Effect of Phenolic Compounds from Almond Skins Obtained by Water Extraction on Pork Patty Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Standards and Reagents
2.2. Sampling
2.3. Aqueous Extraction Procedure
2.4. Antioxidant Capacity
2.4.1. Determination of Total Phenolic Content
2.4.2. Reducing Power
2.4.3. DPPH Radical-Scavenging Activity
2.4.4. ABTS+ Radical-Scavenging Activity
2.5. Phenol Identification and Quantification by HPLC-DAD Analysis
2.6. Effect of Aqueous extracts of Almond Skin on Shelf Life of Fresh Pork Patties
2.6.1. Pork Patties Preparation and Packaging
2.6.2. pH Analysis
2.6.3. Weight Loss Analysis
2.6.4. Analysis of the Composition of Gases in the Headspace
2.6.5. Instrumental Color Evaluation
2.6.6. Measurement of Lipid Oxidation by TBARS
2.6.7. Psychrotrophic Microbial Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Capacity
3.1.1. Total Phenolic Content
3.1.2. Reducing Power, DPPH and ABTS Radical-Scavenging Activities
3.2. Phenol Profile of Extracts—Identification and Quantification by HPLC-DAD Analysis
3.3. Effect of Aqueous Extracts of Almond Skin on Shelf Life of Fresh Pork Patties
3.3.1. Headspace Composition, pH and Weight Losses
3.3.2. Instrumental Measurement of Color
3.3.3. Measurement of Lipid Oxidation by Thiobarbituric Acid Reactive Substances (TBARs)
3.3.4. Psychrotrophic Microbial Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Nut & Dried Fruit. Nuts & Dried Fuits Statistical Yearbook 2020/2021. Available online: https://www.nutfruit.org/files/tech/1621253983_INC_Statistical_Yearbook_2020-_2021.pdf (accessed on 3 October 2021).
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I.R.N.A. Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules 2017, 22, 1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, M.; Madrid, R.; García, A.L.; del Amor, F.M.; Rincón, L.F. Use of almond shell and almond hull as substrates for sweet pepper cultivation. Effects on fruit yield and mineral content. Span. J. Agric. Res. 2013, 11, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Yalchi, T. Determination of digestibility of almond hull in sheep. Afr. J. Biotechnol. 2011, 10, 3022–3026. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.; Bill, H.; Asmus, J.; Heguy, J.; DePeters, E. Feeding high amounts of almond hulls to lactating cows. J. Dairy Sci. 2021, 104, 8846–8856. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Kong, F.; Kim, W. Effect of almond hulls on the growth performance, body composition, digestive tract weight, and liver antioxidant capacity of broilers. J. Appl. Poult. Res. 2021, 30, 100149. [Google Scholar] [CrossRef]
- Hayashi, J.; Horikawa, T.; Takeda, I.; Muroyama, K.; Ani, F.N. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 2002, 40, 2381–2386. [Google Scholar] [CrossRef]
- Bulut, Y.; Tez, Z. Adsorption studies on ground shells of hazelnut and almond. J. Hazard. Mater. 2007, 149, 35–41. [Google Scholar] [CrossRef]
- Ardejani, F.D.; Badii, K.; Limaee, N.Y.; Shafaei, S.; Mirhabibi, A. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. J. Hazard. Mater. 2008, 151, 730–737. [Google Scholar] [CrossRef]
