Active Transposition of Insertion Sequences in Prokaryotes: Insights from the Response of Deinococcus geothermalis to Oxidative Stress
Abstract
:1. Introduction
2. Structural Properties of IS Elements and Functional Aspects
3. IS Transpositional Procedures and Trigger Factors
3.1. IS Transposition in Deinococcus-Thermus
3.2. IS Transposition in Gram-Negative Bacteria
3.3. IS Transposition in Gram-Positive Bacteria
3.4. IS Transposition in Archaea
3.5. Use of Transposon Mutagenesis
4. Inductive Signals of Active Transposition
4.1. Host Factors
4.2. Nutrition and Temperature
4.3. Gamma-Irradiation and Dielectric Bilayer Discharge Plasma
4.4. Redox Imbalance
4.5. Antibiotics
4.6. Metals
5. Redox-Switched Regulators and Redox Signalling
6. The Evolution of Prokaryotic Genomes via IS Elements
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
IS | insertion sequence |
Tpase (Tnp) | transposase |
InsA; InsB’ | two ORFs in IS element and in some cases both genes were produced a fused protein (InsAB’) or InsA regulated InsB’ expression |
TIR | terminal inverted repeat |
DR | direct repeat |
Dps | DNA-protection protein from starved cell |
H-NS | histone-like nucleoid structuring protein |
LysR | a broad transcriptional regulator family |
DBD | dielectric bilayer discharge |
DdrO-IrrE | Deinococcus unique regulatory system for RDR regulon |
RDR | radiation-desiccation responded regulon |
ROS | reactive oxygen species |
SIDD | stress-induced DNA destabilisation region |
References
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siguier, P.; Gourbeyre, E.; Varani, A.; Ton-Hoang, B.; Chandler, M. Everyman’s guide to bacterial insertion sequences. Microbiol. Spectrum 2015, 3, 555–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blesa, A.; Sanchez, M.; Sacristan-Horcajada, E.; Fuente, S.G.; Peiro, R.; Berenguer, J. Into the Thermus mobilome: Presence, diversity and recent activities of insertion sequences across Thermus spp. Microorganisms 2019, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayad, N.; Awad, M.K.; Mahillon, J. Diversity of Bacillus cereus sensu lato mobilome. BMC Genom. 2019, 20, 436. [Google Scholar] [CrossRef] [Green Version]
- Durrant, M.G.; Li, M.M.; Siranosian, B.A.; Montgomery, S.B.; Bhatt, A.S. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 2020, 27, 140–153. [Google Scholar] [CrossRef]
- Lee, C.; Bae, M.K.; Choi, N.; Lee, S.J.; Lee, S.-J. Genome plasticity by insertion sequences learned from a case of radiation-resistant bacterium Deinococcus geothermalis. Bioinformat. Biol. Insights 2021, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, J.; Hamidian, M.; Wick, R.R.; Edwards, D.J.; Billman-Jacobe, H.; Hall, R.M.; Holt, K.E. ISMapper: Identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genom. 2015, 16, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, A.; Gauthier, D.T.; Ranjan, D.; Zubair, M. ISQuest: Finding insertion sequences in prokaryotics sequence fragment data. Bioinformatics 2015, 31, 3406–3412. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.G.; Lee, M.-C.; Marx, C.J. Oasis: An automatic program for global investigation of bacterial and archaeal insertion sequences. Nucleic Acid Res. 2012, 40, e174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickman, A.B.; Dyda, F. Mechanisms of DNA transposition. Microbiol. Spectrum 2015, 3, 3.2.12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickman, A.B.; Dyda, F. DNA transposition at work. Chem. Rev. 2016, 116, 12758–12784. [Google Scholar] [CrossRef] [PubMed]
- Machida, C.; Machida, Y. Regulation of transposition by the insA gene product. J. Mol. Biol. 1989, 208, 567–574. [Google Scholar] [CrossRef]
- Ton-Hoang, B.; Turlan, C.; Chandler, M. Functional domains of the IS1 transposase: Analysis in vivo and in vitro. Mol. Microbiol. 2004, 53, 1529–1543. [Google Scholar] [CrossRef] [PubMed]
- Mahillon, J.; Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 1998, 62, 725–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Bacterial insertion sequences: Their genomic impact and diversity. FEMS Rev. 2014, 38, 865–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandecraen, J.; Chandler, M.; Aertsen, A.; Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 2017, 43, 709–730. [Google Scholar] [CrossRef] [PubMed]
