Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting
Abstract
:1. Lycopene Bio-availability
2. Production and Extraction Process
3. Chemical Characterization
3.1. UV–Vis
3.2. Fluorescence
3.3. High-Performance Liquid Chromatography (HPLC)
3.4. Fourier Transform Infrared (FTIR)
3.5. Mass Spectrometry
3.6. Nuclear Magnetic Resonance (NMR)
3.7. X-ray Diffraction (XRD)
3.8. Differential Scanning Calorimetry (DSC)
4. Quantitative Analysis
4.1. Extraction
4.2. Biosynthesis
4.3. Supercritical Carbon Dioxide (SC-CO2)
4.4. UV–Vis and HPLC
5. Antioxidant Activity
6. Antimicrobial Activity
7. Anti-Inflammatory Assays
8. Anticancer Pathways
9. Lycopene Bio-accessibility and Bio-availability—Novel Technologies
10. Patent Databases
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, N.; Liu, B.; Wang, G.; Soong, Y.-H.V.; Tao, Y.; Liu, W.; Xie, D. Lycopene production from glucose, fatty acid, and waste cooking oil by metabolically engineered Escherichia Coli. Biochem. Eng. J. 2020, 155, 107488. [Google Scholar] [CrossRef]
- Li, D.; Li, L.; Xiao, N.; Li, M.; Xie, X. Physical properties of oil-in-water nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene. Colloids Surf. A 2018, 552, 59–66. [Google Scholar] [CrossRef]
- Gheonea, I.; Aprodu, I.; Cîrciumaru, A.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Microencapsulation of lycopene from tomatoes peel by complex coacervation and freeze-drying: Evidence on phytochemical profile, stability, and food applications. J. Food Eng. 2021, 288, 110166. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Oxidative stability of extra-virgin olive oil-enriched or not with lycopene. Importance of the initial quality of the oil for its performance during in vitro gastrointestinal digestion. Food Res. Int. 2020, 130, 108987. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Ma, C.; Yan, X.; Liu, X.; Liu, F. Advances in research on bioactivity, metabolism, stability, and delivery systems of lycopene. Trends Food Sci. Technol. 2019, 93, 185–196. [Google Scholar] [CrossRef]
- Yang, C.; Liu, H.; Sund, Q.; Xiong, W.; Yu, J.; Zhang, L. Enriched Z-isomers of lycopene-loaded nanostructured lipid carriers: Physicochemical characterization and in vitro bioaccessibility assessment using a diffusion model. LWT—Food Sci. Technol. 2019, 111, 767–773. [Google Scholar] [CrossRef]
- Mirahmadi, M.; Azimi-Hashemi, S.; Saburi, E.; Kamalie, H.; Pishbin, M.; Hadizadeh, F. Potential inhibitory effect of lycopene on prostate cancer. Biomed. Pharmacother. 2020, 129, 110459. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Fu, J.; Yang, Q.; Feng, L. High-throughput screening of lycopene-overproducing mutants of Blakeslea trispora by combining ARTP mutation with microtiter plate cultivation and transcriptional changes revealed by RNA-seq. Biochem. Eng. J. 2020, 161, 107664. [Google Scholar] [CrossRef]
- Li, W.; Yalcin, M.; Lin, Q.; Ardawi, M.-S.M.; Mousa, S.A. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery. J. Control. Release 2017, 248, 117–124. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W. Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement. Food Chem. 2017, 235, 283–289. [Google Scholar] [CrossRef]
- Andrades, E.O.; Costa, J.M.A.R.; Neto, F.E.M.L.; Araujo, A.R.; Ribeiro, F.O.S.; Vasconcelos, A.G.; Oliveira, A.C.J.; Sobrinho, J.L.S.; Almeida, M.P.; Carvalho, A.P.; et al. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. Int. J. Biol. Macromol. 2021, 191, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, A.G.; Valim, M.O.; Amorim, A.G.N.; Amaral, C.P.; Almeida, M.P.; Borges, T.K.S.; Socodato, R.; Portugal, C.C.; Brand, G.D.; Mattos, J.S.C.; et al. Cytotoxic activity of poly-ɛ-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L.) on breast cancer cells. Food Res. Int. 2020, 136, 109548. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.C.; Ombredane, A.S.; Souza, J.M.T.; Vasconcelos, A.G.; Plácido, A.; Amorim, A.G.N.; Barbosa, E.A.; Lima, F.C.D.A.; Ropke, C.D.; Alves, M.M.M.; et al. Lycopene-rich extract from red guava (Psidium guajava L.) displays cytotoxic effect against human breast adenocarcinoma cell line MCF-7 via an apoptotic-like pathway. Food Res. Int. 2018, 105, 184–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 29 January 2022).
- ACD/Labs. Available online: https://www.acdlabs.com/solutions/academia (accessed on 29 January 2022).