- Najari, Z.; Khodaiyan, F.; Yarmand, M.S.; Hosseini, S.S. Almond hulls waste valorization towards sustainable agricultural development: Production of pectin, phenolics, pullulan, and single cell protein. Waste Manag. 2022, 141, 208–219. [Google Scholar] [CrossRef]
- Lipan, L.; Collado-González, J.; Wojdyło, A.; Domínguez-Perles, R.; Gil-Izquierdo, Á.; Corell, M.; Moriana, A.; Cano-Lamadrid, M.; Carbonell-Barrachina, Á. How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds? Food Chem. 2020, 339, 127756. [Google Scholar] [CrossRef]
- An, J.; Liu, J.; Liang, Y.; Ma, Y.; Chen, C.; Cheng, Y.; Peng, P.; Zhou, N.; Zhang, R.; Addy, M.; et al. Characterization, bioavailability and protective effects of phenolic-rich extracts from almond hulls against pro-oxidant induced toxicity in Caco-2 cells. Food Chem. 2020, 322, 126742. [Google Scholar] [CrossRef]
- Čolić, S.D.; Aksic, M.F.; Lazarević, K.B.; Zec, G.N.; Gašić, U.; Zagorac, D.D.; Natić, M. Fatty acid and phenolic profiles of almond grown in Serbia. Food Chem. 2017, 234, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Mandalari, G.; Tomaino, A.; Arcoraci, T.; Martorana, M.; Turco, V.L.; Cacciola, F.; Rich, G.; Bisignano, C.; Saija, A.; Dugo, P.; et al. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J. Food Compos. Anal. 2010, 23, 166–174. [Google Scholar] [CrossRef]
- Milbury, P.E.; Chen, C.Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Valdés, A.; Vidal, L.; Beltrán, A.; Canals, A.; Garrigós, M.C. Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach. J. Agric. Food Chem. 2015, 63, 5395–5402. [Google Scholar] [CrossRef] [Green Version]
- Smeriglio, A.; Mandalari, G.; Bisignano, C.; Filocamo, A.; Barreca, D.; Bellocco, E.S.; Trombetta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial byproducts. Ind. Crop. Prod. 2016, 83, 283–293. [Google Scholar] [CrossRef]
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I.R.N.A. A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products. Food Anal. Methods 2019, 12, 2009–2024. [Google Scholar] [CrossRef]
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Santos, R.; Saavedra, M.J.; Aires, A.; Pascual-Seva, N.; Barros, A. Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Ind. Crop. Prod. 2019, 132, 186–196. [Google Scholar] [CrossRef]
- Monagas, M.; Garrido, I.; Lebrón-Aguilar, R.; Bartolome, B.; Gómez-Cordovés, C. Almond (Prunus dulcis (Mill.) D.A. Webb) Skins as a Potential Source of Bioactive Polyphenols. J. Agric. Food Chem. 2007, 55, 8498–8507. [Google Scholar] [CrossRef]
- Monagas, M.; Garrido, I.; Lebrón-Aguilar, R.; Gómez-Cordovés, M.C.; Rybarczyk, A.; Amarowicz, R.; Bartolomé, B. Comparative Flavan-3-ol Profile and Antioxidant Capacity of Roasted Peanut, Hazelnut, and Almond Skins. J. Agric. Food Chem. 2009, 57, 10590–10599. [Google Scholar] [CrossRef]
- Chen, C.-Y.O.; Milbury, P.E.; Blumberg, J.B. Polyphenols in Almond Skins after Blanching Modulate Plasma Biomarkers of Oxidative Stress in Healthy Humans. Antioxidants 2019, 8, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottone, A.; Montoro, P.; Masullo, M.; Pizza, C.; Piacente, S. Metabolite profiling and antioxidant activity of the polar fraction of Italian almonds (Toritto and Avola): Analysis of seeds, skins, and blanching water. J. Pharm. Biomed. Anal. 2020, 190, 113518. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Andrés, A.; Petrón, M.; Adámez, J.; López, M.; Timón, M. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Przyborska, J.; Hall, M.C.; Concannon, M. In vitro determination of prebiotic potential of aqueous extract of horse chestnut by-product. Bioact. Carbohydrates Diet. Fibre 2019, 19, 100190. [Google Scholar] [CrossRef]