- Barabas, O.; Ronning, D.R.; Guynet, C.; Hickman, A.B.; Ton-Hoang, B.; Chandler, M.; Dyda, F. Mechanism of IS200/IS605 family DNA transposases: Activation and transposon-directed target site selection. Cell 2008, 132, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Hickman, A.B.; James, J.A.; Barabas, O.; Pasternak, C.; Ton-Hoang, B.; Chandler, M.; Sommer, S.; Dyda, F. DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans. EMBO J. 2010, 29, 3840–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Corneloup, A.; Guynet, C.; Lavatine, L.; Caumont-Sarcos, A.; Siguier, P.; Marty, B.; Dyda, F.; Chandler, M.; Ton Hoang, B. The IS200/IS605 family and “peel and paste” single-strand transposition mechanism. Microbiol. Spectrum 2015, 3, 3.4.02. [Google Scholar] [CrossRef] [PubMed]
- Lavatine, L.; He, S.; Caumont-Sarcos, A.; Guynet, C.; Marty, B.; Chandler, M.; Ton-Hoang, B. Single strand transposition at the host replication fork. Nucleic Acids Res. 2016, 44, 7866–7883. [Google Scholar] [CrossRef] [Green Version]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Known knowns, known unknowns and unknown unknowns in prokaryotic transposition. Curr. Opin. Microbiol. 2017, 38, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Harmer, C.J.; Hall, R.M. An analysis of the IS6/IS26 family of insertion sequences: Is it a single family? Microb. Genom. 2019, 5, e000291. [Google Scholar] [CrossRef] [PubMed]
- Varani, A.; He, S.; Siguier, P.; Ross, K.; Chandler, M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob. DNA 2021, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Choi, N.; Bae, M.K.; Choo, K.; Lee, S.-J. Transposition of insertion sequences was triggered by oxidative stress in radiation-resistant bacterium Deinococcus geothermalis. Microorganisms 2019, 7, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Choo, K.; Lee, S.-J. Active transposition of insertion sequences by oxidative stress in Deinococcus geothermalis. Front. Microbiol. 2020, 11, 558747. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Lee, C.; Shin, E.; Lee, S.-J. Influence of redox imbalances on the transposition of insertion sequences in Deinococcus geothermalis. Antioxidants 2021, 10, 1623. [Google Scholar] [CrossRef]
- Pasternak, C.; Dulermo, R.; Ton-Hoang, B.; Debuchy, R.; Siguier, P.; Coste, G.; Chandler, M.; Sommer, S. ISDra2 transpositionin Deinococcus radiodurans is downregulated by TnpB. Mol. Microbiol. 2013, 88, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Quentin, Y.; Siguier, P.; Chandler, M.; Fichant, G. Single-strand DNA processing: Phylogenomics and sequence diversity of a superfamily of potential prokaryotic HuH endonuclease. BMC Genom. 2018, 19, 475. [Google Scholar] [CrossRef] [PubMed]
- Gregory, S.T.; Dahlberg, A.E. Transposition of an insertion sequence, ISTth7, in the genome of the extreme thermophile Thermus thermophilus HB8. FEMS Lett. 2008, 289, 187–192. [Google Scholar] [CrossRef]
- Mennecier, S.; Servant, P.; Coste, G.; Bailone, A.; Sommer, S. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol. Microbiol. 2006, 59, 317–325. [Google Scholar] [CrossRef]
- Lee, C.; Bae, M.K.; Lee, S.-J. An antioxidant defense system in radiation-resistant bacterium Deinococcus geothermalis against oxidative stress. In Antioxidants: Benefits, Sources, Mechanisms of Action; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Chandler, M.; Fayet, O.; Rousseau, P.; Ton-Hoang, B.; Duval-Valentin, G. Copy-out-paste-in transposition of IS911: A major transposition pathway. Miocrobiol. Spectrum 2015, 3, 3.4.01. [Google Scholar]
- Haren, L.; Betermier, M.; Polard, P.; Chandler, M. IS911-mediated intramolecular transposition is naturally temperature sensitive. Mol. Microbiol. 1997, 25, 531–540. [Google Scholar] [CrossRef]