- Amorim, A.; Souza, J.; Oliveira, A.; Santos, R.; Vasconcelos, A.; Souza, L.; Araújo, T.; Cabral, W.; Silva, M.; Mafud, A.; et al. Anti-inflammatory and antioxidant activity improvement of lycopene from guava on nanoemulsifying system. J. Dispers. Sci. Technol. 2021, 42, 760–770. [Google Scholar]
- Jain, A.; Sharma, G.; Ghoshal, G.; Kesharwani, P.; Singh, B.; Shivhare, U.S.; Katare, O.P. Lycopene Loaded Whey Protein Isolate Nanoparticles: An Innovative Endeavor for Enhanced Bioavailability of Lycopene and Anti-Cancer Activity. Int. J. Pharm. 2018, 546, 97–105. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Tomović, V.; Kocić-Tanackov, S.; Đurović, S.; Zeković, Z.; Belović, M.; Torbica, A.; Jokanović, M.; Uromović, N.; et al. Tomato pomace extract and organic peppermint essential oil as effective sodium nitrite replacement in cooked pork sausages. Food Chem. 2020, 330, 127202. [Google Scholar] [CrossRef] [PubMed]
- Vallecilla-Yepez, L.; Ciftci, O.N. Increasing cis-lycopene content of the oleoresin from tomato processing by-products using supercritical carbon dioxide. LWT—Food Sci. Technol. 2018, 95, 354–360. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Z.; Hu, X.; Wang, X. Effects of lipopolysaccharide structure on lycopene production in Escherichia coli. Enzym. Microb. Technol. 2019, 124, 9–16. [Google Scholar] [CrossRef]
- Ma, T.; Shi, B.; Ye, Z.; Li, X.; Liu, M.; Chen, Y.; Xia, J.; Nielsen, J.; Deng, Z.; Liu, T. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab. Eng. 2019, 52, 134–142. [Google Scholar] [CrossRef]
- Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Extraction of tomato by-products’ bioactive compounds using ohmic technology. Food Bioprod. Process. 2019, 117, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Hatami, T.; Meireles, M.A.A.; Ciftci, O.N. Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modeling and optimization. J. Food Eng. 2019, 241, 18–25. [Google Scholar] [CrossRef]
- Kehili, M.; Sayadi, S.; Frikha, F.; Zammel, A.; Allouche, N. Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food Bioprod. Process. 2019, 117, 321–328. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT—Food Sci. Technol. 2019, 116, 108558. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of lycopene from industrially derived tomato processing byproducts by pulsed electric fields-assisted extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Castillejo, N.; Artés-Hernández, F. Effect of fresh–cut apples fortification with lycopene microspheres, revalorized from tomato by-products, during shelf life. Postharvest Biol. Technol. 2019, 156, 110925. [Google Scholar] [CrossRef]
- Amorim, A.G.N.; Souza, J.M.T.; Santos, R.C.; Gullon, B.; Oliveira, A.; Santos, L.F.A.; Virgino, A.L.E.; Mafud, A.C.; Petrilli, H.M.; Mascarenhas, Y.P.; et al. HPLC-DAD, ESI–MS/MS, and NMR of Lycopene Isolated from P. guajava L. and Its Biotechnological Applications. Eur. J. Lipid Sci. Technol. 2018, 120, 1700330. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, L.; Lu, Y.; Liu, J.; Zhao, R.; Sun, Y.; Sun, B.; Wang, C. pH-Dependent complexation between β-lactoglobulin and lycopene: Multi-spectroscopy, molecular docking, and dynamic simulation study. Food Chem. 2021, 362, 130230. [Google Scholar] [CrossRef]
- Aredo, V.; Passalacqua, E.S.; Pratavieira, S.; Oliveira, A.L. Formation of lycopene-loaded hydrolysed collagen particles by supercritical impregnation. LWT—Food Sci. Technol. 2019, 110, 158–167. [Google Scholar] [CrossRef]
- Takehara, M.; Kuwa, T.; Inoue, Y.; Kitamura, C.; Honda, M. Isolation and characterization of (15Z)-lycopene thermally generated from a natural source. Biochem. Biophys. Res. Commun. 2015, 467, 58–62. [Google Scholar] [CrossRef]
- Amorim, A.G.N.; Leite, J.R.S.A.; Ropke, C.D. Obtenção de Extrato Rico em Licopeno e Licopeno Puro de Fonte Natura. Patent n BR102016030594-2, 17 July 2018. [Google Scholar]
- Amorim, A.G.N.; Leite, J.S.R.A.; Pintado, M.E. Obtainment Process of Carotenoids Concentrate Rich in Lycopene from Red Fruits and/or Red Fruit Pulp. Patent n EP3400812 (A1), 14 November 2018. [Google Scholar]
- Arathi, B.P.; Raghavendra, P.; Sowmya, R.; Vijay, K.; Dilshad, P.; Saikat, B.; Gopal, V.; Lakshminarayana, R. An improved method of UPLC-PDA-MS/MS analysis of lycopene isomers. Food Anal. Methods 2015, 8, 1962–1969. [Google Scholar] [CrossRef]
- Honda, M.; Takahashi, N.; Kuwa, T.; Takehara, M.; Inoue, Y.; Kumagai, T. Spectral characterisation of Z-isomers of lycopene formed during heat treatment and solvent effects on the E/Z isomerisation process. Food Chem. 2015, 171, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Assis, R.Q.; Rios, P.D.A.; de Oliveira Rios, A.; Olivera, F.C. Biodegradable packaging of cellulose acetate incorporated with norbixin, lycopene or zeaxanthin. Ind. Crops Prod. 2020, 147, 112212. [Google Scholar] [CrossRef]
