Myeloperoxidase as a Potential Biomarker of Acute-Myocardial-Infarction-Induced Depression and Suppression of the Innate Immune System
Abstract
:1. Introduction
1.1. Depression and Myocardial Infarction
1.2. Depression, Myocardial Infarction and Inflammation
1.3. Links of Proinflammatory Cytokines and the Hyperactivity of the HPA Axis
1.4. Depression and the Innate Immune System
1.5. Myeloperoxidase (MPO) as a Biomaker of the Activity of the Innate System
2. Objectives
3. Methods and Materials
3.1. Methods
3.2. Diagnosis of AMI
3.3. Psychiatric Diagnoses
3.4. Sociodemographic Characteristics
3.5. Clinical Characteristics of the AMI Patients
- Cardiac status at the time of AMI: type of AMI (STEMI/NSTEMI), Killip class stratification (=mortality risk after AMI).
- Severity of myocardial infarction: Troponin T, creatine kinase MB (CK-MB), maximum creatinine kinase (CK max) within the first three days after AMI. CK values were measured at least once daily within the first 3 days after AMI.
- Percutaneous coronary intervention (PCI): coronary artery disease, coronary flow before PCI (TIMI Score), coronary flow after PCI (TIMI Score), as well as single=versus-multivessel PCI.
- In-hospital outcome: AMI-related death, reinfarction, severe bleeding and left-ventricular rejection fraction (LVR %).
- Cardiological risk factors at the time of the AMI: body-mass index (BMI); insulin-dependent diabetes mellitus, arterial hypertension and hyperlipidemia.
- Pre-existing psychiatric morbidity; addictions.
3.6. Laboratory Analyses
3.7. Statistical Analyses
4. Results
4.1. Sociodemographic Characteristics
4.2. Depression
4.3. Interleukin 6 (IL-6) and Depression
4.4. MPO and AMI
4.5. MPO and Type of AMI
4.6. MPO and Severity of AMI
4.7. MPO and Depression
4.8. MPO and Severity of Depression
4.9. Multivariate Analyses
5. Discussion
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lichtman, J.H.; Bigger, J.T.; Blumenthal, J.A.; Frasure-Smith, N.; Kaufmann, P.G.; Lespérance, F.; Mark, D.B.; Sheps, D.S.; Taylor, C.B.; Froelicher, E.S.; et al. Depression and coronary heart disease: Recommendations for screening, referral, and treatment: A science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: Endorsed by the American Psychiatric Association. Circulation 2008, 118, 1768–1775. [Google Scholar] [PubMed] [Green Version]
- Rothenhäusler, H.B.; Stepan, A.; Baranyi, A. Areas of work of a biopsychosocial oriented psychiatric consultation-liaison service: Results from a prospective 2-year survey. Neuropsychiatrie 2013, 27, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Ziegelstein, R.C. Depression after myocardial infarction. Cardiol. Rev. 2001, 9, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ter Horst, G.J. Central autonomic control of the heart, angina, and pathogenic mechanisms of post-myocardial infarction depression. Eur. J. Morphol. 1999, 37, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Wilkowska, A.; Rynkiewicz, A.; Wdowczyk, J.; Landowski, J. Morning and afternoon serum cortisol level in patients with post-myocardial infarction depression. Cardiol. J. 2019, 26, 550–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Zhao, Y.; Wang, Y.; Liu, L.; Zhang, X.; Li, B.; Cui, R. The effects of psychological stress on depression. Curr. Neuropharmacol. 