Vitamin C Status in People with Types 1 and 2 Diabetes Mellitus and Varying Degrees of Renal Dysfunction: Relationship to Body Weight
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Plasma Vitamin C and Biomarker Analysis
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Vitamin C Status in People with T1DM and T2DM
3.3. Plasma Vitamin C Status Relative to Renal Function Parameters
3.4. Plasma Vitamin C Status Relative to Cardiometabolic Health Indices
3.5. Plasma Vitamin C Status Relative to Participant Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation. IDF Dabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2019; p. 168. [Google Scholar]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes-Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ren, Z.H.; Qiang, H.; Wu, J.; Shen, M.; Zhang, L.; Lyu, J. Trends in the incidence of diabetes mellitus: Results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health 2020, 20, 1415. [Google Scholar] [CrossRef]
- Hill, K.; Ward, P.; Grace, B.S.; Gleadle, J. Social disparities in the prevalence of diabetes in Australia and in the development of end stage renal disease due to diabetes for Aboriginal and Torres Strait Islanders in Australia and Maori and Pacific Islanders in New Zealand. BMC Public Health 2017, 17, 802. [Google Scholar] [CrossRef] [Green Version]
- Coppell, K.J.; Mann, J.I.; Williams, S.M.; Jo, E.; Drury, P.L.; Miller, J.C.; Parnell, W.R. Prevalence of diagnosed and undiagnosed diabetes and prediabetes in New Zealand: Findings from the 2008/09 Adult Nutrition Survey. N. Z. Med. J. 2013, 126, 23–42. [Google Scholar]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar] [CrossRef]
- Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017, 40, 257–262. [Google Scholar] [CrossRef]
- Carr, A.C.; Frei, B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 1999, 69, 1086–1107. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.H.; Wareham, N.J.; Bingham, S.A.; Khaw, K.; Luben, R.; Welch, A.; Forouhi, N.G. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: The European prospective investigation of cancer--Norfolk prospective study. Arch. Intern. Med. 2008, 168, 1493–1499. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.S.; Sharp, S.J.; Imamura, F.; Chowdhury, R.; Gundersen, T.E.; Steur, M.; Sluijs, I.; van der Schouw, Y.T.; Agudo, A.; Aune, D.; et al. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries. BMJ 2020, 370, m2194. [Google Scholar] [CrossRef]
- Carr, A.; Frei, B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999, 13, 1007–1024. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Willis, J.; Gearry, R.; Skidmore, P.; Fleming, E.; Frampton, C.; Carr, A. Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: Associations with glycaemic control, obesity, and smoking. Nutrients 2017, 9, 997. [Google Scholar] [CrossRef]
- Fadupin, G.T.; Akpoghor, A.U.; Okunade, K.A. A comparative study of serum ascorbic acid level in people with and without type 2 diabetes in Ibadan, Nigeria. Afr. J. Med. Med. Sci. 2007, 36, 335–339. [Google Scholar]
- Subramanian, V.S.; Sabui, S.; Subramenium, G.A.; Marchant, J.S.; Said, H.M. Tumor Necrosis Factor alpha (TNF-alpha) reduces intestinal vitamin C uptake: A role for NF-kappaB mediated signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 315, G241–G248. [Google Scholar] [CrossRef]
- Block, G.; Mangels, A.R.; Patterson, B.H.; Levander, O.A.; Norkus, E.P.; Taylor, P.R. Body weight and prior depletion affect plasma ascorbate levels attained on identical vitamin C intake: A controlled-diet study. J. Am. Coll. Nutr. 1999, 18, 628–637. [Google Scholar] [CrossRef]
- Hirsch, I.B.; Atchley, D.H.; Tsai, E.; Labbé, R.F.; Chait, A. Ascorbic acid clearance in diabetic nephropathy. J. Diabetes Complicat. 1998, 12, 259–263. [Google Scholar] [CrossRef]