- Souza, A.L.R.; Hidalgo-Chávez, D.W.; Pontes, S.M.; Gomes, F.S.; Cabral, L.M.C.; Tonon, R.V. Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT—Food Sci. Technol. 2018, 91, 286–292. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Zhu, H.; Wang, S.; Xing, J. Inclusion Complexes of Lycopene and β-Cyclodextrin: Preparation, Characterization, Stability and Antioxidant Activity. Antioxidants 2019, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Stinco, C.M.; Heredia, F.J.; Vicario, I.M.; Melendez-Martínez, A.J. In vitro antioxidant capacity of tomato products: Relationships with their lycopene, phytoene, phytofluene and alpha-tocopherol contents, evaluation of interactions and correlation with reflectance measurements. LWT—Food Sci. Technol. 2016, 65, 718–724. [Google Scholar] [CrossRef]
- Ha, T.V.A.; Kim, S.; Choi, Y.; Kwak, H.-S.; Lee, S.J.; Wen, J.; Oey, I.; Ko, S. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem. 2015, 178, 115–121. [Google Scholar] [CrossRef]
- Choi, H.; Lee, D.G. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie 2015, 115, 108–115. [Google Scholar] [CrossRef]
- Pereira, M.C.; Hill, L.E.; Zambiazi, R.C.; Mertens-Talcott, S.; Talcott, S.; Gomes, C.L. Nanoencapsulation of hydrophobic phytochemicals using poly (DL-lactide-co-glycolide) (PLGA) for antioxidant and antimicrobial delivery applications: Guabiroba fruit (Campomanesia xanthocarpa O. Berg) study. LWT—Food Sci. Technol. 2015, 63, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, A.; Ranjbar, E. Antimicrobial Property of Lycopene Oleoresin on some Food Pathogens Running Head: Lycopene oleoresin antibacterial potent. Iran. Food Sci. Technol. Res. J. 2016, 12, 382–387. [Google Scholar]
- Vasconcelos, A.G.; Amorim, A.G.N.; Santos, R.C.; Souza, J.M.T.; Souza, L.K.M.; Araújo, T.S.L.; Nicolau, L.A.D.; Carvalho, L.L.; Aquino, P.E.A.; Martins, C.S.; et al. Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res. Int. 2017, 99, 959–968. [Google Scholar] [CrossRef]
- Thies, F.; Mills, L.M.; Moir, S.; Masson, L.F. Cardiovascular benefits of lycopene: Fantasy or reality? Proc. Nutr. Soc. 2017, 76, 122–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafi, M.M.; Kanakasabai, S.; Reyes, M.D.; Bright, J.J. Lycopene modulates growth and survival associated genes in prostate cancer. J. Nutr. Biochem. 2013, 24, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Lim, J.W.; Kim, H. Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells. Nutrients 2019, 11, 2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meroni, E.; Raikos, V. Lycopene in Beverage Emulsions: Optimizing Formulation Design and Processing Effects for Enhanced Delivery. Beverages 2018, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Chacón-Ordóñez, T.; Carle, R.; Schweiggert, R. Bioaccessibility of Carotenoids from Plant and Animal Foods. J. Sci. Food Agric. 2019, 99, 3220–3239. [Google Scholar] [CrossRef]
- García-Hernández, J.; Hernández-Pérez, M.; Peinado, I.; Andrés, A.; Heredia, A. Tomato-Antioxidants Enhance Viability of L. Reuteri under Gastrointestinal Conditions While the Probiotic Negatively Affects Bioaccessibility of Lycopene and Phenols. J. Funct. Foods 2018, 43, 1–7. [Google Scholar] [CrossRef]
- Focsan, A.L.; Polyakov, N.E.; Kispert, L.D. Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability—The Way of Bioavailability Improvement. Molecules 2019, 24, 3947. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, E.; Pérez-Gálvez, A. Carotenoid: β-Cyclodextrin Stability Is Independent of Pigment Structure. Food Chem. 2017, 221, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xin, Z.; Li, N.; Chang, S.; Chen, Y.; Geng, L.; Chang, H.; Shi, H.; Chang, Y.-Z. Nano-Liposomes of Lycopene Reduces Ischemic Brain Damage in Rodents by Regulating Iron Metabolism. Free Radic. Biol. Med. 2018, 124, 1–11. [Google Scholar] [CrossRef]
- Stojiljkovic, N.; Ilic, S.; Jakovljevic, V.; Stojanovic, N.; Stojnev, S.; Kocic, H.; Stojanovic, M.; Kocic, G. The Encapsulation of Lycopene in Nanoliposomes Enhances Its Protective Potential in Methotrexate-Induced Kidney Injury Model. Oxidative Med. Cell. Longev. 2018, 2627917. [Google Scholar] [CrossRef]