- Fuchs, C.; Bakuradze, T.; Steinke, R.; Grewal, R.; Eckert, G.P.; Richling, E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J. Funct. Foods 2020, 70, 103988. [Google Scholar] [CrossRef]
- Turan, E.; Şimşek, A. Effects of lyophilized black mulberry water extract on lipid oxidation, metmyoglobin formation, color stability, microbial quality and sensory properties of beef patties stored under aerobic and vacuum packaging conditions. Meat Sci. 2021, 178, 108522. [Google Scholar] [CrossRef]
- Soriano, A.; Alañón, M.; Alarcón, M.; García-Ruíz, A.; Díaz-Maroto, M.; Pérez-Coello, M. Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging. Food Res. Int. 2018, 111, 524–533. [Google Scholar] [CrossRef]
- Tamkutė, L.; Gil, B.M.; Carballido, J.R.; Pukalskienė, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef]
- Sadeghinejad, N.; Sarteshnizi, R.A.; Gavlighi, H.A.; Barzegar, M. Pistachio green hull extract as a natural antioxidant in beef patties: Effect on lipid and protein oxidation, color deterioration, and microbial stability during chilled storage. LWT 2019, 102, 393–402. [Google Scholar] [CrossRef]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Kovačević, D.B.; Putnik, P.; Mrkonjić, Ž.; Đurović, S.; Jokanović, M.; Ivić, M.; Škaljac, S.; et al. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground pork patties. LWT—Food Sci. Technol. 2020, 130, 109661. [Google Scholar] [CrossRef]
- Qiu, Z.Z.; Chin, K.B. Physicochemical properties and shelf-life of raw and cooked patties added with various levels of grape tomato powder by different drying methods. LWT—Food Sci. Technol. 2021, 146, 111415. [Google Scholar] [CrossRef]
- Andres, A.I.; Petron, M.J.; Lopez, A.M.; Timon, M.L. Optimization of Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant Activity in Craft Brewers’ Spent Grain Using Response Surface Methodology (RSM). Foods 2020, 9, 1398. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult 1965, 16, 144–158. [Google Scholar]
- Broncano, J.M.; Timón, M.L.; Parra, V.; Andrés, A.I.; Petrón, M.J. Use of proteases to improve oxidative stability of fermented sausages by increasing low molecular weight compounds with antioxidant activity 2011. Food Res. Int. 2011, 44, 2655–2659. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Czyż, J. The influence of protein–flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chem. 2013, 141, 451–458. [Google Scholar] [CrossRef]
- Jørgensen, S.S.; Sørensen, G. A combined sampling and delay unit for flow injection analysis. The automated determination of 2-thiobarbituric acid reactive substances in foods. Anal. Chim. Acta 1996, 322, 69–76. [Google Scholar] [CrossRef]
- ISO 6579:1993; Microbiology—General guidance on methods for the detection of Salmonella. ISO: Geneva, Switzerland, 1993.