- Ohtsubo, Y.; Genka, H.; Komatsu, H.; Nagata, Y.; Tsuda, M. High-temperature-induced transposition of insertion elements in Burkholderia multivorans ATCC17616. Appl. Environ. Microbiol. 2005, 71, 1822–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christie-Oleza, J.A.; Lanfranconi, M.P.; Nogales, B.; Lalucat, J.; Bosch, R. Conjugative interaction induces transposition of ISPst9 in Pseudomonas stutzeri AN10. J. Bacteriol. 2009, 191, 1239–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drevinek, P.; Baldwin, A.; Lindenburg, L.; Joshi, L.T.; Marchbank, A.; Vosahlikova, S.; Dowson, C.G.; Mahenthiralingam, E. Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J. Clin. Microbiol. 2010, 48, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Taketani, T.; Tanabiki, M.; Ohara, M.; Kobayashi, J.; Ohshiro, T. Frequent transposition of multiple insertion sequences in Geobacillus kaustophilus HTA426. Front. Microbiol. 2021, 12, 650461. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Sekine, Y.; Chibazakura, T.; Yoshikawa, H. Development of an intermolecular transposition assay system in Bacillus subtilis 168 using IS4Bsu1 from Bacillus subtilis (natto). Microbiology 2007, 153, 2553–2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filée, J.; Siguier, P.; Chandler, M. Insertion sequence diversity in archaea. Micribiol. Mol. Biol. Rev. 2007, 71, 121–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeifer, F.; Blaseio, U. Transposition burst of the ISH27 insertion element family in Halobacterium halobium. Nucleic Acids Res. 1990, 18, 6921–6925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zivanovic, Y.; Lopez, P.; Philippe, H.; Forterre, P. Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res. 2002, 30, 1902–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakanaka, M.; Fukiya, S.; Kobayashi, R.; Abe, A.; Hirayama, Y.; Kano, Y.; Yokota, A. Isolation and transposition properties of ISBlo11, an active insertion sequence belonging to the IS3 family, from Bifidobacterium longum 105-A. FEMS Lett. 2015, 362, fnv032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakanaka, M.; Nakakawaji, S.; Nakajima, S.; Fukiya, S.; Abe, A.; Saburi, W.; Mori, H.; Yokota, A. A transposon mutagenesis system for Bifidobacterium longum subsp. longum based on an IS3 family insertion sequence, ISBlo11. Appl. Environ. Microbiol. 2018, 84, e00824-18. [Google Scholar]
- Nagy, Z.; Chandler, M. Regulation of transposition in bacteria. Res. Microbiol. 2004, 155, 387–398. [Google Scholar] [CrossRef]
- Swingle, B.; O’Carroll, M.; Haniford, D.; Derbyshire, K.M. The effect of host-encoded nucleoid proteins on transposition: H-NS influences targeting of both IS903 and Tn10. Mol. Microbiol. 2004, 52, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Shiga, Y.; Sekina, Y.; Kano, Y.; Ohtsubo, E. Involvment of H-NS in transpositional recombination mediated by IS1. J. Bacteriol. 2001, 183, 2476–2484. [Google Scholar] [CrossRef] [Green Version]
- Humayun, M.Z.; Zhang, Z.; Butcher, A.M.; Moshayedi, A.; Saier, M.H., Jr. Hopping into a host seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress. PLoS ONE 2017, 12, e0180156. [Google Scholar] [CrossRef]
- Rouquette, C.; Serre, M.-C.; Lane, D. Protective role for H-NS protein in IS1 transposition. J. Bacteriol. 2004, 186, 2091–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandler, M.; Mahillon, J. Insertion sequences revisited. In Mobile DNA; ASM Press: Washington, DC, USA, 2002; Volume II, pp. 305–366. [Google Scholar]
- Coros, A.M.; Twiss, E.; Tavakoli, N.P.; Derbyshire, K.M. Genetic Evidence that GTP Is Required for Transposition of IS903 and Tn552 in Escherichia coli. J. Bacteriol. 2005, 187, 4598–4606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twiss, E.; Coros, A.M.; Tavakoli, N.P.; Derbyshire, K.M. Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol. Microbiol. 2005, 57, 1593–1607. [Google Scholar] [CrossRef]
