Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Arrabidaea chica Leaves
2.3. Extracts of Arrabidaea chica Leaves
2.4. HPLC-DAD Determination of Phenolic Compounds in the A. chica Extracts
2.5. In Vitro Scavenging Capacity Determination against ROS and RNS
2.5.1. Superoxide Anion Radical (O2•−) Scavenging Assay
2.5.2. Hydrogen Peroxide (H2O2) Scavenging Assay
2.5.3. Hypochlorous Acid (HOCl) Scavenging Assay
2.5.4. Peroxynitrite Anion (ONOO−) Scavenging Assay
2.5.5. Peroxyl Radical Scavenging Assay (ROO•) (ORAC)
2.5.6. Singlet Oxygen (1O2) Quenching Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds Composition of Arrabidaea chica Extracts
3.2. ROS- and RNS-Scavenging Capacity of the Arrabidaea chica Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Öztaskın, N.; Taslimi, P.; Maraş, A.; Gülcin, İ.; Göksu, S. Novel Antioxidant Bromophenols with Acetylcholinesterase, Butyrylcholinesterase and Carbonic Anhydrase Inhibitory Actions. Bioorg. Chem. 2017, 74, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Huyut, Z.; Beydemir, Ş.; Gülçin, I. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem Res Int. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Anraku, M.; Gebicki, J.M.; Iohara, D.; Tomida, H.; Uekama, K.; Maruyama, T.; Hirayama, F.; Otagiri, M. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr. Polym. 2018, 199, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.B.; Chisté, R.C.; Lima, J.L.F.C.; Fernandes, E. Solanum Diploconos Fruits: Profile of bioactive compounds and in vitro antioxidant capacity of different parts of the fruit. Food Funct. 2016, 7, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.M.; Volpato, H.; Lazarin-Bidóia, D.; Desoti, V.C.; de Souza, R.O.; Fonseca, M.J.V.; Ueda-Nakamura, T.; Nakamura, C.V.; de Oliveira Silva, S. The extended production of UV-Induced Reactive Oxygen Species in L929 Fibroblasts Is Attenuated by Posttreatment with Arrabidaea Chica through Scavenging Mechanisms. J. Photochem. Photobiol. B Biol 2018, 178, 175–181. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry and Reactions of Reactive Oxygen Species in Foods. Crit. Rev. Food Sci. Nutr. 2006, 46, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Zhong, Y. Lipid Oxidation and Improving the Oxidative Stability. Chem. Soc. Rev. 2010, 39, 4067–4079. [Google Scholar] [CrossRef]
- Chong, Y.M.; Chang, S.K.; Sia, W.C.M.; Yim, H.S. Antioxidant Efficacy of Mangosteen (Garcinia Mangostana Linn.) Peel Extracts in Sunflower Oil during Accelerated Storage. Food Biosci. 2015, 12, 18–25. [Google Scholar] [CrossRef]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant Activity of Rosemary Essential Oil Fractions Obtained by Molecular Distillation and Their Effect on Oxidative Stability of Sunflower Oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.B.; Berto, A.; Chisté, R.C.; Freitas, M.; Visentainer, J.V.; Fernandes, E. Bioactive compounds and scavenging capacity of extracts from different parts of Vismia cauliflora against reactive oxygen and nitrogen species. Pharm. Biol. 2015, 53, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Silva Faria, W.C.; de Oliveira, M.G.; Cardoso da Conceição, E.; Silva, V.B.; Veggi, N.; Converti, A.; Miguel de Barros, W.; Fernandes da Silva, M.; Bragagnolo, N. Antioxidant Efficacy and in Silico Toxicity Prediction of Free and Spray-Dried Extracts of Green Arabica and Robusta Coffee Fruits and Their Application in Edible Oil. Food Hydrocoll. 2020, 108, 106004. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Fu, S.G.; Wang, S.Y.; Yang, D.J.; Wu, Y.H.S.; Chen, Y.C. Effects of a Natural Antioxidant, Polyphenol-Rich Rosemary (Rosmarinus Officinalis L.) Extract, on Lipid Stability of Plant-Derived Omega-3 Fatty-Acid Rich Oil. LWT Food Sci. Technol. 2018, 89, 210–216. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Segovia, J.F.; Sousa, V.Y.; Mata, E.C.; Gonçalves, M.C.; Bezerra, R.M.; Junior, P.O.; Kanzaki, L.I. Antimicrobial activity of amazonian medicinal plants. Springerplus 2013, 2, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Mafioleti, L.; da Silva Junior, I.F.; Colodel, E.M.; Flach, A.; de Oliveira, D.T.M. Evaluation of the Toxicity and Antimicrobial Activity of Hydroethanolic Extract of Arrabidaea Chica (Humb. & Bonpl.) B. Verl. J. Ethnopharmacol. 2013, 150, 576–582. [Google Scholar] [CrossRef]
- Rodrigues, I.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Alviano, C.S.; Alviano, D.S.; Vermelho, A.B. Arrabidaea Chica Hexanic Extract Induces Mitochondrion Damage and Peptidase Inhibition on Leishmania Spp. BioMed Res. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Zorn, B.; García-Pieres, A.J.; Castro, V.; Murillo, R.; Mora, G.; Merfort, I. 3-Desoxyanthocyanidins from Arrabidaea Chica. Phytochemistry 2001, 56, 831–835. [Google Scholar] [CrossRef]
- Barbosa, W.L.R.; Pinto, L.D.N.; Quignard, E.; Vieira, J.M.D.S.; Silva, J.O.C.; Albuquerque, S. Arrabidaea Chica (HBK) Verlot: Phytochemical Approach, Antifungal and Trypanocidal Activities. Braz. J. Pharmacog. 2008, 18, 544–548. [Google Scholar] [CrossRef]
- De Siqueira, F.C.; Leitão, D.S.T.C.; Mercadante, A.Z.; Chisté, R.C.; Lopes, A.S. Profile of Phenolic Compounds and Carotenoids of Arrabidaea Chica Leaves and the in Vitro Singlet Oxygen Quenching Capacity of Their Hydrophilic Extract. Food Res. Int. 2019, 126, 108597. [Google Scholar] [CrossRef]
- Silva, E.M.; Souza, J.N.S.; Rogez, H.; Rees, J.F.; Larondelle, Y. Antioxidant Activities and Polyphenolic Contents of Fifteen Selected Plant Species from the Amazonian Region. Food Chem. 2007, 101, 1012–1018. [Google Scholar] [CrossRef]
- Siraichi, J.T.G.; Felipe, D.F.; Brambilla, L.Z.S.; Gatto, M.J.; Terra, V.A.; Cecchini, A.L.; Cortez, L.E.R.; Rodrigues-Filho, E.; Cortez, D.A.G. Antioxidant Capacity of the Leaf Extract Obtained from Arrabidaea Chica Cultivated in Southern Brazil. PLoS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Chisté, R.C.; de Toledo Benassi, M.; Mercadante, A.Z. Efficiency of Different Solvents on the Extraction of Bioactive Compounds from the Amazonian Fruit Caryocar Villosum and the Effect on Its Antioxidant and Colour Properties. Phytochem. Anal. 2014, 25, 364–372. [Google Scholar] [CrossRef]
- Lou, S.N.; Hsu, Y.S.; Ho, C.T. Flavonoid Compositions and Antioxidant Activity of Calamondin Extracts Prepared Using Different Solvents. J. Food Drug Anal. 2014, 22, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New Perspective in Extraction of Plant Biologically Active Compounds by Green Solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Filippi, D.; Bilibio, D.; Bender, J.P.; Carniel, N.; Priamo, W.L. Kinetic Extraction of Total Polyphenols from Pitanga (Eugenia Uniflora L.): Effect of Ultrasonic Treatment, Modeling and Antioxidant Potential. J. Food Process. Eng. 2015, 38, 320–328. [Google Scholar] [CrossRef]
- Chisté, R.C.; Benassi, M.T.; Mercadante, A.Z. Effect of Solvent Type on the Extractability of Bioactive Compounds, Antioxidant Capacity and Colour Properties of Natural Annatto Extracts. Int. J. Food Sci. 2011, 46, 1863–1870. [Google Scholar] [CrossRef]