2015, 13, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O.; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the american heart association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Danesh, J.; Kaptoge, S.; Mann, A.G.; Sarwar, N.; Wood, A.; Angleman, S.B.; Wensley, F.; Higgins, J.; Lennon, L.; Eiriksdottir, G.; et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review. PLoS Med. 2008, 5, e78. [Google Scholar] [CrossRef] [PubMed]
- Davidson, K.W.; Schwartz, J.E.; Kirkland, S.A.; Mostofsky, E.; Fink, D.; Guernsey, D.; Shimbo, D. Relation of inflammation to depression and incident coronary heart disease (from the Canadian Nova Scotia Health Survey [NSHS95] Prospective Population Study). Am. J. Cardiol. 2009, 103, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Janeway, C.A.; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Haapakoski, R.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 66, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranyi, A.; Meinitzer, A.; Stepan, A.; Putz-Bankuti, C.; Breitenecker, R.J.; Stauber, R.; Kapfhammer, H.-P.; Rothenhäusler, H.-B. A biopsychosocial model of interferon-alpha-induced depression in patients with chronic hepatitis C infection. Psychother. Psychosom. 2013, 82, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Wichers, M.C.; Koek, G.H.; Robaeys, G.; Verkerk, R.; Scharpé, S.; Maes, M. IDO and interferon-alpha-induced depressive symptoms: A shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry 2005, 10, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranyi, A.; Meinitzer, A.; Breitenecker, R.J.; Amouzadeh-Ghadikolai, O.; Stauber, R.; Rothenhäusler, H.B. Quinolinic acid responses during interferon-α-induced depressive symptomatology in patients with chronic hepatitis c infection—A novel aspect for depression and inflammatory hypothesis. PLoS ONE 2015, 10, e0137022. [Google Scholar] [CrossRef] [Green Version]
- Baranyi, A.; Amouzadeh-Ghadikolai, O.; von Lewinski, D.; Breitenecker, R.J.; Rothenhäusler, H.B.; Robier, C.; Baranyi, M.; Theokas, S.; Meinitzer, A. Revisiting the tryptophan-serotonin deficiency and the inflammatory hypotheses of major depression in a biopsychosocial approach. PeerJ 2017, 5, e3968. [Google Scholar] [CrossRef] [Green Version]
- Meinitzer, A.; Tomaschitz, A.; Pilz, S.; Truber, M.; Zechner, G.; Gaksch, M.; Prietl, B.; Treiber, G.; Schwarz, M.; Baranyi, A. Development of a liquid chromatography-mass spectrometry method for the determination of the neurotoxic quinolinic acid in human serum. Clin. Chim. Acta 2014, 436, 268–272. [Google Scholar] [CrossRef]
- Hemingway, H.; Philipson, P.; Chen, R.; Fitzpatrick, N.K.; Damant, J.; Shipley, M.; Abrams, K.; Moreno, S.; McAllister, K.; Palmer, S.; et al. Evaluating the quality of research into a single prognostic biomarker: A systematic review and meta-analysis of 83 studies of C-reactive protein in stable coronary artery disease. PLoS Med. 2017, 7, e1000286. [Google Scholar] [CrossRef] [Green Version]