- UNE-EN ISO 11290-1:1997/A1:2005; Microbiology of food and animal feeding stuffs. Horizontal method for the detection and enumeration of Listeria monocytogenes. UNE: Génova, Italy, 2005.
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food Chem. Toxicol. 2008, 46, 2230–2235. [Google Scholar] [CrossRef]
- Zannou, O.; Pashazadeh, H.; Ibrahim, S.A.; Koca, I.; Galanakis, C.M. Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESs) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction. Arab. J. Chem. 2022, 15, 103752. [Google Scholar] [CrossRef]
- Bolling, B.W.; Dolnikowski, G.; Blumberg, J.B.; Chen, C.-Y.O. Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chem. 2010, 122, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Bottone, A.; Masullo, M.; Montoro, P.; Pizza, C.; Piacente, S. HR-LC-ESI-Orbitrap-MS based metabolite profiling of Prunus dulcis Mill. (Italian cultivars Toritto and Avola) husks and evaluation of antioxidant activity. Phytochem. Anal. 2019, 30, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Petrón, M.; Andrés, A.; Esteban, G.; Timón, M. Study of antioxidant activity and phenolic compounds of extracts obtained from different craft beer by-products. J. Cereal. Sci. 2021, 98, 103162. [Google Scholar] [CrossRef]
- Ikawa, M.; Schaper, T.D.; Dollard, C.A.; Sasner, J.J. Utilization of Folin−Ciocalteu Phenol Reagent for the Detection of Certain Nitrogen Compounds. J. Agric. Food Chem. 2003, 51, 1811–1815. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin− Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughey, C.A.; Janusziewicz, R.; Minardi, C.S.; Phung, J.; Huffman, B.A.; Reyes, L.; Wilcox, B.E.; Prakash, A. Distribution of almond polyphenols in blanch water and skins as a function of blanching time and temperature. Food Chem. 2012, 131, 1165–1173. [Google Scholar] [CrossRef]
- Bolling, B.W.; Blumberg, J.B.; Chen, C.-Y.O. The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins. Food Chem. 2010, 123, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Boutsika, A.; Sarrou, E.; Cook, C.M.; Mellidou, I.; Avramidou, E.; Angeli, A.; Martens, S.; Ralli, P.; Letsiou, S.; Selini, A.; et al. Evaluation of parsley (Petroselinum crispum) germplasm diversity from the Greek Gene Bank using morphological, molecular and metabolic markers. Ind. Crop. Prod. 2021, 170, 113767. [Google Scholar] [CrossRef]
- Ferraza, C.R.; Franciosi, A.; Emidio, N.B.; Rasquel-Oliveira, F.S.; Manchope, M.F.; Carvalho, T.T.; Artero, N.A.; Fattori, V.; Vicentini, F.T.M.C.; Casagrande, R.; et al. Quercetin as an Antiinflammatory Analgesic. In A Centum of Valuable Plant Bioactives, 1st ed.; Mushtaq, M., Anwar, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 319–347. [Google Scholar] [CrossRef]
- Prodanov, M.; Garrido, I.; Vacas, V.; Lebrón-Aguilar, R.; Dueñas, M.; Gómez-Cordovés, C.; Bartolomé, B. Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Anal. Chim. Acta 2008, 609, 241–251. [Google Scholar] [CrossRef]