- Commission Directive 95/45/EC. Laying down specific purity criteria concerning colours for use in foodstuffs. Off. J. Eur. Community 1995, 226, 1–45. [Google Scholar]
- Chisté, R.C.; Mercadante, A.Z. Identification and Quantification, by HPLC-DAD-MS/MS, of Carotenoids and Phenolic Compounds from the Amazonian Fruit Caryocar Villosum. J. Agric. Food Chem. 2012, 60, 5884–5892. [Google Scholar] [CrossRef]
- ICH. International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use. Guidance for Industry, Q2B Validation of Analytical Procedures: Methodology; International Conference on Harmonization Secretariat, c/o International Federation of Pharmaceutical Manufacturers and Associations: Geneva, Switzerland, 2005; pp. 7–10. [Google Scholar]
- Chisté, R.C.; Mercadante, A.Z.; Gomes, A.; Fernandes, E.; Lima, J.L.F.D.C.; Bragagnolo, N. In Vitro Scavenging Capacity of Annatto Seed Extracts against Reactive Oxygen and Nitrogen Species. Food Chem. 2011, 127, 419–426. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Silva, A.M.S.; Santos, C.M.M.; Pinto, D.C.G.A.; Cavaleiro, J.A.S.; Lima, J.L.F.C. 2-Styrylchromones: Novel Strong Scavengers of Reactive Oxygen and Nitrogen Species. Bioorg. Med. Chem. 2007, 15, 6027–6036. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.; Mariutti, L.R.B.; Faria, A.F.; Mercadante, A.Z. Microcapsules Containing Antioxidant Molecules as Scavengers of Reactive Oxygen and Nitrogen Species. Food Chem. 2012, 134, 704–711. [Google Scholar] [CrossRef]
- Alcântara, M.A.; de Lima Brito Polari, I.; de Albuquerque Meireles, B.R.L.; de Lima, A.E.A.; da Silva Junior, J.C.; de Andrade Vieira, É.; dos Santos, N.A.; de Magalhães Cordeiro, A.M.T. Effect of the Solvent Composition on the Profile of Phenolic Compounds Extracted from Chia Seeds. Food Chem. 2019, 275, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Ilaiyaraja, N.; Likhith, K.R.; Sharath Babu, G.R.; Khanum, F. Optimisation of Extraction of Bioactive Compounds from Feronia Limonia (Wood Apple) Fruit Using Response Surface Methodology (RSM). Food Chem. 2015, 173, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.A.; Molina, G.; Arruda, H.S.; Pastore, G.M. Optimizing the homogenizer-assisted extraction (HAE) of total phenolic compounds from banana peel. J. Food Process Eng. 2017, 40, 12438. [Google Scholar] [CrossRef]
- Shi, D.; Ding, H.; Xu, S. Optimization of Microwave-Assisted Extraction of Wedelolactone from Eclipta Alba Using Response Surface Methodology. Front. Chem. Sci. Eng. 2014, 8, 34–42. [Google Scholar] [CrossRef]
- Ghitescu, R.E.; Volf, I.; Carausu, C.; Bühlmann, A.M.; Gilca, I.A.; Popa, V.I. Optimization of Ultrasound-Assisted Extraction of Polyphenols from Spruce Wood Bark. Ultrason. Sonochem. 2015, 22, 535–541. [Google Scholar] [CrossRef]
- do Leitão, D.S.T.C.; Siqueira, F.C.; de Sousa, S.H.B.; Mercadante, A.Z.; Chisté, R.C.; Lopes, A.S. Amazonian Eryngium Foetidum Leaves Exhibited Very High Contents of Bioactive Compounds and High Singlet Oxygen Quenching Capacity. Int. J. Food Prop. 2020, 23, 1452–1464. [Google Scholar] [CrossRef]
- Pereira Barbosa-Carvalho, A.P.; do Texeira Costa Leitão, D.S.; Campos de Siqueira, F.; Zerlotti Mercadante, A.; Campos Chisté, R. Antrocaryon Amazonicum: An Unexploited Amazonian Fruit with High Potential of Scavenging Reactive Oxygen and Nitrogen Species. J. Food Sci. 2021, 86, 4045–4059. [Google Scholar] [CrossRef]