- Seghieri, G.; Martinoli, L.; Miceli, M.; Ciuti, M.; D’Alessandri, G.; Gironi, A.; Palmieri, L.; Anichini, R.; Bartolomei, G.; Franconi, F. Renal excretion of ascorbic acid in insulin dependent diabetes mellitus. Int. J. Vitam. Nutr. Res. 1994, 64, 119–124. [Google Scholar]
- Newill, A.; Habibzadeh, N.; Bishop, N.; Schorah, C.J. Plasma levels of vitamin C components in normal and diabetic subjects. Ann. Clin. Biochem. 1984, 21, 488–490. [Google Scholar] [CrossRef] [Green Version]
- Jennings, P.E.; Chirico, S.; Jones, A.F.; Lunec, J.; Barnett, A.H. Vitamin C metabolites and microangiopathy in diabetes mellitus. Diabetes Res. 1987, 6, 151–154. [Google Scholar]
- Schorah, C.J.; Bishop, N.; Wales, J.K.; Hansbro, P.M.; Habibzadeh, N. Blood vitamin C concentrations in patients with diabetes mellitus. Int. J. Vitam. Nutr. Res. 1988, 58, 312–318. [Google Scholar] [PubMed]
- Courderot-Masuyer, C.; Lahet, J.J.; Verges, B.; Brun, J.M.; Rochette, L. Ascorbyl free radical release in diabetic patients. Cell. Mol. Biol. 2000, 46, 1397–1401. [Google Scholar] [PubMed]
- Prickett, T.C.R.; Lunt, H.; Warwick, J.; Heenan, H.F.; Espiner, E.A. Urinary amino-terminal pro-C-type natriuretic peptide: A novel marker of chronic kidney disease in diabetes. Clin. Chem. 2019, 65, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Pullar, J.M.; Moran, S.; Vissers, M.C. Bioavailability of vitamin C from kiwifruit in non-smoking males: Determination of ‘healthy’ and ‘optimal’ intakes. J. Nutr. Sci. 2012, 1, e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykkesfeldt, J.; Poulsen, H.E. Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br. J. Nutr. 2010, 103, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Carr, A.C.; Rowe, S. Factors affecting vitamin C status and prevalence of deficiency: A global health perspective. Nutrients 2020, 12, 1963. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef] [Green Version]
- May, J.M. The SLC23 family of ascorbate transporters: Ensuring that you get and keep your daily dose of vitamin C. Br. J. Pharmacol. 2011, 164, 1793–1801. [Google Scholar] [CrossRef] [Green Version]
- Ran, L.; Zhao, W.; Tan, X.; Wang, H.; Mizuno, K.; Takagi, K.; Zhao, Y.; Bu, H. Association between serum vitamin C and the blood pressure: A systematic review and meta-analysis of observational studies. Cardiovasc. Ther. 2020, 2020, 4940673. [Google Scholar] [CrossRef]
- Mason, S.A.; Keske, M.A.; Wadley, G.D. Effects of vitamin C supplementation on glycemic control and cardiovascular risk factors in people with type 2 diabetes: A GRADE-assessed systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2021, 44, 618–630. [Google Scholar] [CrossRef]
- Namkhah, Z.; Ashtary-Larky, D.; Naeini, F.; Clark, C.C.T.; Asbaghi, O. Does vitamin C supplementation exert profitable effects on serum lipid profile in patients with type 2 diabetes? A systematic review and dose-response meta-analysis. Pharmacol. Res. 2021, 169, 105665. [Google Scholar] [CrossRef] [PubMed]
- Jungert, A.; Neuhauser-Berthold, M. The lower vitamin C plasma concentrations in elderly men compared with elderly women can partly be attributed to a volumetric dilution effect due to differences in fat-free mass. Br. J. Nutr. 2015, 113, 859–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Pullar, J.M.; Bozonet, S.M.; Vissers, M.C. Marginal ascorbate status (hypovitaminosis C) results in an attenuated response to vitamin C supplementation. Nutrients 2016, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Lykkesfeldt, J. Discrepancies in global vitamin C recommendations: A review of RDA criteria and underlying health perspectives. Crit. Rev. Food Sci. Nutr. 2020, 61, 742–755. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open. 2014, 4, e005497. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, C.; Discacciati, A.; Åkesson, A.; Orsini, N.; Brismar, K.; Wolk, A. Changes in fruit, vegetable and juice consumption after the diagnosis of type 2 diabetes: A prospective study in men. Br. J. Nutr. 2017, 117, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Lamb, M.J.; Griffin, S.J.; Sharp, S.J.; Cooper, A.J. Fruit and vegetable intake and cardiovascular risk factors in people with newly diagnosed type 2 diabetes. Eur. J. Clin. Nutr. 2017, 71, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Castetbon, K.; Bonaldi, C.; Deschamps, V.; Vernay, M.; Malon, A.; Salanave, B.; Druet, C. Diet in 45- to 74-year-old individuals with diagnosed diabetes: Comparison to counterparts without diabetes in a nationally representative survey (Etude Nationale Nutrition Santé 2006-2007). J. Acad. Nutr. Diet. 2014, 114, 918–925. [Google Scholar] [CrossRef]
- Bates, C.J.; Lean, M.E.; Mansoor, M.A.; Prentice, A. Nutrient intakes; biochemical and risk indices associated with Type 2 diabetes and glycosylated haemoglobin, in the British National Diet and Nutrition Survey of people aged 65 years and over. Diabet. Med. 2004, 21, 677–684. [Google Scholar] [CrossRef]
- Mayer-Davis, E.J.; Nichols, M.; Liese, A.D.; Bell, R.A.; Dabelea, D.M.; Johansen, J.M.; Pihoker, C.; Rodriguez, B.L.; Thomas, J.; Williams, D. Dietary intake among youth with diabetes: The SEARCH for Diabetes in Youth Study. J. Am. Diet. Assoc. 2006, 106, 689–697. [Google Scholar] [CrossRef]
- Ewers, B.; Trolle, E.; Jacobsen, S.S.; Vististen, D.; Almdal, T.P.; Vilsbøll, T.; Bruun, J.M. Data on the use of dietary supplements in Danish patients with type 1 and type 2 diabetes. Data Brief. 2019, 22, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, L.; Uusitalo, U.; Ovaskainen, M.L.; Niinistö, S.; Kronberg-Kippilä, C.; Marjamäki, L.; Ahonen, S.; Kenward, M.G.; Knip, M.; Veijola, R.; et al. Sociodemographic and lifestyle characteristics are associated with antioxidant intake and the consumption of their dietary sources during pregnancy. Public Health Nutr. 2008, 11, 1379–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleicher, R.L.; Carroll, M.D.; Ford, E.S.; Lacher, D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90, 1252–1263. [Google Scholar] [CrossRef]
- Ness, A.R.; Cappuccio, F.P.; Atkinson, R.W.; Khaw, K.T.; Cook, D.G. Plasma vitamin C levels in men and women from different ethnic backgrounds living in England. Int. J. Epidemiol. 1999, 28, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.; Ong, C.N. Vitamins, selenium, iron, and coronary heart disease risk in Indians, Malays, and Chinese in Singapore. J Epidemiol. Community Health 1998, 52, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Pullar, J.M.; Bayer, S.; Carr, A.C. Appropriate handling, processing and analysis of blood samples is essential to avoid oxidation of vitamin C to dehydroascorbic acid. Antioxidants 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. COVID-19: People with Certain Medical Conditions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html (accessed on 26 January 2021).
- Gurney, J.; Stanley, J.; Sarfati, D. The inequity of morbidity: Disparities in the prevalence of morbidity between ethnic groups in New Zealand. J. Comorb. 2020, 10, 2235042x20971168. [Google Scholar] [CrossRef]
- Steyn, N.; Binny, R.N.; Hannah, K.; Hendy, S.C.; James, A.; Kukutai, T.; Lustig, A.; McLeod, M.; Plank, M.J.; Ridings, K.; et al. Estimated inequities in COVID-19 infection fatality rates by ethnicity for Aotearoa New Zealand. N. Z. Med. J. 2020, 133, 28–39. [Google Scholar]
- Steyn, N.; Binny, R.N.; Hannah, K.; Hendy, S.C.; James, A.; Lustig, A.; Ridings, K.; Plank, M.J.; Sporle, A. Māori and Pacific people in New Zealand have a higher risk of hospitalisation for COVID-19. N. Z. Med. J. 2021, 134, 28–43. [Google Scholar]
- Holford, P.; Carr, A.C.; Zawari, M.; Vizcaychipi, M.P. Vitamin C intervention for critical COVID-19: A pragmatic review of the current level of evidence. Life 2021, 11, 1166. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Cohort (n = 136) | T1DM (n = 73) | T2DM (n = 63) | |