- Bartolomé, B.; Monagas, M.; Garrido, I.; Gómez-Cordovés, C.; Martín-Álvarez, P.J.; Lebrón-Aguilar, R.; Urpí-Sardà, M.; Llorach, R.; Andrés-Lacueva, C. Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted analysis of phenolic metabolites in humans. Arch. Biochem. Biophys. 2010, 501, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Ercolini, D.; Russo, F.; Torrieri, E.; Masi, P.; Villani, F. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl. Environ. Microbiol. 2006, 72, 4663–4671. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.P.; Stamatiou, A.P.; Drosinos, E.H.; Nychas, G.J.E. Control of spoilage microorganisms in minced pork by a self-developed modified atmosphere induced by the respiratory activity of meat microflora. Food Microbiol. 2008, 25, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Gao, S.; Bao, Y.; Tan, Y.; Luo, Y.; Li, X.; Hong, H. Effect of protein oxidation in meat and exudates on the water holding capacity in bighead carp (Hypophthalmichthys nobilis) subjected to frozen storage. Food Chem. 2021, 370, 131079. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Secci, G.; Parisi, G.; Smit, P.; Hoffman, L.C.; Zotte, A.D. Effect of the incorporation of a fermented rooibos (Aspalathus linearis) extract in the manufacturing of rabbit meat patties on their physical, chemical, and sensory quality during refrigerated storage. LWT—Food Sci. Technol. 2019, 108, 31–38. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; Sobral, P.J.D.A.; et al. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef]
- ICMSF (International Commission for Microbial Specifications in Food). Microorganismos indicadores. In Microorganismos de Los Alimentos, 2nd ed.; Acribia, S.A., Ed.; Ecología Microbiana de los Productos: Zaragoza, Spain, 2000. [Google Scholar]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef]
Almond Variety | TPC | RP | DPPH | ABTS |
---|---|---|---|---|
Antoñeta | 2.25 ± 0.22 a | 7.80 ± 1.10 a | 1.81 ± 0.30 a | 6.24 ± 0.87 a |
Guara | 1.32 ± 0.08 b | 4.15 ± 0.38 b | 0.82 ± 0.07 b | 3.85 ± 0.08 b |
Soleta | 1.77 ± 0.15 ab | 4.99 ± 0.51 ab | 1.12 ± 0.19 ab | 4.71 ± 0.47 ab |
Belona | 2.04 ± 0.26 ab | 5.04 ± 0.68 ab | 1.26 ± 0.15 ab | 4.83 ± 0.38 ab |
Pvarieties | * | * | * | * |
Antoñeta | Belona | Guara | Soleta | p | |
---|---|---|---|---|---|
Protocatechuic acid | 45.01 ± 19.94 | 23.17 ± 7.45 | 20.87 ± 7.64 | 22.29 ± 11.51 | n.s. |
Hydroxybenzoic acid | 11.59 ± 8.56 | 13.20 ± 3.98 | 20.89 ± 5.96 | 11.06 ± 9.30 | n.s. |
Catechin | 47.85 ± 11.28 | 36.32 ± 0.85 | 46.96 ± 13.38 | 37.47 ± 12.33 | n.s. |
4-Cumaric acid | n.d. | n.d. | 2.49 ± 0.75 | n.d. | * |
Eriodictyol-7-O-glucoside | 9.04 ± 1.06 b | 5.69 ± 1.93 c | 12.26 ± 0.95 a | 6.93 ± 1.29 bc | * |
Quercetin-3-O-rutinoside | 14.72 ± 5.58 a | 8.72 ± 1.66 ab | 10.46 ± 4.08 ab | 5.35 ± 0.56 b | * |
Kaempferol-3-O-rutinoside | 13.54 ± 1.92 ab | 9.85 ± 2.99 bc | 6.35 ± 0.39 c | 16.72 ± 4.18 a | * |
Isorhamnentin-3-O-rutinoside | 75.82 ± 2.39 b | 77.07 ± 2.83 b | 134.08 ± 58.07 a | 79.55 ± 1.99 b | * |
Kaempferol-3-O-glucoside | 19.99 ± 1.05 ab | 13.58 ± 1.41 b | 23.02 ± 5.40 a | 17.25 ± 5.14 ab | * |
Day | Treatment | pH | Weight Loss | O2 | CO2 |
---|---|---|---|---|---|
0 | ALMOND | 5.82 ± 0.01 b | 67.93 ± 0.34 1 | 25.60 ± 0.23 3 | |
CONTROL NEG | 6.02 ± 0.05 a | 67.93 ± 0.34 1 | 25.60 ± 0.23 4 | ||
CONTROL POS | 5.82 ± 0.02 b | 67.93 ± 0.34 1 | 25.60 ± 0.23 2 | ||