- Almeida, I.F.; Fernandes, E. Protective Effect of Castanea Sativa and Quercus Robur Leaf Extracts against Oxygen and Nitrogen Reactive Species. J. Photochem. Photobiol. B Biol. 2008, 91, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Pastor, I.; Esquembre, R.; Micol, V.; Mallavia, R.; Mateo, C.R. A Ready-to-Use Fluorimetric Biosensor for Superoxide Radical Using Superoxide Dismutase and Peroxidase Immobilized in Sol-Gel Glasses. Anal. Biochem. 2004, 334, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Berto, A.; Ribeiro, A.B.; de Souza, N.E.; Fernandes, E.; Chisté, R.C. Bioactive Compounds and Scavenging Capacity of Pulp, Peel and Seed Extracts of the Amazonian Fruit Quararibea Cordata against ROS and RNS. Food Res. Int. 2015, 77, 236–243. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Freitas, M.; Lima, J.L.F.C.; Fernandes, E. Optical Probes for Detection and Quantification of Neutrophils’ Oxidative Burst. A Review. Anal. Chim. Acta 2009, 649, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Malle, E.; Marsche, G.; Arnhold, J.; Davies, M.J. Modification of Low-Density Lipoprotein by Myeloperoxidase-Derived Oxidants and Reagent Hypochlorous Acid. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 2006, 1761, 392–415. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Karimi Galougahi, K.; Liu, C.C.; Bhindi, R.; Figtree, G.A. Biological Markers of Oxidative Stress: Applications to Cardiovascular Research and Practice. Redox Biol. 2013, 1, 483–491. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Rodrigues, E.; Chisté, R.C.; Fernandes, E.; Mercadante, A.Z. The Amazonian Fruit Byrsonima Crassifolia Effectively Scavenges Reactive Oxygen and Nitrogen Species and Protects Human Erythrocytes against Oxidative Damage. Food Res. Int. 2014, 64, 618–625. [Google Scholar] [CrossRef]
- Rodrigues, E.; Mariutti, L.R.B.; Mercadante, A.Z. Carotenoids and Phenolic Compounds from Solanum Sessiliflorum, an Unexploited Amazonian Fruit, and Their Scavenging Capacities against Reactive Oxygen and Nitrogen Species. J. Agric. Food Chem. 2013, 61, 3022–3029. [Google Scholar] [CrossRef]
- Pistón, M.; Machado, I.; Branco, C.S.; Cesio, V.; Heinzen, H.; Ribeiro, D.; Fernandes, E.; Chisté, R.C.; Freitas, M. Infusion, Decoction and Hydroalcoholic Extracts of Leaves from Artichoke (Cynara Cardunculus L. Subsp. Cardunculus) Are Effective Scavengers of Physiologically Relevant ROS and RNS. Food Res. Int. 2014, 64, 150–156. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; OUP Oxford: Oxford, UK, 2015. [Google Scholar]
- Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F.; Liu, F. Oxidative Stability of Sunflower Oil Supplemented with Carnosic Acid Compared with Synthetic Antioxidants during Accelerated Storage. Food Chem. 2010, 118, 656–662. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoǧlu, E. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays. J. Agric. Food Chem. 2016, 64, 1046–1070. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vargas, H.I.; Baumann, W.; Parada-Alfonso, F. Valorization of Agroindustrial Wastes: Identification by LC-MS and NMR of Benzylglucosinolate from Papaya (Carica Papaya L.) Seeds, a Protective Agent against Lipid Oxidation in Edible Oils. Electrophoresis 2016, 37, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.L.; Martínez, F.P.; Ferreira, S.B.; Kaiser, C.R. A Complete Evaluation of Thermal and Oxidative Stability of Chia Oil: The Richest Natural Source of α-Linolenic Acid. J. Therm. Anal. Calorim. 2017, 130, 1307–1315. [Google Scholar] [CrossRef]
- Barizão, É.O.; Visentainer, J.V.; de Cinque Almeida, V.; Ribeiro, D.; Chisté, R.C.; Fernandes, E. Citharexylum Solanaceum Fruit Extracts: Profiles of Phenolic Compounds and Carotenoids and Their Relation with ROS and RNS Scavenging Capacities. Food Res. Int. 2016, 86, 24–33. [Google Scholar] [CrossRef]