- Jhan, S.; Pethe, A.M. Double-Loaded Liposomes Encapsulating Lycopene β-Cyclodextrin Complexes: Preparation, Optimization, and Evaluation. J. Liposome Res. 2020, 30, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Raikos, V.; Hayward, N.; Hayes, H.; Meroni, E.; Ranawana, V. Optimising the Ratio of Long- to Short-Chain Triglycerides of the Lipid Phase to Enhance Physical Stability and Bioaccessibility of Lycopene-Loaded Beverage Emulsions. Int. J. Food Sci. Technol. 2019, 54, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Shariffa, Y.N.; Tan, T.B.; Uthumporn, U.; Abas, F.; Mirhosseini, H.; Nehdi, I.A.; Wang, Y.-H.; Tan, C.P. Producing a Lycopene Nanodispersion: Formulation Development and the Effects of High Pressure Homogenization. Food Res. Int. 2017, 101, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Ventura, J.; Luna-Guevara, J.J.; Tornero-Campante, M.A.; Delgado-Alvarado, A.; Luna-Guevara, M.L. Study of Encapsulation Parameters to Improve Content of Lycopene in Tomato (Solanum lycopersicum L.) Powders. Acta Aliment. 2018, 47, 135–142. [Google Scholar] [CrossRef]
- Nazemiyeh, E.; Eskandani, M.; Sheikhloie, H.; Nazemiyeh, H. Formulation and Physicochemical Characterization of Lycopene-Loaded Solid Lipid Nanoparticles. Adv. Pharm. Bull. 2016, 6, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Tawfik, M.S.; Abdel-Ghaffar, K.A.; Gamal, A.Y.; El-Demerdash, F.H.; Gad, H.A. Lycopene Solid Lipid Microparticles with Enhanced Effect on Gingival Crevicular Fluid Protein Carbonyl as a Biomarker of Oxidative Stress in Patients with Chronic Periodontitis. J. Liposome Res. 2019, 29, 375–382. [Google Scholar] [CrossRef]
- Jain, A.; Sharma, G.; Kushwah, V.; Thakur, K.; Ghoshal, G.; Singh, B.; Jain, S.; Shivhare, U.S.; Katare, O.P. Fabrication and Functional Attributes of Lipidic Nanoconstructs of Lycopene: An Innovative Endeavour for Enhanced Cytotoxicity in MCF-7 Breast Cancer Cells. Colloids Surf. B Biointerfaces 2017, 152, 482–491. [Google Scholar] [CrossRef]
- Singh, A.; Neupane, Y.R.; Panda, B.P.; Kohli, K. Lipid Based Nanoformulation of Lycopene Improves Oral Delivery: Formulation Optimization, Ex Vivo Assessment, and Its Efficacy against Breast Cancer. J. Microencapsul. 2017, 34, 416–429. [Google Scholar] [CrossRef]
- Zardini, A.A.; Mohebbi, M.; Farhoosh, R.; Bolurian, S. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. J. Food Sci. Technol. 2018, 55, 287–298. [Google Scholar] [CrossRef]
- Horuz, T.İ.; Belibağlı, K.B. Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chem. 2018, 268, 86–93. [Google Scholar] [CrossRef]
- Sampaio, G.L.A.; Pacheco, S.; Ribeiro, A.P.O.; Galdeano, M.C.; Gomes, F.S.; Tonon, R.V. Encapsulation of a lycopene-rich watermelon concentrate in alginate and pectin beads: Characterization and stability. LWT—Food Sci. Technol. 2019, 116, 108589. [Google Scholar] [CrossRef]
- Mele, A.; Mendichi, R.; Selva, A.; Molnar, P.; Toth, G. Non-Covalent Associations of Cyclomaltooligosaccharides (Cyclodextrins) with Carotenoids in Water. A Study on the α- and β-Cyclodextrin/ψ,ψ-Carotene (Lycopene) Systems by Light Scattering, Ionspray Ionization and Tandem Mass Spectrometry. Carbohydr. Res. 2002, 337, 1129–1136. [Google Scholar] [CrossRef]
- Harsha, P.S.C.S.; Lavelli, V. Effects of Maltodextrins on the Kinetics of Lycopene and Chlorogenic Acid Degradation in Dried Tomato. Molecules 2019, 24, 6–1042. [Google Scholar]
- Jia, C.; Cao, D.; Ji, S.; Lin, W.; Zhang, X.; Muhoza, B. Whey Protein Isolate Conjugated with Xylo-Oligosaccharides via Maillard Reaction: Characterization, Antioxidant Capacity, and Application for Lycopene Microencapsulation. LWT—Food Sci. Technol. 2020, 118, 108837. [Google Scholar] [CrossRef]
- Meroni, E.; Raikos, V. Formulating Orange Oil-in-Water Beverage Emulsions for Effective Delivery of Bioactives: Improvements in Chemical Stability, Antioxidant Activity and Gastrointestinal Fate of Lycopene Using Carrier Oils. Food Res. Int. 2018, 106, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Zhang, Y.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S. Modulation of the Carotenoid Bioaccessibility through Liposomal Encapsulation. Colloids Surf. B Biointerfaces 2014, 123, 692–700. [Google Scholar] [CrossRef]
- Tan, C.; Xue, J.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S. Liposome as a Delivery System for Carotenoids: Comparative Antioxidant Activity of Carotenoids as Measured by Ferric Reducing Antioxidant Power, DPPH Assay and Lipid Peroxidation. J. Agric. Food Chem. 2014, 62, 6726–6735. [Google Scholar] [CrossRef]
- Garcês, A.; Amaral, M.H.; Lobo, J.M.S.; Silva, A.C. Formulations Based on Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Cutaneous Use: A Review. Eur. J. Pharm. Sci. 2018, 112, 159–167. [Google Scholar] [CrossRef]
- Okonogi, S.; Riangjanapatee, P. Physicochemical Characterization of Lycopene-Loaded Nanostructured Lipid Carrier Formulations for Topical Administration. Int. J. Pharm. 2015, 478, 726–735. [Google Scholar] [CrossRef]
- INPI. Available online: https://busca.inpi.gov.br/pePI/ (accessed on 7 January 2022).