Ptreatment | * | n.s. | n.s. | ||
3 | ALMOND | 5.89 ± 0.01 b | 0.32 ± 0.04 b 3 | 67.37 ± 0.67 1 | 26.57 ± 0.26 b 2 |
CONTROL NEG | 6.00 ± 0.02 a | 0.47 ± 0.01 ab 3 | 67.23 ± 0.47 1,2 | 27.00 ± 0.12 ab 3 | |
CONTROL POS | 5.94 ± 0.01 b | 0.48 ± 0.06 a 3 | 67.99 ± 0.33 1 | 27.57 ± 0.22 a 1,2 | |
Ptreatment | * | * | n.s. | * | |
7 | ALMOND | 5.81 ± 0.00 b | 0.48 ± 0.03 b 2 | 67.53 ± 0.37 1 | 28.77 ± 0.09 1 |
CONTROL NEG | 5.95 ± 0.02 a | 0.81 ± 0.10 a 2 | 66.17 ± 0.09 2 | 29.23 ± 0.32 2 | |
CONTROL POS | 5.93 ± 0.03 b | 0.60 ± 0.07 a 2 | 64.00 ± 2.02 1 | 28.20 ± 0.85 1 | |
Ptreatment | * | * | n.s. | n.s. | |
9 | ALMOND | 5.82 ± 0.01 b | 0.62 ± 0.02 b 1 | 63.50 ± 1.30 a 2 | 29.10 ± 0.40 1 |
CONTROL NEG | 6.01 ± 0.02 a | 1.19 ± 0.02 a 1 | 63.15 ± 0.45 a 3 | 30.55 ± 0.15 1 | |
CONTROL POS | 5.95 ± 0.06 b | 0.71 ± 0.02 b 1 | 58.75 ± 0.15 b 2 | 29.25 ± 0.65 1 | |
Ptreatment | * | * | * | n.s. |
Day | Treatment | L* | a* | b* | TBARS |
---|---|---|---|---|---|
0 | ALMOND | 39.55 ± 2.34 3 | 19.80 ± 0.89 1 | 24.15 ± 0.67 1 | 0.12 ± 0.02 3 |
CONTROL NEG | 39.52 ± 0.86 2 | 19.79 ± 0.48 1 | 22.82 ± 0.06 | 0.10 ± 0.02 3 | |
CONTROL POS | 40.52 ± 0.79 3 | 18.88 ± 0.78 1 | 21.21 ± 0.40 | 0.06 ± 0.01 2 | |
Ptreatment | n.s. | n.s. | n.s. | n.s. | |
3 | ALMOND | 40.94 ± 1.75 3 | 18.25 ± 1.44 1 | 23.12 ± 0.92 1,2 | 0.18 ± 0.01 b 3 |
CONTROL NEG | 44.94 ± 0.90 1 | 17.05 ± 0.69 1,2 | 21.66 ± 1.17 | 0.22 ± 0.01 a 2 | |
CONTROL POS | 43.45 ± 0.71 2 | 17.05 ± 0.61 2 | 20.72 ± 0.52 | 0.09 ± 0.01 c 2 | |
Ptreatment | n.s. | n.s. | n.s. | * | |
7 | ALMOND | 45.82 ± 1.19 2 | 13.72 ± 0.85 2 | 22.99 ± 0.77 1,2 | 0.31 ± 0.06 ab 1,2 |
CONTROL NEG | 46.04 ± 3.13 1 | 12.13 ± 2.06 2 | 20.80 ± 1.27 | 0.32 ± 0.12 a 1,2 | |
CONTROL POS | 44.41 ± 0.65 1 | 14.38 ± 0.40 3 | 21.71 ± 0.16 | 0.19 ± 0.11 b 1 | |
Ptreatment | n.s. | n.s. | n.s. | * | |
9 | ALMOND | 49.00 ± 0.08 a 1 | 9.45 ± 0.43 3 | 20.33 ± 0.14 2 | 0.51 ± 0.08 ab 1 |
CONTROL NEG | 44.34 ± 0.66 b 1 | 11.89 ± 1.39 3 | 20.26 ± 1.75 | 0.52 ± 0.07 a 1,2 | |
CONTROL POS | 43.90 ± 0.75 b 1 | 12.57 ± 0.57 4 | 21.31 ± 0.88 | 0.15 ± 0.02 b 1 | |
Ptreatment | * | n.s. | n.s. | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timón, M.; Andrés, A.I.; Sorrentino, L.; Cardenia, V.; Petrón, M.J. Effect of Phenolic Compounds from Almond Skins Obtained by Water Extraction on Pork Patty Shelf Life. Antioxidants 2022, 11, 2175. https://doi.org/10.3390/antiox11112175
Timón M, Andrés AI, Sorrentino L, Cardenia V, Petrón MJ. Effect of Phenolic Compounds from Almond Skins Obtained by Water Extraction on Pork Patty Shelf Life. Antioxidants. 2022; 11(11):2175. https://doi.org/10.3390/antiox11112175
Chicago/Turabian StyleTimón, Marisa, Ana Isabel Andrés, Ludovico Sorrentino, Vladimiro Cardenia, and María Jesús Petrón. 2022. "Effect of Phenolic Compounds from Almond Skins Obtained by Water Extraction on Pork Patty Shelf Life" Antioxidants 11, no. 11: 2175. https://doi.org/10.3390/antiox11112175
APA StyleTimón, M., Andrés, A. I., Sorrentino, L., Cardenia, V., & Petrón, M. J. (2022). Effect of Phenolic Compounds from Almond Skins Obtained by Water Extraction on Pork Patty Shelf Life. Antioxidants, 11(11), 2175. https://doi.org/10.3390/antiox11112175