portuguese Honey Samples: Different Contributions of the Entire Honey and Phenolic Extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Kishore, R.K.; Halim, A.S.; Syazana, M.S.N.; Sirajudeen, K.N.S. Tualang Honey Has Higher Phenolic Content and Greater Radical Scavenging Activity Compared with Other Honey Sources. Nutr. Res. 2011, 31, 322–325. [Google Scholar] [CrossRef]
- Murapa, P.; Dai, J.; Chung, M.; Mumper, R.J.; D’Orazio, J. Anthocyanin-rich Fractions of Blackberry Extracts Reduce UV-induced Free Radicals and Oxidative Damage in Keratinocytes. Phyther. Res. 2012, 26, 106–112. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Koorbanally, N.A.; Kiplimo, J.J.; Islam, M.S. Anti-Oxidative Activities of the Various Extracts of Stem Bark, Root and Leaves of Ziziphus Mucronata (Rhamnaceae) in Vitro. J. Med. Plants Res. 2012, 6, 4176–4184. [Google Scholar]
- Facchini, P.J.; De Luca, V. Opium Poppy and Madagascar Periwinkle: Model Non-model Systems to Investigate Alkaloid Biosynthesis in Plants. Plant J. 2008, 54, 763–784. [Google Scholar] [CrossRef]
- Havsteen, B.H. The Biochemistry and Medical Significance of the Flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Steeg, E.; Montag, A. Minor Ingredients of Honey with Flavor Relevancy. 2. Sensorially Active Decomposition Products of Carboxylic-Acids and Glycosidically Bonded Aromates. Dtsch. Leb. 1988, 84, 147–150. [Google Scholar]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Sayed, A.M.; El-Gendy, A.O.; Shamikh, Y.I.; Gaber, Y.; Bakeer, W.; Sheirf, N.H.; Attia, E.Z.; Shaban, G.M.; Khalifa, B.A. A Metabolomic Approach to Target Antimalarial Metabolites in the Artemisia Annua Fungal Endophytes. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- More, G.K.; Meddows-Taylor, S.; Prinsloo, G. Metabolomic Profiling of Antioxidant Compounds in Five Vachellia Species. Molecules 2021, 26, 6214. [Google Scholar] [CrossRef]
- Sawyer, R. Pollen Identification for Beekeepers; Pickard, R.S., Ed.; University College Cardiff Press: Cardiff, UK, 1981. [Google Scholar]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Ferreres, F.; Tomáas-Barberáan, F.A.; Gil, M.I.; Tomáas-Lorente, F. An HPLc Technique for Flavonoid Analysis in Honey. J. Sci. Food Agric. 1991, 56, 49–56. [Google Scholar] [CrossRef]
- Ferreres, F.; Andrade, P.; Tomfis-Barberfin, F.A. Flavonoids from Portuguese Heather Honey; Zeitschrift für Lebensmittel-Untersuchung und -Forschung: Berlin, Germany, 1994; Volume 199, pp. 32–37. [Google Scholar] [CrossRef]
- Isla, M.I.; Craig, A.; Ordoñez, R.; Zampini, C.; Sayago, J.; Bedascarrasbure, E.; Alvarez, A.; Salomón, V.; Maldonado, L. Physico Chemical and Bioactive Properties of Honeys from Northwestern Argentina. LWT Food Sci. Technol. 2011, 44, 1922–1930. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Angulo, I.; Paseiro-Losada, P.; Cruz, J.M. Phenolic Profile and Antioxidant Properties of a Crude Extract Obtained from a Brewery Waste Stream. Food Res. Int. 2013, 51, 663–669. [Google Scholar] [CrossRef]
- Brangoulo, H.L.; Molan, P.C. Assay of the Antioxidant Capacity of Foods Using an Iron (II)-Catalysed Lipid Peroxidation Model for Greater Nutritional Relevance. Food Chem. 2011, 125, 1126–1130. [Google Scholar] [CrossRef]
