Broadening the Biocatalytic Toolbox—Screening and Expression of New Unspecific Peroxygenases
Abstract
:1. Introduction
2. Material and Methods
2.1. UPO Candidate Selection
2.2. Chemicals, Strains and Plasmids
2.3. Preparation and Transformation of Expression Plasmids
2.4. Screening of P. pastoris Clones for UPO Activity
2.5. Expression of Recombinant Protein
2.6. Protein Purification
2.7. Assays
2.8. Protein Characterization
3. Results and Discussion
3.1. Selection of Genes
3.2. Expression of Putative UPO Genes in P. pastoris
3.3. Protein Production in P. pastoris
3.4. Protein Purification
3.5. Physicochemical Characterization
3.6. Comparison of Enzyme Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofrichter, M.; Kellner, H.; Herzog, R.; Karich, A.; Liers, C.; Scheibner, K.; Kimani, V.W.; Ullrich, R. Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 369–403. [Google Scholar] [CrossRef]
- Hofrichter, M.; Kellner, H.; Pecyna, M.J.; Ullrich, R. Fungal unspecific peroxygenases: Heme-thiolate proteins that combine peroxidase and cytochrome p450 properties. Adv. Exp. Med. Biol. 2015, 851, 341–368. [Google Scholar] [CrossRef] [PubMed]
- Burek, B.O.; Bormann, S.; Hollmann, F.; Bloh, J.Z.; Holtmann, D. Hydrogen peroxide driven biocatalysis. Green Chem. 2019, 21, 3232–3249. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 2017, 35, 815–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobisch, M.; Holtmann, D.; Gomez de Santos, P.; Alcalde, M.; Hollmann, F.; Kara, S. Recent developments in the use of peroxygenases—Exploring their high potential in selective oxyfunctionalisations. Biotechnol. Adv. 2020, 107615. [Google Scholar] [CrossRef]
- Molina-Espeja, P.; Garcia-Ruiz, E.; Gonzalez-Perez, D.; Ullrich, R.; Hofrichter, M.; Alcalde, M. Directed Evolution of Unspecific Peroxygenase from Agrocybe aegerita. Appl. Environ. Microbiol. 2014, 80, 3496–3507. [Google Scholar] [CrossRef] [Green Version]
- Linde, D.; Olmedo, A.; González-Benjumea, A.; Estévez, M.; Renau-Mínguez, C.; Carro, J.; Fernández-Fueyo, E.; Gutiérrez, A.; Martínez, A.T. Two New Unspecific Peroxygenases from Heterologous Expression of Fungal Genes in Escherichia coli. Appl. Environ. Microbiol. 2020, 86, e02899-19. [Google Scholar] [CrossRef] [Green Version]
- Rotilio, L.; Swoboda, A.; Ebner, K.; Rinnofner, C.; Glieder, A.; Kroutil, W.; Mattevi, A. Structural and Biochemical Studies Enlighten the Unspecific Peroxygenase from Hypoxylon sp. EC38 as an Efficient Oxidative Biocatalyst. ACS Catal. 2021, 11, 11511–11525. [Google Scholar] [CrossRef]
- Santos, P.G.d.; Hoang, M.D.; Kiebist, J.; Kellner, H.; Ullrich, R.; Scheibner, K.; Hofrichter, M.; Liers, C.; Alcalde, M.; Master, E.R. Functional Expression of Two Unusual Acidic Peroxygenases from Candolleomyces aberdarensis in Yeasts by Adopting Evolved Secretion Mutations. Appl. Environ. Microbiol. 2021, 87, e00878-21. [Google Scholar] [CrossRef]
- Babot, E.D.; del Río, J.C.; Kalum, L.; Martínez, A.T.; Gutiérrez, A. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Biotechnol. Bioeng. 2013, 110, 2323–2332. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Bell, E.W.; Zhang, Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Methods 2021, 1, 100014. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, F.; Morency, L.-P.; Najmanovich, R.J. NRGsuite: A PyMOL plugin to perform docking simulations in real time using FlexAID. Bioinformatics 2015, 31, 3856–3858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Nielsen, H.; Engelbrecht, J.; Brunak, S.; von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. Des. Sel. 1997, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison, C.A.; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef]