---|---|---|---|
Age, years | 57 (44, 67) | 47 (35, 64) | 62 (53, 68) |
Gender, female | 72 (53) | 42 (58) | 30 (48) |
Ethnicity: | |||
NZ European | 106 (78) | 65 (89) | 41 (65) |
Māori or Pasifika | 21 (16) | 4 (5) | 17 (27) |
Asian or Other | 9 (7) | 4 (5) | 5 (8) |
NZ Deprivation index | 3 (2, 6) | 2 (1, 5) | 5 (2, 7) |
Diabetes duration, years | 18 (10, 24) | 20 (13, 33) | 15 (10, 20) |
Renal dysfunction a | 60 (44) | 28 (38) | 32 (51) |
Treated hypertension | 84 (64) | 33 (46) | 51 (85) |
Smoking status: | |||
Never smoked | 72 (53) | 42 (57) | 30 (48) |
Ex-smoker | 45 (33) | 19 (26) | 26 (41) |
Current smoker | 18 (13) | 12 (16) | 6 (10) |
Total Cohort (n = 136) | T1DM (n = 73) | T2DM (n = 63) | |
---|---|---|---|
Weight, kg | 84 (71, 105) | 75 (65, 85) | 99 (82, 114) |
BMI, kg/m2 | 30 (25, 35) | 26 (23, 30) | 34 (31, 38) |
Diastolic BP, mmHg | 80 (71, 85) | 77 (70, 84) | 83 (74, 88) |
Systolic BP, mmHg | 135 (122, 151) | 131 (115, 144) | 140 (129, 155) |
Triglycerides, mmol/L | 1.6 (1.0, 2.3) | 1.2 (0.9, 1.7) | 2.2 (1.6, 3.2) |
HDL cholesterol, mmol/L | 1.3 (1.0, 1.6) | 1.5 (1.3, 1.7) | 1.0 (0.9, 1.3) |
Total cholesterol, mmol/L | 4.7 (4.0, 5.3) | 4.8 (4.2, 5.3) | 4.3 (3.7, 5.1) |
Cholesterol/HDL ratio | 3.5 (2.9, 4.4) | 3.2 (2.7, 3.8) | 4.2 (3.3, 4.9) |
LDL cholesterol, mmol/L | 2.6 (1.9, 3.1) | 2.6 (2.2, 3.1) | 2.3 (1.8, 3.0) |
Urate, mmol/L | 0.30 (0.23, 0.38) | 0.25 (0.19, 0.30) | 0.35 (0.30, 0.41) |
HbA1c, mmol/mol | 64 (55, 75) | 64 (54, 71) | 65 (58, 79) |
Cystatin C, mg/L | 1.0 (0.8, 1.2) | 0.9 (0.7, 1.0) | 1.1 (0.9, 1.4) |
ACR, g/mol | 1.6 (0.7, 8.4) | 1.2 (0.6, 3.4) | 2.6 (1.0, 32.0) |
eGFR, ml/min/1.73 m2 | 72 (57, 84) | 76 (61, 88) | 66 (51, 78) |
Parameter | Spearman Correlation (r) |
---|---|
Plasma cystatin C | −0.25 ** |
Serum creatinine | −0.23 ** |
Urine albumin | −0.22 ** |
Urine creatinine | −0.07 |
Albumin to creatinine ratio (ACR) | −0.21 ** |
Estimated glomerular filtration rate (eGFR) | 0.16 |
Parameter | Spearman Correlation (r) |
---|---|
Diastolic blood pressure | −0.18 * |
Systolic blood pressure | −0.05 |
Triglycerides | −0.31 *** |
HDL cholesterol | 0.19 * |
Total cholesterol | −0.05 |
Cholesterol/HDL ratio | −0.28 *** |
LDL cholesterol | −0.0005 |
Urate | −0.27 ** |
HbA1c | −0.14 |
Body weight | −0.39 **** |
Body mass index (BMI) | −0.36 **** |
Plasma Vitamin C (µmol/L) | ||
---|---|---|
Unadjusted | Weight Adjusted | |
T2DM vs. T1DM | −14.8 (−20.9, −8.8) *** | −9.7 (−16.9, −2.5) ** |
Weight (per 10 kg) | −2.1 (−3.7, −0.5) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carr, A.C.; Spencer, E.; Heenan, H.; Lunt, H.; Vollebregt, M.; Prickett, T.C.R. Vitamin C Status in People with Types 1 and 2 Diabetes Mellitus and Varying Degrees of Renal Dysfunction: Relationship to Body Weight. Antioxidants 2022, 11, 245. https://doi.org/10.3390/antiox11020245
Carr AC, Spencer E, Heenan H, Lunt H, Vollebregt M, Prickett TCR. Vitamin C Status in People with Types 1 and 2 Diabetes Mellitus and Varying Degrees of Renal Dysfunction: Relationship to Body Weight. Antioxidants. 2022; 11(2):245. https://doi.org/10.3390/antiox11020245
Chicago/Turabian StyleCarr, Anitra C., Emma Spencer, Helen Heenan, Helen Lunt, Monica Vollebregt, and Timothy C. R. Prickett. 2022. "Vitamin C Status in People with Types 1 and 2 Diabetes Mellitus and Varying Degrees of Renal Dysfunction: Relationship to Body Weight" Antioxidants 11, no. 2: 245. https://doi.org/10.3390/antiox11020245
APA StyleCarr, A. C., Spencer, E., Heenan, H., Lunt, H., Vollebregt, M., & Prickett, T. C. R. (2022). Vitamin C Status in People with Types 1 and 2 Diabetes Mellitus and Varying Degrees of Renal Dysfunction: Relationship to Body Weight. Antioxidants, 11(2), 245. https://doi.org/10.3390/antiox11020245