- Hiles, S.A.; Baker, A.L.; de Malmanche, T.; McEvoy, M.; Boyle, M.; Attia, J. The role of inflammatory markers in explaining the association between depression and cardiovascular hospitalisations. J. Behav. Med. 2015, 38, 609–619. [Google Scholar] [CrossRef]
- Wilkowska, A.; Pikuła, M.; Rynkiewicz, A.; Wdowczyk-Szulc, J.; Trzonkowski, P.; Landowski, J. Increased plasma pro-inflammatory cytokine concentrations after myocardial infarction and the presence of depression during next 6-months. Psychiatr. Pol. 2015, 49, 455–464. [Google Scholar] [CrossRef]
- Liu, H.; Luiten, P.G.; Eisel, U.L.; Dejongste, M.J.; Schoemaker, R.G. Depression after myocardial infarction: TNF-α-induced alterations of the blood-brain barrier and its putative therapeutic implications. Neurosci. Biobehav. Rev. 2013, 37, 561–572. [Google Scholar] [CrossRef]
- Shang, Y.X.; Ding, W.Q.; Qiu, H.Y.; Zhu, F.P.; Yan, S.Z.; Wang, X.L. Association of depression with inflammation in hospitalized patients of myocardial infarction. Pak. J. Med. Sci. 2014, 30, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, A.V.; Rivier, C.L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiol. Rev. 1999, 79, 1–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, A.J. Cytokine activation of the hpa axis. Ann. N. Y. Acad. Sci. 2000, 917, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Miller, A.H. When not enough is too much: The role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am. J. Psychiatry 2003, 160, 1554–1565. [Google Scholar] [CrossRef]
- Kim, Y.K.; Na, K.S.; Myint, A.M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 277–284. [Google Scholar] [CrossRef]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Duggal, N.A.; Upton, J.; Phillips, A.C.; Hampson, P.; Lord, J.M. Depressive symptoms are associated with reduced neutrophil function in hip fracture patients. Brain. Behav. Immun. 2013, 33, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Elsbach, P.; Weiss, J. Phagocytic cells: Oxygen-independent antimicrobial systems. In Inflammation: Basic Principles and Clinical Correlates; Gallin, J., Goldstein, I., Snyderman, R., Eds.; Raven Press: New York, NY, USA, 1988; pp. 445–470. [Google Scholar]
- Mandell, G.L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect. Immun. 1974, 9, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Hampton, M.B.; Kettle, A.J.; Winterbourn, C.C. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of staphylococcus aureus by neutrophils. Infect. Immun. 1996, 64, 3512–3517. [Google Scholar] [CrossRef] [Green Version]
- Klebanoff, S.J. Myeloperoxidase: Occurrence and biological function. In Peroxidases in Chemistry and Biology; Everse, J., Everse, K.E., Grisham, M.B., Eds.; CRC Press Inc.: Boca Raton, FL, USA, 1991; pp. 1–35. [Google Scholar]
- Klebanoff, S.J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol. 1968, 95, 2131–2138. [Google Scholar] [CrossRef]
- Segal, A.W. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J. Clin. Investig. 1989, 83, 1785–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thong, Y.H. How important is the myeloperoxidase microbicidal system of phagocytic cells? Med. Hypotheses 1982, 8, 249–254. [Google Scholar] [CrossRef]