- Weis, R.; Luiten, R.; Skranc, W.; Schwab, H.; Wubbolts, M.; Glieder, A. Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res. 2004, 5, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Poraj-Kobielska, M.; Kinne, M.; Ullrich, R.; Scheibner, K.; Hofrichter, M. A spectrophotometric assay for the detection of fungal peroxygenases. Anal. Biochem. 2012, 421, 327–329. [Google Scholar] [CrossRef]
- Cino, J. High-yield protein production from Pichia pastoris yeast: A protocol for benchtop fermentation. Am. Biotechnol. Lab. 1999, 17, 10–12. [Google Scholar]
- Kiebist, J.; Schmidtke, K.-U.; Zimmermann, J.; Kellner, H.; Jehmlich, N.; Ullrich, R.; Zänder, D.; Hofrichter, M.; Scheibner, K. A Peroxygenase from Chaetomium globosum Catalyzes the Selective Oxygenation of Testosterone. ChemBioChem 2017, 18, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Dyballa, N.; Metzger, S. Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J. Vis. Exp. 2009, 30, e1431. [Google Scholar] [CrossRef] [PubMed]
- Abad, S.; Nahalka, J.; Bergler, G.; Arnold, S.A.; Speight, R.; Fotheringham, I.; Nidetzky, B.; Glieder, A. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst. Microb. Cell Fact. 2010, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina-Espeja, P.; Ma, S.; Mate, D.M.; Ludwig, R.; Alcalde, M. Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enzym. Microb. Technol. 2015, 73–74, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Laukens, B.; De Wachter, C.; Callewaert, N. Engineering the Pichia pastoris N-Glycosylation Pathway Using the GlycoSwitch Technology. Methods Mol. Biol. 2015, 1321, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, R.; Liers, C.; Schimpke, S.; Hofrichter, M. Purification of homogeneous forms of fungal peroxygenase. Biotechnol. J. 2009, 4, 1619–1626. [Google Scholar] [CrossRef] [Green Version]
- Zong, Q.; Osmulski, P.A.; Hager, L.P. High-Pressure-Assisted Reconstitution of Recombinant Chloroperoxidase. Biochemistry 1995, 34, 12420–12425. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Martin-Diaz, J.; Paret, C.; García-Ruiz, E.; Molina-Espeja, P.; Alcalde, M. Shuffling the Neutral Drift of Unspecific Peroxygenase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2018, 84, e00808-18. [Google Scholar] [CrossRef] [Green Version]
- Martin-Diaz, J.; Molina-Espeja, P.; Hofrichter, M.; Hollmann, F.; Alcalde, M. Directed evolution of unspecific peroxygenase in organic solvents. Biotechnol. Bioeng. 2021. [Google Scholar] [CrossRef]
- Knorrscheidt, A.; Püllmann, P.; Schell, E.; Homann, D.; Freier, E.; Weissenborn, M.J. Identification of Novel Unspecific Peroxygenase Chimeras and Unusual YfeX Axial Heme Ligand by a Versatile High-Throughput GC-MS Approach. ChemCatChem 2020, 12, 4788–4795. [Google Scholar] [CrossRef]
- Carballares, D.; Morellon-Sterling, R.; Xu, X.; Hollmann, F.; Fernandez-Lafuente, R. Immobilization of the Peroxygenase from Agrocybe aegerita. The Effect of the Immobilization pH on the Features of an Ionically Exchanged Dimeric Peroxygenase. Catalysts 2021, 11, 560. [Google Scholar] [CrossRef]
- Rauch, M.C.R.; Tieves, F.; Paul, C.E.; Arends, I.W.C.E.; Alcalde, M.; Hollmann, F. Peroxygenase-Catalysed Epoxidation of Styrene Derivatives in Neat Reaction Media. ChemCatChem 2019, 11, 4519–4523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bormann, S.; van Schie, M.M.C.H.; De Almeida, T.P.; Zhang, W.; Stöckl, M.; Ulber, R.; Hollmann, F.; Holtmann, D. H2O2 Production at Low Overpotentials for Electroenzymatic Halogenation Reactions. ChemSusChem 2019, 12, 4759–4763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bormann, S.; Burek, B.O.; Ulber, R.; Holtmann, D. Immobilization of unspecific peroxygenase expressed in Pichia pastoris by metal affinity binding. Mol. Catal. 2020, 492, 110999. [Google Scholar] [CrossRef]