- Baltrušaitytė, V.; Venskutonis, P.R.; Čeksterytė, V. Radical Scavenging Activity of Different Floral Origin Honey and Beebread Phenolic Extracts. Food Chem. 2007, 101, 502–514. [Google Scholar] [CrossRef]
- Njenga, E.W.; Viljoen, A.M. In Vitro 5-Lipoxygenase Inhibition and Anti-Oxidant Activity of Eriocephalus L. (Asteraceae) Species. S. Afr. J. Bot. 2006, 72, 637–641. [Google Scholar] [CrossRef]
- Akula, U.S.; Odhav, B. In Vitro 5-Lipoxygenase Inhibition of Polyphenolic Antioxidants from Undomesticated Plants of South Africa. J. Med. Plants Res. 2013, 2, 207–212. [Google Scholar]
- Gillespie, K.M.; Chae, J.M.; Ainsworth, E.A. Rapid Measurement of Total Antioxidant Capacity in Plants. Nat. Protoc. 2007, 2, 867–870. [Google Scholar] [CrossRef]
- Chew, Y.-L.; Goh, J.-K.; Lim, Y.-Y. Assessment of in Vitro Antioxidant Capacity and Polyphenolic Composition of Selected Medicinal Herbs from Leguminosae Family in Peninsular Malaysia. Food Chem. 2009, 116, 13–18. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Alkhatabi, H.; Abduljabbar, F.H.; Abdelmohsen, U.R.; Sayed, A.M. Anticancer Potential of Green Synthesized Silver Nanoparticles of the Soft Coral Cladiella Pachyclados Supported by Network Pharmacology and In Silico Analyses. Pharmaceutics 2021, 13, 1846. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Burgio, G.; Thissera, B.; Orfali, R.; Jiffri, S.E.; Yaseen, M.; Sayed, A.M.; Rateb, M.E. Neoechinulin A as a Promising SARS-CoV-2 Mpro Inhibitor: In Vitro and in Silico Study Showing the Ability of Simulations in Discerning Active from Inactive Enzyme Inhibitors. Mar. Drugs 2022, 20, 163. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.H.; Abdelaliem, Y.F.; Esmail, A.H.M.; Mohdaly, A.A.A.; Ramadan, M.F. Evaluation of Egyptian Honeys and Their Floral Origins: Phenolic Compounds, Antioxidant Activities, and Antimicrobial Characteristics. Environ. Sci. Pollut. Res. 2020, 27, 20748–20756. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, A.A.; Ismail, H.M.; Al-Ahwal, A.E.-M.A.; Gomaa, N.F. Determination of Flavonoid and Phenolic Acid Contents of Clover, Cotton and Citrus Floral Honeys. J. Egypt. Public Health Assoc. 2009, 84, 245–24559. [Google Scholar] [PubMed]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of Antioxidant Activity, Total Phenols and Phenolic Compounds in Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Marjoram (Origanum majorana L.) Extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Ahmad Khera, R.; Nadeem, F.; Idrees Jilani, M. Essential Chemical Constituents and Medicinal Uses of Marjoram (Origanum majorana L.)—A Comprehensive Review. Ijcbs 2016, 9, 56. [Google Scholar]
- Abou-Shaara, H.F. Potential Honey Bee Plants of Egypt. Cercet. Agron. Mold. 2015, 48, 99–108. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Differentiation of Monofloral Citrus, Rosemary, Eucalyptus, Lavender, Thyme and Heather Honeys Based on Volatile Composition and Sensory Descriptive Analysis. Food Chem. 2009, 112, 1022–1030. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aroma Composition and New Chemical Markers of Spanish Citrus Honeys. Food Chem. 2007, 103, 601–606. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Daferera, D.; Tarantilis, P.A.; Polissiou, M.; Harizanis, P.C. Ultrasound-Assisted Extraction of Volatile Compounds from Citrus Flowers and Citrus Honey. Food Chem. 2003, 82, 575–582. [Google Scholar] [CrossRef]