- Baranyi, A.; Enko, D.; von Lewinski, D.; Rothenhäusler, H.B.; Amouzadeh-Ghadikolai, O.; Harpf, H.; Harpf, L.; Traninger, H.; Obermayer-Pietsch, B.; Schweinzer, M.; et al. Assessment of trimethylamine N-oxide (TMAO) as a potential biomarker of severe stress in patients vulnerable to posttraumatic stress disorder (PTSD) after acute myocardial infarction. Eur. J. Psychotraumatol. 2021, 12, 1920201. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.; Martinez, J.H.; Young, D.; Chelminski, I.; Dalrymple, K. Severity classification on the hamilton depression rating scale. J. Affect. Disord. 2013, 150, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Zelzer, S.; Khoschsorur, G.; Stettin, M.; Weihrauch, G.; Truschnig-Wilders, M. Determination of myeloperoxidase in EDTA plasma: Comparison of an enzyme-linked immunosorbent assay with a chemiluminescent automated immunoassay. Clin. Chim. Acta 2009, 406, 62–65. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Asnis, G.M.; Miller, A.H. Phenomenology and biology of depression: Potential mechanisms for neuromodulation of immunity. In Depressive Disorders and Immunity; American Psychiatric Press: Washington, DC, USA, 1989; pp. 51–64. [Google Scholar]
- Maes, M. Evidence for an immune response in major depression: A review and hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry 1995, 19, 11–38. [Google Scholar] [CrossRef]
- Nijhuis, J.; Rensen, S.S.; Slaats, Y.; van Dielen, F.M.; Buurman, W.A.; Greve, J.W. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity 2009, 17, 2014–2018. [Google Scholar] [CrossRef]
- Odobasic, D.; Kitching, A.R.; Holdsworth, S.R. Neutrophil-mediated regulation of innate and adaptive immunity: The role of myeloperoxidase. J. Immunol. Res. 2016, 2349817. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Hazen, S.L. Myeloperoxidase and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1102–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faymonville, M.E.; Pincemail, J.; Duchateau, J.; Paulus, J.M.; Adam, A.; Deby-Dupont, G.; Deby, C.; Albert, A.; Larbuisson, R.; Limet, R.; et al. Myeloperoxidase and elastase as markers of leukocyte activation during cardiopulmonary bypass in humans. J. Thorac. Cardiovasc. Surg. 1991, 102, 309–317. [Google Scholar] [CrossRef]
- Kupczyk, M.; Bocheńska-Marciniak, M.; Górski, P.; Kuna, P. Myeloperoxidase (MPO) as a marker of neutrophil influx into nasal mucosa after recombinant IL-8 challenge. Pneumonol. Alergol. Pol. 2002, 70, 544–549. [Google Scholar] [PubMed]
- Vaccarino, V.; Brennan, M.L.; Miller, A.H.; Bremner, J.D.; Ritchie, J.C.; Lindau, F.; Veledar, E.; Su, S.; Murrah, N.V.; Jones, L.; et al. Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: A twin study. Biol Psychiatry. 2008, 64, 476–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.; Li, X.; Huang, W.; Gong, H. Change of serum myeloperoxidase and lipoxin A4 level in coronary heart disease patients with anxiety and/or depression. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2013, 38, 370–375. [Google Scholar] [PubMed]
- Gaecki, P.; Florkowski, A.; Bobińska, K.; Śmigielski, J.; Bieńkiewicz, M.; Szemraj, J. Functional polymorphism of the myeloperoxidase gene (G-463A) in depressive patients. Acta Neuropsychiatry 2010, 22, 218–222. [Google Scholar] [CrossRef]