- Bormann, S.; Hertweck, D.; Schneider, S.; Bloh, J.Z.; Ulber, R.; Spiess, A.C.; Holtmann, D. Modeling and simulation-based design of electroenzymatic batch processes catalyzed by unspecific peroxygenase from A. aegerita. Biotechnol. Bioeng. 2021, 118, 7–16. [Google Scholar] [CrossRef]
- Burek, B.O.; de Boer, S.R.; Tieves, F.; Zhang, W.; van Schie, M.; Bormann, S.; Alcalde, M.; Holtmann, D.; Hollmann, F.; Bahnemann, D.W.; et al. Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase: Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature. ChemCatChem 2019, 11, 3093–3100. [Google Scholar] [CrossRef]
Organism of Origin, Accession Number | Individual Enzyme Designation | Calculated MW kDa w/wo Signal Peptide |
---|---|---|
Aspergillus niger XP_025450509 | rAniUPO | 29.4/27.6 |
Aspergillus versicolor OJJ01936 | AveUPO | 28.4/26.7 |
Chaetomium globosum XP_001219540 | CglUPO | 29.3/27.6 |
Kretzschmaria deusta ARH52644 | KdeUPO | 27.8/26.2 |
Marasmius fiardii KAF9260270 | MfiUPO | 28.2/26.2 |
Mycena galopus Mycgal1|2083377 * | MgaUPO | 28.6/26.4 |
Candolleomyces aberdarensis RXW18363 | CabUPO1 | 41.3/38.8 |
Candolleomyces aberdarensis RXW17618 | CabUPO2 | 41.9/39.3 |
Trichoderma harzianum XP_024770464 | ThaUPO1 | 33/31.1 |
Trichoderma harzianum KKO99714 | ThaUPO2 | 28.6/26.7 |
Step | Vol. Act. | Vol. | Act. | Protein | Sp. Act. | Appl. | PF | Yield |
---|---|---|---|---|---|---|---|---|
(U mL−1) | (mL) | (U) | (g L−1) | (U mg−1) | % | (-) | % | |
rCabUPO 2 | ||||||||
Supernatant | 25.3 ± 1 | 493 | 12,475 | - | - | 100 | - | - |
Ultrafiltration | 493.9 ± 7.8 | 14.8 | 7309 | 7.88 | 62.64 | 66 | - | 58.6 |
HIC | 2821 ± 226 | 1.25 | 3526 | 37.7 | 74.84 | 80 | 1.19 | 42.7 |
SEC | 1218.6 ± 33.6 | 2.2 | 2681 | 13.63 | 89.41 | - | 1.19 | 95 |
rCabUPO 1 | ||||||||
Supernatant | 3.7 ± 0.1 | 653 | 2435 | - | - | 100 | - | - |
Ultrafiltration | 233.2 ± 1.6 | 7.6 | 1772 | 23.67 | 9.85 | 100 | - | 72.8 |
HIC | 899.2 ± 37.6 | 1.2 | 1079 | 98.42 | 9.14 | 83 | 0.93 | 44.3 |
SEC | 356.3 ± 7.9 | 2.8 | 998 | 21.99 | 16.2 | - | 1.77 | 110.9 |
rAniUPO | ||||||||
Supernatant | 6 ± 0.3 | 595 | 3589 | - | - | 100 | - | - |
Ultrafiltration | 259.6 ± 5.8 | 14.8 | 3842 | 6.55 | 39.64 | 60 | - | 107 |
HIC | 624.9 ± 7.7 | 0.98 | 612 | 13.4 | 46.65 | 87 | 1.18 | 28.7 |
SEC | 172.5 ± 1.5 | 1.5 | 259 | 2.34 | 73.57 | - | 1.58 | 48.7 |
Feature | rCabUPO 1 | rCabUPO 2 | rAniUPO | |
---|---|---|---|---|
MW glycosylated | (kDa) | 45 | 50 | 60 |
MW deglycosylated | (kDa) | 39 | 42 | 28 |
MW predicted | (kDa) | 38.8 | 39.3 | 27.6 |
Soret region | (nm) | 417 | 419 | 420 |
Charge transfer band 1 | (nm) | 570 | 572 | 569 |
Charge transfer band 2 | (nm) | 535 | 540 | 541 |
Reinheitszahl | (ASoret/A280) | 2.5 | 1.5 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bormann, S.; Kellner, H.; Hermes, J.; Herzog, R.; Ullrich, R.; Liers, C.; Ulber, R.; Hofrichter, M.; Holtmann, D. Broadening the Biocatalytic Toolbox—Screening and Expression of New Unspecific Peroxygenases. Antioxidants 2022, 11, 223. https://doi.org/10.3390/antiox11020223
Bormann S, Kellner H, Hermes J, Herzog R, Ullrich R, Liers C, Ulber R, Hofrichter M, Holtmann D. Broadening the Biocatalytic Toolbox—Screening and Expression of New Unspecific Peroxygenases. Antioxidants. 2022; 11(2):223. https://doi.org/10.3390/antiox11020223
Chicago/Turabian StyleBormann, Sebastian, Harald Kellner, Johanna Hermes, Robert Herzog, René Ullrich, Christiane Liers, Roland Ulber, Martin Hofrichter, and Dirk Holtmann. 2022. "Broadening the Biocatalytic Toolbox—Screening and Expression of New Unspecific Peroxygenases" Antioxidants 11, no. 2: 223. https://doi.org/10.3390/antiox11020223
APA StyleBormann, S., Kellner, H., Hermes, J., Herzog, R., Ullrich, R., Liers, C., Ulber, R., Hofrichter, M., & Holtmann, D. (2022). Broadening the Biocatalytic Toolbox—Screening and Expression of New Unspecific Peroxygenases. Antioxidants, 11(2), 223. https://doi.org/10.3390/antiox11020223