- Jeong, C.H.; Jeong, H.R.; Choi, G.N.; Kim, D.O.; Lee, U.; Heo, H.J. Neuroprotective and Anti-Oxidant Effects of Caffeic Acid Isolated from Erigeron Annuus Leaf. Chin. Med. 2011, 6, 1–9. [Google Scholar] [CrossRef]
- Lim, E.-K.; Higgins, G.S.; Li, Y.; Bowles, D.J. Regioselectivity of Glucosylation of Caffeic Acid by a UDP-Glucose: Glucosyltransferase Is Maintained in Planta. Biochem. J. 2003, 373, 987–992. [Google Scholar] [CrossRef]
- Sambandam, B.; Thiyagarajan, D.; Ayyaswamy, A.; Raman, P. Extraction and Isolation of Flavonoid Quercetin from the Leaves of Trigonella Foenum-Graecum and Their Anti-Oxidant Activity. Int. J. Pharm. Pharm. Sci. 2016, 8, 120–124. [Google Scholar]
- Selvaraj, K.; Chowdhury, R.; Bhattacharjee, C. Isolation and Structural Elucidation of Flavonoids from Aquatic Fern Azolla Microphylla and Evaluation of Free Radical Scavenging Activity. Int. J Pharm. Pharm. Sci. 2013, 5, 743–749. [Google Scholar]
- Al-Ashaal, H.A.; El-Sheltawy, S.T. Antioxidant Capacity of Hesperidin from Citrus Peel Using Electron Spin Resonance and Cytotoxic Activity against Human Carcinoma Cell Lines. Pharm. Biol. 2011, 49, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Woo, W.S.; Young, H.S.; Park, J.H. Phytochemical Study on Prunus Davidiana. Arch. Pharmacal Res. 1990, 13, 374–378. [Google Scholar] [CrossRef]
- Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and Mechanistic Insights into 5-Lipoxygenase Inhibition by Natural Products. Nat. Chem. Biol. 2020, 16, 783–790. [Google Scholar] [CrossRef]
- Kim, S.; Oshima, H.; Zhang, H.; Kern, N.R.; Re, S.; Lee, J.; Roux, B.; Sugita, Y.; Jiang, W.; Im, W. CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations. J. Chem. Theory Comput. 2020, 16, 7207–7218. [Google Scholar] [CrossRef]
- Russo, A.; Acquaviva, R.; Campisi, A.; Sorrenti, V.; Di Giacomo, C.; Virgata, G.; Barcellona, M.L.; Vanella, A. Bioflavonoids as Antiradicals, Antioxidants and DNA Cleavage Protectors. Cell Biol. Toxicol. 2000, 16, 91–98. [Google Scholar] [CrossRef]
- Pokorny, J.; Yanishlieva, N.; Gordon, M.H. Antioxidants in Food: Practical Applications; CRC Press: Cambridge, UK; Woodhead Publishing Ltd.: Boca Raton, FL, USA, 2001; ISBN 0849312221. [Google Scholar]
- Rajalakshmi, D.; Narasimhan, S. Food Antioxidants: Technological, Toxicological, Health Perspective; Marcel Dekker, Inc.: New York, NY, USA, 1996; 512p. [Google Scholar]
- Buratti, S.; Benedetti, S.; Cosio, M.S. Evaluation of the Antioxidant Power of Honey, Propolis and Royal Jelly by Amperometric Flow Injection Analysis. Talanta 2007, 71, 1387–1392. [Google Scholar] [CrossRef]
- Blasa, M.; Candiracci, M.; Accorsi, A.; Piacentini, M.P.; Albertini, M.C.; Piatti, E. Raw Millefiori Honey Is Packed Full of Antioxidants. Food Chem. 2006, 97, 217–222. [Google Scholar] [CrossRef]