- Omran, M.M.; Zahran, F.M.; Kadry, M.; Belal, A.; Emran, T.M. Role of myeloperoxidase in early diagnosis of acute myocardial infarction in patients admitted with chest pain. J. Immunoass. Immunochem. 2018, 39, 337–347. [Google Scholar] [CrossRef]
Category | Total Sample (n = 109) | p | Depression (n = 57/109; 52.3%) | No Depression (n = 52/109; 47.7%) | p | |
---|---|---|---|---|---|---|
Sociodemographic Characteristics | ||||||
Age | mean (±SD) | 60.3 (±11.33) | - | 59.84 (±12.50) | 60.84 (±9.99) | t = 0.460, df = 107 p = 0.646 a |
Sex | ||||||
Male | n (%) | 90 (82.6%) | χ² = 46.248, df = 1, p < 0.001 b | 42 (73.7%) | 48 (92.3%) | χ² = 6.553, df = 1 p = 0.010 b |
Female | n (%) | 19 (17.4%) | 15 (26.3%) | 4 (7.7) | ||
Clinical Characteristics | ||||||
Type of Acute Myocardial Infarction | ||||||
NSTEMI | n (%) | 44 (40.4%) | χ² = 2.440, df = 2, p = 0.295 b | 23 (40.4%) | 21 (40.4%) | χ² = 0.135, df = 2, p = 0.935 b |
STEMI (anterior) | n (%) | 33 (30.3%) | 18 (31.6%) | 15 (28.84%) | ||
STEMI (posterior) | n (%) | 32 (29.4%) | 16 (28.1%) | 16 (30.8%) | ||
Killip Class Stratification | ||||||
Killip Class I | n (%) | 85 (78.0%) | χ² = 199.71, df = 3, p < 0.001 b | 43 (82.7%) | 42 (91.3%) | χ² = 2.798, df = 3, p = 0.42 b |
Killip Class II | n (%) | 7 (6.4%) | 4 (7.7%) | 3 (6.5%) | ||
Killip Class III | n (%) | 4 (3.7%) | 3 (5.8%) | 1 (2.2%) | ||
Killip Class IV | n (%) | 2 (1.8) | 2 (3.8%) | 0 (0%) | ||
Severity of the AMI | ||||||
Maximum Creatinine Kinase (CK max) | Median, IQR | 314 U/L, 714.0 | - | 376 U/L, 732.5 | 243 U/L, 643.0 | Mann-Whitney-U= 1321.0, p = 0.329 d |
Creatine Kinase MB (CK-MB) | Median, IQR | 32.5 U/L, 69.5 | - | 43.0 U/L, 88.0 | 30.0 U/L, 62.0 | Mann-Whitney-U= 702.5, p = 0.109 d |
Troponin T | Median, IQR | 784 pg/mL, 2153 | - | 849.0 pg/mL, 2546.0 | 725.5 pg/mL, 2133.25 | Mann-Whitney-U= 1375.0, p = 0.518 d |
Percutaneous Coronary Intervention (PCI)-Related Parameters | ||||||
Coronary Flow before PCI (TIMI Score e) | ||||||
0-I e | n (%) | 82 (75.2%) | χ² = 107.540, df = 2 p < 0.001 b | 40 (78.4%) | 42 (85.7%) | χ² = 1.886, df = 2 p = 0.389 b |
II e | n (%) | 13 (11.9%) | 7 (13.7%) | 6 (12.2%) | ||
III e | n (%) | 5 (4.6%) | 4 (7.8%) | 1 (2.0% | ||
Coronary Flow after PCI (TIMI Score e) | ||||||
0-I e | n (%) | 4 (3.7%) | χ² = 151.264, df = 2 p < 0.001 b | 0 (0%) | 4 (7.7%) | χ² = 10.977, df = 2 p = 0.004 b |
II e | n (%) | 7 (6.4%) | 7 (13.0%) | 0 (0%) | ||
III e | n (%) | 95 (87.2%) | 47 (87.0%) | 48 (92.3%) | ||
Multivessel PCI | n (%) | 23 (22.5%) | - | 14 (25.9%) | 9 (18.8%) | χ² = 0.749, df = 1 p = 0.387 b |
Coronary Artery Disease—Number of Affected Vessels | Mean (±SD) | 1.85 (±0.82) | 1.89 (±0.86) | 1.81 (±0.77) | t = −0.555, df = 107 p = 0.580 a | |
In-Hospital Outcome | ||||||
Severe Bleeding | n (%) | 0 (0%) | - | 0 (0%) | 0 (0%) | - |
Reinfarction | n (%) | 2 (1.8%) | - | 0 (0%) | 2 (3.8%) | p = 0.234 c |
LVEF (%) | Mean (SD) | 53.05 (±10.893) | - | 53.78 (±11.96) | 52.21 (±9.59) | t = −0.615, df = 72 p = 0.541 c |
Cardiological Risk Factors | ||||||
Body Mass Index | Mean (±SD) | 28.21 (±3.87) | - | 27.93 (±4.03) | 28.51 (±3.70) | t = 0.752, df = 100, p = 0.454 a |