- Brannan, R.G.; Connolly, B.J.; Decker, E.A. Peroxynitrite: A potential initiator of lipid oxidation in food. Trends Food Sci. Technol. 2001, 12, 164–173. [Google Scholar] [CrossRef]
- Skibsted, L.H. Nitric Oxide and Quality and Safety of Muscle Based Foods. Nitric Oxide 2011, 24, 176–183. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Use of fluorescence probes for detection of reactive nitrogen species: A review. J. Fluoresc. 2006, 16, 119–139. [Google Scholar] [CrossRef]
- Ramful, D.; Aumjaud, B.; Neergheen, V.S.; Soobrattee, M.A.; Googoolye, K.; Aruoma, O.I.; Bahorun, T. Polyphenolic Content and Antioxidant Activity of Eugenia Pollicina Leaf Extract in Vitro and in Model Emulsion Systems. Food Res. Int. 2011, 44, 1190–1196. [Google Scholar] [CrossRef]
Peak | Phenolic Compound * | tR (min) a | λmax (nm) b | Concentration (mg/g Extract) c | ||
---|---|---|---|---|---|---|
EtOH/H2O | H2O | EtOH | ||||
1 | Feruloyl hexose (isomer 1) d | 15–16.3 | 313 | 0.85 ± 0.03 | 1.71 ± 0.06 | nd |
2 | Feruloyl hexose (isomer 2) d | 16.6–17.5 | 309 | 0.49 ± 0.05 | 1.28 ± 0.03 | nd |
3 | Feruloyl derivative d | 24.7 | 273, 327 | nd | nd | 0.45 ± 0.01 |
4 | Scutellarin e | 27.7 | 282, 334 | nd | nd | 0.67 ± 0.09 |
5 | Flavone glucuronyl derivative d | 31.6–32.6 | 275, 328 | 2.18 ± 0.36 | 0.82 ± 0.05 | 0.88 ± 0.07 |
6 | Scutellarein d | 34.6–35.5 | 282, 337 | 6.79 ± 0.59 | nd | 1.51 ± 0.13 |
7 | Apigenin f | 42.3–43.3 | 267,293, 337 | 1.49 ± 0.09 | nd | 0.09 ± 0.02 |
Total sum (mg/g) | 11.80 ± 1.13 | 3.81 ± 0.15 | 3.62 ± 0.25 |
Extract/ Compound | ROS | RNS | |||||
---|---|---|---|---|---|---|---|
IC50 (μg·mL−1) * | Ssample/Strolox | IC50 (μg·mL−1) | |||||
O2•− | H2O2 | HOCl | 1O2 | ROO• | ONOO− | ||
Absence of NaHCO3 | Presence of NaHCO3 | ||||||
H2O | 204 ± 13 a | 198 ± 4 a | 127 ± 9 b | 271 ± 1 a | 5.00 ± <0.01 a | 16.5 ± 0.2 b | 21 ± 1 b |
EtOH/H2O | 10 ± 1 c | 4.3 ± 0.5 d | 2.9 ± 0.3 c | 35 ± 6 c | 5.00 ± <0.01 a | 0.34 ± 0.07 d | 11.1 ± 0.7 c |
EtOH | 196 ± 2 a | 210 ± 9 a | 166 ± 14 a | 143 ± 8 b | 5.00 ± <0.01 a | 40.3 ± 0.6a | 28.3 ± 0.9 a |
Positive control | |||||||
Scutellarein | 107 ± 9 b | 151 ± 5 b | 4.40 ± 0.10 c | 7.8 ± 0.2 d | 0.15 ± <0.01b | 7 ± 0.4c | 4.7 ± 0.4 d |
Quercetin | 12.9 ± 0.5 c | - | 13 ± 1 c | 1.9 ± 0.1 d | - | 0.01± < 0.01d | 0.01 ± <0.01 e |
Ascorbic acid | - | 41 ± 7 c | - | - | - | - | - |
Trolox | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Siqueira, F.C.; Barbosa-Carvalho, A.P.P.; Costa Leitão, D.d.S.T.; Furtado, K.F.; Chagas-Junior, G.C.A.; Lopes, A.S.; Chisté, R.C. Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance. Antioxidants 2022, 11, 1909. https://doi.org/10.3390/antiox11101909
de Siqueira FC, Barbosa-Carvalho APP, Costa Leitão DdST, Furtado KF, Chagas-Junior GCA, Lopes AS, Chisté RC. Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance. Antioxidants. 2022; 11(10):1909. https://doi.org/10.3390/antiox11101909
Chicago/Turabian Stylede Siqueira, Francilia Campos, Anna Paula Pereira Barbosa-Carvalho, Deusa do Socorro Teixeira Costa Leitão, Kalebe Ferreira Furtado, Gilson Celso Albuquerque Chagas-Junior, Alessandra Santos Lopes, and Renan Campos Chisté. 2022. "Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance" Antioxidants 11, no. 10: 1909. https://doi.org/10.3390/antiox11101909
APA Stylede Siqueira, F. C., Barbosa-Carvalho, A. P. P., Costa Leitão, D. d. S. T., Furtado, K. F., Chagas-Junior, G. C. A., Lopes, A. S., & Chisté, R. C. (2022). Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance. Antioxidants, 11(10), 1909. https://doi.org/10.3390/antiox11101909