- Al, M.L.; Daniel, D.; Moise, A.; Bobis, O.; Laslo, L.; Bogdanov, S. Physico-Chemical and Bioactive Properties of Different Floral Origin Honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 Medicinal Plant Extracts for Antioxidant Capacity and Total Phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Zalibera, M.; Staško, A.; Šlebodová, A.; Jančovičová, V.; Čermáková, T.; Brezová, V. Antioxidant and Radical-Scavenging Activities of Slovak Honeys–An Electron Paramagnetic Resonance Study. Food Chem. 2008, 110, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional Properties of Honey, Propolis, and Royal Jelly. J. Food Sci. 2008, 73, R117–R124. [Google Scholar] [CrossRef] [PubMed]
- Osher, E.; Weisinger, G.; Limor, R.; Tordjman, K.; Stern, N. The 5 Lipoxygenase System in the Vasculature: Emerging Role in Health and Disease. Mol. Cell. Endocrinol. 2006, 252, 201–206. [Google Scholar] [CrossRef]
- Joshi, Y.B.; Praticò, D. The 5-Lipoxygenase Pathway: Oxidative and Inflammatory Contributions to the Alzheimer’s Disease Phenotype. Front. Cell. Neurosci. 2015, 8, 436. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Fang, S.; Lu, Y.; Zhang, L.; Qi, L.; Huang, X.; Huang, X.; Wei, E. Baicalin Attenuates Oxygen-Glucose Deprivation-Induced Injury by Inhibiting Oxidative Stress-Mediated 5-Lipoxygenase Activation in PC12 Cells. Acta Pharmacol. Sin. 2010, 31, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, W.; Li, Y.; Xiao, Y.; Cheng, J.; Jia, J. The 5-Lipoxygenase Inhibitor Zileuton Confers Neuroprotection against Glutamate Oxidative Damage by Inhibiting Ferroptosis. Biol. Pharm. Bull. 2015, 38, 1234–1239. [Google Scholar] [CrossRef]
- Maccarrone, M.; Meloni, C.; Manca-di-Villahermosa, S.; Cococcetta, N.; Casciani, C.U.; Finazzi-Agrò, A.; Taccone-Gallucci, M. Vitamin E Suppresses 5-Lipoxygenase-Mediated Oxidative Stress in Peripheral Blood Mononuclear Cells of Hemodialysis Patients Regardless of Administration Route. Am. J. Kidney Dis. 2001, 37, 964–969. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E. Studies on the Antioxidant Activities of Cinnamon (Cinnamomum verum) Bark Extracts, through Various in Vitro Models. Food Chem. 2006, 94, 520–528. [Google Scholar] [CrossRef]
- Sancho, M.T.; Pascual-Maté, A.; Rodríguez-Morales, E.G.; Osés, S.M.; Escriche, I.; Periche, Á.; Fernández-Muiño, M.A. Critical Assessment of Antioxidant-related Parameters of Honey. Int. J. Food Sci. Technol. 2016, 51, 30–36. [Google Scholar] [CrossRef]
- Wu, H.-C.; Shiau, C.-Y.; Chen, H.-M.; Chiou, T.-K. Antioxidant Activities of Carnosine, Anserine, Some Free Amino Acids and Their Combination. J. Food Drug Anal. 2003, 11, 148–153. [Google Scholar] [CrossRef]
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; IEEE: New York, NY, USA, 2006; p. 43. [Google Scholar]
- Release, S. 3: Desmond Molecular Dynamics System, DE Shaw Research, New York, NY, 2017; Maestro-Desmond Interoperability Tools, Schrödinger: New York, NY, USA, 2017. [Google Scholar]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Ngo, S.T.; Tam, N.M.; Quan, P.M.; Nguyen, T.H. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. J. Chem. Inf. Model. 2021, 61, 2302–2312. [Google Scholar] [CrossRef]
ABTS | Metal Chelating Activity | |||
---|---|---|---|---|
TE μM/g Trolox TE μM/g Trolox = 36.56/250 × 1000 = 146.23 | % Inhibition | |||