IDDM | n (%) | 2 (1.8%) | - | 2 (3.5%) | 0 (0%) | p = 0.496 c |
Arterial Hypertension | n (%) | 98 (89.9%) | - | 49 (94.2.7%) | 49 (86.0%) | χ² = 2.048, df = 1 p = 0.152 b |
Hyperlipidemia | n (%) | 55 (50.5%) | - | 33 (57.9%) | 22 (44.9%) | χ² = 1.783, df = 1 p = 0.182 b |
Previous Mental Illness | ||||||
Previous Mental Illness (Adjustment Disorder, Burn-out Syndrome)—not present at the time of the AMI | n (%) | 10 (9.2%) | - | 8 (14.0%) | 2 (3.8%) | p = 0.097 c |
Addiction to Alcohol | n (%) | 1 (0.9%) | - | 1 (1.8%) | 0 (0%) | p = 0.388 c |
Addiction to Nicotine | n (%) | 50 (45.9%) | - | 26 (45.6%) | 24 (46.2%) | χ² = 0.003, df = 1 p = 0.955 b |
Addiction to Illicit Drugs | n (%) | 0 (0%) | - | 0 (0%) | 0 (0%) | - |
Step 1 (Model 1) DV = Depression (Yes/No) | B | S.E. | WALD | df | Exp (B) | p |
---|---|---|---|---|---|---|
Constant | 1.404 | 0.617 | 5.181 | 1 | 4.073 | 0.023 |
MPO at the time of AMI | −0.003 | 0.001 | 4.922 | 1 | 0.997 | 0.027 |
R2 COX &Snell): 0.051 Omnibus: χ² = 5.728, df = 1, p = 0.017 Hosmer–Lemeshow Test: χ² = 9.607, df = 8, p = 0.294 | ||||||
Step 2 (Model 2) DV = Depression (Yes/No) | B | S.E. | WALD | df | Exp (B) | p |
Constant | 3.759 | 1.614 | 5.424 | 1 | 42.926 | 0.020 |
MPO at the time of AMI | −0.003 | 0.001 | 5.013 | 1 | 0.997 | 0.025 |
Sex (male = 1) | −1.440 | 0.621 | 5.372 | 1 | 0.237 | 0.020 |
Age | −0.026 | 0.020 | 1.675 | 1 | 0.974 | 0.196 |
Coronary artery disease (number of affected vessels) | 0.322 | 0.265 | 4.646 | 1 | 1.380 | 0.224 |
R2 COX &Snell): 0.122 Omnibus: χ² = 14.165, df = 4, p = 0.007 Hosmer-Lemeshow-Test: χ² = 8.872, df = 8, p = 0.795) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranyi, A.; Enko, D.; Meinitzer, A.; Von Lewinski, D.; Rothenhäusler, H.-B.; Harpf, L.; Traninger, H.; Obermayer-Pietsch, B.; Harb, B.M.; Schweinzer, M.; et al. Myeloperoxidase as a Potential Biomarker of Acute-Myocardial-Infarction-Induced Depression and Suppression of the Innate Immune System. Antioxidants 2022, 11, 2083. https://doi.org/10.3390/antiox11112083
Baranyi A, Enko D, Meinitzer A, Von Lewinski D, Rothenhäusler H-B, Harpf L, Traninger H, Obermayer-Pietsch B, Harb BM, Schweinzer M, et al. Myeloperoxidase as a Potential Biomarker of Acute-Myocardial-Infarction-Induced Depression and Suppression of the Innate Immune System. Antioxidants. 2022; 11(11):2083. https://doi.org/10.3390/antiox11112083
Chicago/Turabian StyleBaranyi, Andreas, Dietmar Enko, Andreas Meinitzer, Dirk Von Lewinski, Hans-Bernd Rothenhäusler, Leonhard Harpf, Heimo Traninger, Barbara Obermayer-Pietsch, Birgit M. Harb, Melanie Schweinzer, and et al. 2022. "Myeloperoxidase as a Potential Biomarker of Acute-Myocardial-Infarction-Induced Depression and Suppression of the Innate Immune System" Antioxidants 11, no. 11: 2083. https://doi.org/10.3390/antiox11112083
APA StyleBaranyi, A., Enko, D., Meinitzer, A., Von Lewinski, D., Rothenhäusler, H.-B., Harpf, L., Traninger, H., Obermayer-Pietsch, B., Harb, B. M., Schweinzer, M., Platzer, M., & Zelzer, S. (2022). Myeloperoxidase as a Potential Biomarker of Acute-Myocardial-Infarction-Induced Depression and Suppression of the Innate Immune System. Antioxidants, 11(11), 2083. https://doi.org/10.3390/antiox11112083