- INPI. Available online: https://servicosonline.inpi.justica.gov.pt/pesquisas/main/patentes.jsp?lang=PT (accessed on 7 January 2022).
- USPTO. Available online: https://patft.uspto.gov/netahtml/PTO/search-bool.html (accessed on 7 January 2022).
- EPO. Available online: https://worldwide.espacenet.com/patent/search (accessed on 7 January 2022).
- WIPO. Available online: https://patentscope.wipo.int/search/en/search.jsf (accessed on 7 January 2022).
Technique | Solvent/Mobile Phase/Flow Rate | Device | Temperature/ Pressure/Time/ V/Hz/rpm | Lycopene Source/ Carotenoid Extracted | References |
---|---|---|---|---|---|
Extraction | Hexane | Soxhlet extractor | 37 °C/6 h | Tomato peel and seed/ cis and trans-lycopene | [19] |
* SC-CO2/1 mL·min−1 | SFT 110 extractor | 40 and 80 °C/30 and 50 MPa/30, 45, 60, 90, 120, 180, 240 min | |||
Hexane/Acetone/Ethanol (2:1:1) | Vortex | 2 h | |||
Washed in 0.1 M NaCl | Tomato peel and seed/ Lycopene and β-carotene | [22] | |||
OH pre-treatment | 55 °C/1 min | ||||
Water/Ethanol (70%) (1:6 w/v) & | Thermal extraction | 55 °C/15 min | |||
Water/Ethanol (1:6 w/v) & + OH solution | |||||
OH application | Ohmic heating (OH) technology (6–11 V·cm−1) pre-treatment | 0–100 °C/30 min/ 60–280 V/ 25 kHz | |||
* SC-CO2/1 L·min−1 | SFT 110 extractor | 60 °C and 40 MPa/ 30, 45, 60, 90, 120, 180, 240 min | Tomato peel and seed/ Highest cis-lycopene content | [23] | |
Hexane | Soxhlet extractor/0.22 µm hydrophobic PTFE | 12 h | Tomato peel and seed/ Lycopene | [24] | |
Olive oil | Maceration (15 to 150 min)/Magnetic stirrer/Box–Behnken | 40–80 °C/ 200–400 rpm | |||
Methanol/Ethyl acetate/ Petroleum ether (1:1:1, v/v/v) | Tomato peel and seed from 10 varieties/ Lycopene, β-carotene, and lutein | [25] | |||
30% Methanolic potassium hydroxide | Room temperature /6 h | ||||
Saturated saline solution/ Diethyl ether/ Distilled water | Washed | ||||
Dry over anhydrous sodium sulfate | Rotary evaporator R-124 | 35 °C | |||
PEF (pre-treatment)1,3; 5 kV·cm−1/0.012 kJ·kg−1, 0.160 kJ·kg−1, 0.475 kJ·kg−1/10 Hz/20 μs | 20 ± 2 °C | Tomato peels/ cis and all trans-lycopene | [26] | ||
Acetone (1:40 w/v) & | Extraction flask | 25 °C/0–24 h /160 rpm | |||
Ethyl lactate (1:40 w/v) & | |||||
Ethyl acetate | Thermal extraction | 75 °C/1 or 2 h | Plum tomato peels/ cis and all trans-lycopene | [27] | |
Ultrasounds | Approximately 0 °C/30 min | ||||
Magnesium carbonate (20%) (sample/solution 1:1) | Orbital shaker | 25 °C/2 h | Tomato peels/ Lycopene | [3] | |
n-hexane/Acetone (3:1) | Ultrasonic | 50 °C/30 min (10 times) | |||
Centrifuge | 10 °C/10 min | ||||
Reduced volume | 40 °C/Low pressure | ||||
Technique | Substrate | Device | Biological Strain | Carotenoid Produced | References |
Biosynthesis | Isopropyl-β-d-thiogalactoside (IPTG) as inducer | Shaking flask (37 °C and 200 rpm) | E. coli | Lycopene | [20] |
Glucose | Shake flask (30 °C, 300–600 rpm) | S. cerevisiae | Lycopene | [21] | |
Glucose + Glycerol | Shake flask (37 °C, pH = 7.2, 48 h) | Escherichia coli R122 | Lycopene | [1] | |
Glucose | |||||
Oleic acid | Bioreactor (37 °C, pH = 7.2, 48 h) | Escherichia coli FA03-PM | |||
Glucose | |||||
Glucose + oleic acid + yeast extract | |||||
Glucose + waste cooking oil + yeast extract | |||||
Lactic acid | Flask fermentation (120 h) | B. trispora NRRL 2895 (+) and N6 (−) | Lycopene and β-carotene | [8] |
Technique | Mobile Phase | Device | Carotenoid Results | References |
High-performance liquid chromatography (HPLC) | Acetonitrile/Methanol/ Hexane/Dichloromethane /Ammonium acetate (55:22:11.5:11.5:0.02) (v/v/v/v/w) Isocratic performance | C30 RPAQUEOUS (5 μm; 4.6 mm × 250 mm) DAD detector | all-trans-lycopene, 5cis, 13cis-lycopene, and β-carotene | [28] |
all-trans-lycopene, 5cis, and 13cis-lycopene | [16] | |||
all-trans-lycopene, and other carotenoids | [12] | |||
Methanol/ Methyl butyl ether/ Ethyl acetate (5:4:1) | C30 YMC (5 μm; 4.6 mm × 250 mm) | 15cis, 13cis, 9cis, 5cis, other cis isomers, and all-trans-lycopene | [19] | |
A: Ethyl acetate B: Acetonitrile/water (90:10) Gradient performance | C18 Vydac 201TP54 C (250 × 4.6 mmm) + C18 pre-column DAD detector | Total carotenoids in β-carotene and lycopene | [22] | |