Sample | 10 μg/mL | 50 μg/mL | 10 μg/mL | 50 μg/mL |
HM2 | 113.88 ± 0.432 c | 210.24 ± 1.68 c | 31.98978 ± 1.475 c | 63.75881 ± 0.7625 b |
HT1 | 66.96± 1.25 a | 120.48 ± 1.33 b | 6.953549 ± 2.0365 a | 40.21628 ± 1.2905 a |
HT2 | 128.96± 0.458 c | 224 ± o.655 c | 26.50544 ± 1.598 c | 60.74911 ± 0.83 b |
HC2 | 185.36± 1.34 b | 431.2 ± 2.15 a | 35.62371 ± 1.3935 c | 73.34526 ± 0.5475 c |
HM1 | 111.0 ± 0.857 c | 158.36 ± 0.442 b | 21.51157 ± 1.71 b | 46.32486 ± 1.1535 a |
HC1 | 83.04 ± 0.612 a | 214.76 ± 2.1 c | 15.82658 ± 1.835 b | 41.68769 ± 1.2575 a |
Control | 113.88 ± 0.035 c | 210.24 ± 0.023 c |
ORAC TE μM/L | 5-LOX | ||
---|---|---|---|
Sample | 10 μg/mL | 50 μg/mL | IC50 μg/mL ± SD |
HM2 | 168.3 ± 0.839 c | 235.8 ± 1.03 c | 6.136 ± 0.4 a |
HT1 | 101 ± 0.606 a | 180 ± 0.672 a | 23.36 ± 1.4 b |
HT2 | 147.9 ± 0.0776 c | 235.4 ± 0.0776 c | 10.34 ± 0.6 a |
HC2 | 150.1 ± 0.616 c | 259.5 ± 0.448 c | 2.293 ± 0.1 a |
HM1 | 115.4 ± 0.175 a | 226.8 ± 0.286 b | 77.59 ± 4.6 c |
HC1 | 134.7 ± 0.69 b | 209.7 ± 0.198 b | 31.87 ± 1.9 b |
NDGA | 2.696 ± 0.2 a |
Structure | Docking Score (kcal/mol) | ΔG Binding (kcal/mol) | Average RMSD (Å) | H-Bonding | Hydrophobic Interaction |
---|---|---|---|---|---|
Caffeic acid | −7.1 | −7.5 | 1.7 | HIS-372 | LEU-607 |
Hesperetin | −7.5 | −7.9 | 2.8 | HIS-372 | TRP-599, LEU-607 |
Quercetin | −7.6 | −8.4 | 4.0 | HIS-372 | TRP-599, LEU-607 |
Chlorogenic acid | −6.1 | −5.3 | >5 | ARG-596 | TRP-599 |
Cinnamic acid | −6.9 | −4.7 | >5 | - | TRP-599, LEU-607 |
p-coumaric acid | −6.2 | −4.1 | >5 | ARG-596 | TRP-599 |
Citric acid | −5.3 | −3.6 | >5 | ARG-596, TRP-599 | - |
Gallic acid | −4.7 | −2.3 | >5 | TRP-599 | - |
Linalool | −3.5 | −1.1 | >5 | - | TRP-599 |
NDGA * | −7.9 | −8.6 | 4.7 | HIS-372, ARG-596 | TRP-599, LEU-607 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montaser, M.; Ali, A.T.; Sayed, A.M.; Abdelmohsen, U.R.; Zidan, E.W.; Orfali, R.; Rateb, M.E.; Zaki, M.A.; Hassan, H.M.; Mohammed, R.; et al. ¹H-NMR Metabolic Profiling, Antioxidant Activity, and Docking Study of Common Medicinal Plant-Derived Honey. Antioxidants 2022, 11, 1880. https://doi.org/10.3390/antiox11101880
Montaser M, Ali AT, Sayed AM, Abdelmohsen UR, Zidan EW, Orfali R, Rateb ME, Zaki MA, Hassan HM, Mohammed R, et al. ¹H-NMR Metabolic Profiling, Antioxidant Activity, and Docking Study of Common Medicinal Plant-Derived Honey. Antioxidants. 2022; 11(10):1880. https://doi.org/10.3390/antiox11101880
Chicago/Turabian StyleMontaser, Maha, Asmaa T. Ali, Ahmed M. Sayed, Usama Ramadan Abdelmohsen, Ehab W. Zidan, Raha Orfali, Mostafa E. Rateb, Mohamed A. Zaki, Hossam M. Hassan, Rabab Mohammed, and et al. 2022. "¹H-NMR Metabolic Profiling, Antioxidant Activity, and Docking Study of Common Medicinal Plant-Derived Honey" Antioxidants 11, no. 10: 1880. https://doi.org/10.3390/antiox11101880
APA StyleMontaser, M., Ali, A. T., Sayed, A. M., Abdelmohsen, U. R., Zidan, E. W., Orfali, R., Rateb, M. E., Zaki, M. A., Hassan, H. M., Mohammed, R., & Hifnawy, M. S. (2022). ¹H-NMR Metabolic Profiling, Antioxidant Activity, and Docking Study of Common Medicinal Plant-Derived Honey. Antioxidants, 11(10), 1880. https://doi.org/10.3390/antiox11101880