Methanol/Methyl butyl ether/Ethyl acetate (50:40:10) | C30 YMC (5 μm; 4.6 mm × 250 mm) | cis and trans-lycopene | [23] | |
Acetonitrile/ Dichloromethane (75:25; v/v) | C18 Eclipse XDB (3.5 μm; 4.6 mm × 250 mm) DAD detector | Lycopene | [24] | |
A: Methanol/Water (98:2) B: Methanol/Water (95:5) C: MTBE Gradient performance | C30 YMC (3 μm, 250 × 4.6 mm) + C30 guard column (20 × 4.6 mm) Column heater at 20 °C DAD detector | 15cis, 13cis, 9cis, 5cis, di cis isomers, and all-trans-lycopene | [27] | |
A: Acetonitrile/water (9:1, v/v) + 0.25% Triethylamine B: Ethyl acetate + 0.25% Triethylamine Gradient performance | C18 Nucleodur 300-5 (5 μm; 4.6 × 250 mm) DAD detector | Lycopene, β-carotene, and lutein | [25] | |
Methanol (27%)/ Acetonitrile (23%)/ MTBE (50%) | C30 YMC | all-trans-lycopene,13cis, 9cis, and total cis-lycopene isomers | [6] | |
Acetonitrile/Methanol (10:90, v/v)/9 mM TEA (Triethylamine) | C18 reverse-phase ODS2 (5 μm; 4.6 mm × 150 mm) DAD detector | all-trans-lycopene Undefined carotenoid | [26] | |
A: Acetone/water (75:25, v/v) B: Acetone/Methanol (75:25, v/v) Gradient performance | C18 Zorbax (3 μm; 3 mm × 250 mm) DAD detector | Lycopene | [18] | |
Acetonitrile/Methanol/ Hexane/Dichloromethane /Ammonium acetate (55:22:11.5:11.5:0.02, v:v:v:v:w) | RPAQUEOUS Develosil-C30 (5 µm, 4.6 × 150 mm) | Lycopene isomer Lycopene Other carotenoids | [11] | |
Technique | Solvent | Device | Carotenoid Results | References |
UV–Vis | Chloroform:Ethanol (1:20) | UV–Vis spectrophotometer | all-trans-lycopene | [13] |
Chloroform:Ethanol | UV-1800 spectrophotometer | Lycopene | [16] | |
Water | Lycopene | |||
n-hexane:acetone (3:1) | Spectrophotometer | Lycopene | [3] | |
Acetone | Spectrophotometer | Lycopene | [1] | |
Acetone | V-650 UV–Vis spectrophotometer | Lycopene | [26] | |
Ethyl acetate | Lycopene | |||
Ethanol | UV–Vis spectrophotometer | Lycopene | [11] | |
Technique | Pellet/ATR Accessory | Device | Carotenoid Results | References |
Fourier Transform Infrared (FTIR) | KBr | FTIR | Lycopene | [9] |
KBr | IRAffinity-1 spectrometer | 5cis-lycopene | [28] | |
KBr | FTIR-ATR | Lycopene | [2] | |
Diamond crystal plate | FTIR-ATR | all-trans-lycopene | [13] | |
KBr | FTIR spectrometer | all-trans-lycopene | [6] | |
Technique | Collision Gas (Energy)/ Gas Flow/Temperature /Flow Rate/Capillary Potential | Device/m/z | Carotenoid Results | References |
Mass spectrometry (MS) | 5–18 eV/180 °C/ 4 L·min−1/4 kV | MS/MS Mass spectrometer Electrospray source [M]+ m/z 50–3000 | 5cis-lycopene | [28] |
all-trans-lycopene | ||||
15 eV/180 µL·h−1 Nitrogen gas/200 °C/ 4 L·min−1/4.5 kV | Mass spectrometer ESI source [M]+ m/z 50–1500 | all-trans-lycopene | [13] | |
HRMS ESI [M]+ m/z 100–1000 | Lycopene | [12] | ||
Technique | Solvent/Temperature | Device/ppm | Carotenoid Results | References |
CDCl3 | Discovery Studio 3.5 + B3LYP + 6-311G (d, p) Theoretical NMR + (GIAO)z +TMSa | 5cis-lycopene | [28] | |
400 MHz 1H NMR/0–10 ppm | ||||
400 MHz 13C NMR/0–150 ppm | ||||
D2O/25 ± 0.5 °C | Self-diffusion 1H NMR Avance III 600 MHz | Lycopene | [2] | |
CDCl3 | 1H NMR | all-trans-lycopene | [4] | |
Technique | Å/kV/A | Device/2θ/Steps | Carotenoid Results | Reference |
X-ray diffraction (XRD) | 0.154 nm/40 kV/40 mA | D8 XRD diffractometer/ 4°–45°/0.1° (4°/min) | Lycopene | [10] |
50 kV/100 mA | X-ray diffractometer/ 5°–50°/5 s/step | cis-lycopene isomers | [28] | |
1.54 Å/45 kV/40 mA | D8 XRD diffractometer/ 5°–45°/2°/min | all-trans-lycopene | [6] | |
cis-lycopene | ||||
50 kV/100 mA | X-ray diffractometer/ 3°–50°/5 s/step | cis-lycopene | [16] |
Extract/Structure | Microorganisms | Results | References |
---|---|---|---|
Lycopene (5 µg/mL) from tomato | C. albicans | Antifungal effects against C. albicans by inducing apoptosis via ROS production and mitochondria dysfunction. | [41] |
Carotenoids within PLGA nanoparticles | L. innocua (NRRL B-33076) | The nanoparticles were effective in preventing L. innocua growth. | [42] |
Lycopene oleoresin | E. coli, S. aureus, Salmonella typhi, L. monocytogenes, Bacillus cereus, and B. licheniformis. | Oleoresin can inhibit and prevent the growth of relevant foodborne bacteria. | [43] |
Lycopene extracts from guava and tomato | E. coli, S. aureus, and L. innocua | Extract of lycopene presents MBC values of 20 mg·mL−1. | [28] |
cis/trans-lycopene microsphere from tomato | Salmonella spp., L. monocytogenes, and generic E. coli | The microbial quality of the food samples was not highly affected (< 0.8 log units) during the storage period after the incorporation of lycopene microspheres. | [27] |
Lycopene extract from tomato | Gram (+): S. aureus, B. subtilis, and L. monocytogenes. Gram (-): Pseudomonas aeruginosa, S. typhimurium, E. coli, and Klebsiella pneumonia | Extracts of all cultivars were more effective against S. aureus, moderate antimicrobial activity against K. pneumoniae, P. aeruginosa, E. coli, and S. typhimurium, but Tiny Tim cultivar was the most effective against S. aureus, B. subtilis, L. monocytogenes, and K. pneumonia | [25] |
Delivery System | Encapsulation Method | Results | References |
---|---|---|---|
β-cyclodextrins | A mixture of methylene chloride solution of lycopene with ethanol at 37 °C. | Higher stability against oxidizing agents (AAPH and H2O2). | [52] |
β-cyclodextrins | Lycopene inclusion complexes with β-cyclodextrin were prepared by the precipitation method. | Increased thermal stability, photostability, and antioxidant activity. | [38] |
Nanoliposomes | Sonication of lycopene, soybean phosphatidylcholine, cholesterol, and aqueous solution. | Neuronal protection against cerebral ischemia/reperfusion. Improved therapeutic efficacy and attenuated the cardiotoxicity of the chemotherapy drug doxorubicin. | [53] |
Phospholipid nanoliposomes | Nanospheres of phospholipids with lycopene produced by evaporation and nanoliposomes produced by sonication with the presence of buffer and recovered by centrifugation. | Enhanced antioxidant activity. Prevented reactive oxygen species-induced kidney tissue damage. | [54] |
Double-loaded liposomes | Lycopene, β-cyclodextrins encapsulated with soy lecithin and cholesterol. | Prolonged-release. Improvement of lycopene solubility. Cardioprotective activity tested in vivo. | [55] |
Oil-in-water nano-emulsions | Octenyl succinate anhydride-modified starch mixed with lycopene using high-pressure homogenization and medium-chain triglycerides as carrier oils. | Stable nano-emulsions system with potential application for functional foods. | [2] |
Oil-in-water emulsions | Emulsion of water, pure whey isolate, citric acid, triglycerides, and lycopene created with pressure homogenizer. | Increased lycopene bio-accessibility. System critical for the delivery of lipophilic bioactive compounds in functional drinks. | [56] |
Nanodispersions | Homogenization of lycopene dissolved in dichloromethane, aqueous phase, and Tween 20. | Small-size lycopene nanodispersions. Good stability for application in beverage products. | [57] |
Feed emulsions | Homogenization of tomato powders, maltodextrin, and gum Arabic in aqueous solution and encapsulation made by spray-drying. | Increased lycopene stability. | [58] |
Solid lipid nanoparticles (SLN) | Lycopene-loaded solid lipid nanoparticles using Precirol® ATO 5, Compritol® 888 ATO, and myristic acid by hot homogenization. | Stable after 2 months in an aqueous medium (4 °C). | [59] |
Solid lipid nanoparticles (SLN) | Cold homogenization technique with glyceryl monostearate and lycopene. | Gel with a promising antioxidant therapy in periodontal defects. | [60] |
Solid lipid nanoparticles (SLN) | Homogenization-evaporation technique of lycopene-loaded SLN with different ratios of biocompatible Compritol® 888 ATO and gelucire. | Particles showed in vitro anticancer activity. | [61] |
Nanostructure lipid carriers (NLCs) | Ultrasonication of lycopene with Tween 80 and Poloxamer 188. | Enhanced oral bio-availability. Increased cytotoxicity against human breast tumor cells. | [62] |
Nanostructure lipid carriers (NLCs) | Homogenization and ultrasonication method (aqueous phase with Tween 80, lecithin, and lycopene). | Increased lycopene aqueous solubility. Improved solubility masking tomato aftertaste. Increased homogeneity of fortified orange drink. | [63] |
Nanostructure lipid carriers (NLCs) | Emulsion created with lycopene, a lipid mixture, Tween 80 followed by pressure homogenization. | Biphasic release pattern with fast release initially and a slower afterward. | [6] |
Whey protein isolate nanoparticles | Lycopene loaded whey protein isolate nanoparticles. | Enhance the oral bio-availability of lycopene. Controlled release. Facilitated absorption through the lymphatic pathway. | [17] |
Gelatin nanofibers | A mixture of gelatin from bovine skin and tomato extract is used in electrospinning. | Better retention of lycopene. Better antioxidant activity during 14-days storage. | [64] |
Ionic gelation | Lycopene watermelon concentrate mixed with sodium alginate or pectin. Encapsulation by dipping in CaCl2 and drying under vacuum. | More stable lycopene-rich beads. Good application as natural colorants/antioxidants in different types of food products. | [65] |
Nano-encapsulation | CPCs (Chlorella pyrenoidosa cells) loaded with lycopene into a complex nutraceutical and exogenous. | Feasibility of lycopene encapsulation in the CPCs. Combined the activities of both materials. Novel nutraceuticals to reduce cellular oxidative stress. | [10] |
Nano-emulsion | Lycopene from guava on nanoemulsifying system of natural oils. | Lycopene nano-emulsion with high stability. Significant inhibition of edema formation, suggesting a potential candidate for anti-inflammatory therapy. | [16] |
Lipid-core Nanocapsules | Nano-encapsulation process mixed lycopene extract from guava with polycaprolactone polymer in acetone sorbitan monostearate. | The nanostructure was cytotoxic against cancer cells (human breast adenocarcinoma line MCF-7). | [12] |
Nanoparticle | Polymer nanoparticle fucan-coated based on acetylated cashew gum and lycopene extract from guava. | Promising results for applicability in hydrophobic compounds carrying systems as lycopene with cytotoxic effect on the breast cancer cell. | [11] |
Microencapsulation | Microencapsulation of lycopene from tomato peels by complex coacervation and freeze-drying. | The fine orange-yellow powder could be micro-encapsulated as stable lycopene applied to the food industry with properties against metabolic syndrome. | [3] |
Keywords | INPI (Portugal) | INPI (Brazil) | USPTO (USA) | EPO (European) | WIPO (International) |
---|---|---|---|---|---|
Lycopene | 11 | 58 | 5532 | 29,979 | 30,220 |
Guava | 1 | 45 | 3315 | 14,051 | 18,396 |
Tomato | 34 | 187 | 38,236 | 150,308 | 171,583 |
Psidium guajava | 0 | 14 | 978 | 2007 | 4568 |
Lycopene and tomato | 5 | 7 | 1290 | 8113 | 8390 |
Lycopene and tomato and extract | 0 | 1 | 881 | 5265 | 7313 |
Lycopene and guava | 0 | 2 | 235 | 1496 | 1467 |
Lycopene and guava and extract | 0 | 0 | 207 | 1317 | 1355 |
Lycopene and nano | 0 | 0 | 543 | 2638 | 2689 |
Lycopene and nano-emulsion | 0 | 0 | 111 | 482 | 930 |
Lycopene and nano-emulsion and tomato | 0 | 0 | 23 | 105 | 173 |
Lycopene and nano-emulsion and guava | 0 | 0 | 21 | 31 | 81 |
Antimicrobial and Lycopene | 0 | 0 | 1440 | 4018 | 7289 |
Antimicrobial and Lycopene and extract | 0 | 0 | 1069 | 3054 | 6785 |
Antimicrobial and Lycopene and rich and extract | 0 | 0 | 491 | 1192 | 2615 |
Antimicrobial and Lycopene and rich and extract and tomato | 0 | 0 | 126 | 402 | 1026 |
Antimicrobial and Lycopene and rich and extract and guava | 0 | 0 | 51 | 105 | 181 |
Total | 51 | 314 | 54,549 | 224,563 | 265,061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amorim, A.d.G.N.; Vasconcelos, A.G.; Souza, J.; Oliveira, A.; Gullón, B.; de Souza de Almeida Leite, J.R.; Pintado, M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants 2022, 11, 360. https://doi.org/10.3390/antiox11020360
Amorim AdGN, Vasconcelos AG, Souza J, Oliveira A, Gullón B, de Souza de Almeida Leite JR, Pintado M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants. 2022; 11(2):360. https://doi.org/10.3390/antiox11020360
Chicago/Turabian StyleAmorim, Adriany das Graças Nascimento, Andreanne Gomes Vasconcelos, Jessica Souza, Ana Oliveira, Beatriz Gullón, José Roberto de Souza de Almeida Leite, and Manuela Pintado. 2022. "Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting" Antioxidants 11, no. 2: 360. https://doi.org/10.3390/antiox11020360
APA StyleAmorim, A. d. G. N., Vasconcelos, A. G., Souza, J., Oliveira, A., Gullón, B., de Souza de Almeida Leite, J. R., & Pintado, M. (2022). Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants, 11(2), 360. https://doi.org/10.3390/antiox11020360