- Vogel, J.; Luisi, B.F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 2011, 9, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Sobrero, P.; Valverde, C. The bacterial protein Hfq: Much more than a mere RNA-binding factor. Crit. Rev. Microbiol. 2012, 38, 276–299. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.J.; Trussler, R.S.; Haniford, D.B. Hfq binds directly to the ribosome-binding site of IS10 transposase mRNA to inhibit translation. Mol. Microbiol. 2015, 96, 633–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbib, D.; Polard, P.; Escoubas, J.M.; Galas, D.; Chandler, M. The regulatory role of the IS1-encoded InsA protein in transposition. Mol. Microbiol. 1990, 4, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.T.; Hwang, J.H.; Lee, L.C.; Lee, C.H.; Li, P.L.; Hsieh, Y.C. Functional analysis of the 14 kDa protein of insertion sequence 2. J. Mol. Biol. 1994, 236, 503–513. [Google Scholar] [CrossRef]
- Kleckner, N.; Chalmers, R.M.; Kwon, D.; Sakai, J.; Bolland, S. Tn10 and IS10 transposition and chromosome rearrangements: Mechanism and regulation in vivo and in vitro. In Transposable Elements; Springer: Berlin/Heidelberg, Germany, 1996; pp. 49–82. [Google Scholar]
- Escoubas, J.M.; Prere, M.F.; Fayet, O.; Salvignol, I.; Galas, D.; Zerbib, D.; Chandler, M. Translational control of transposition activity of the bacterial insertion sequence IS1. EMBO J. 1991, 10, 705–712. [Google Scholar] [CrossRef]
- Beuzon, C.R.; Marques, S.; Casadesus, J. Repression of IS200 transposase synthesis by RNA secondary structures. Nucleic Acids Res. 1999, 27, 3690–3695. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.; Hoopes, B.C.; McClure, W.R.; Kleckner, N. IS10 transposition is regulated by DNA adenine methylation. Cell 1990, 43, 117–130. [Google Scholar] [CrossRef]
- Derbyshire, K.M.; Kramer, M.; Grindley, N.D. Role of instability in the cis action of the insertion sequence IS903 transposase. Proc. Natl. Acad. Sci. USA 1990, 87, 4048–4052. [Google Scholar] [CrossRef] [Green Version]
- Olasz, F.; Kiss, J.; Konig, P.; Buzas, Z.; Stalder, R.; Arber, W. Target specificity of insertion element IS30. Mol. Microbiol. 1998, 28, 691–704. [Google Scholar] [CrossRef] [Green Version]
- Kiss, J.; Nagy, Z.; Toth, G.; Kiss, G.B.; Jakab, J.; Chandler, M.; Olasz, F. Transposition and target specificity of the typical IS30 family element IS1655 from Neisseria meningitidis. Mol. Microbiol. 2007, 63, 1731–1747. [Google Scholar] [CrossRef]
- Kharat, A.; Coursange, E.; Noirclerc-Savoye, M.; Lacoste, J.; Blot, M. IS1 transposition is enhanced by translation errors and by bacterial growth at extreme glucose levels. Acta Biochim. Pol. 2006, 53, 729–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reif, H.J.; Saedler, H. IS1 is involved in deletion formation in the gal region of E. coli K12. Mol. Gen. Genet. 1975, 137, 17–28. [Google Scholar] [CrossRef]
- Pasternak, C.; Ton-Hoang, B.; Coste, G.; Bailone, A.; Chandler, M.; Sommer, S. Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet. 2010, 6, e1000799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narumi, I.; Cherdchu, K.; Kitayama, S.; Watanabe, H. The Deinococcus radiodurans uvrA gene: Identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene 1997, 198, 115–126. [Google Scholar] [CrossRef]
- Demirci, H.; Murphy, I.V.F.; Murphy, E.; Gregory, S.T.; Dahlberg, A.E.; Jogl, G. A structural basis for Sm-induced misreading of the genetic code. Nat. Commun. 2013, 4, 1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, J.F.; Hamburg, D.-M.; Gregory, S.T.; Limbach, P.A.; Dahlberg, A.E. Effects of streptomycin resistance mutations on posttranslational modification of ribosomal protein S12. J. Bacteriol. 2006, 188, 2020–2023. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama, S.; Suzuki, Y.; Ochi, K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol. Microbiol. 2007, 63, 1096–1106. [Google Scholar] [CrossRef]
- Paine, T.F.; Finland, M. Streptomycin-sensitive, -dependent, and -resistant bacteria. Science 1948, 107, 143–144. [Google Scholar] [CrossRef]
- Gregory, S.T.; Cate, J.H.; Dahlberg, A.E. Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. J. Mol. Biol. 2001, 309, 333–338. [Google Scholar] [CrossRef]
- Mijnendonckx, K.; Provoost, A.; Monsieurs, P.; Leys, N.; Mergeay, M.; Mahillon, J.; Van Houdt, R. Insertion sequence elements in Cupriavidus metallidurans CH34: Distribution and role in adaptation. Plasmid 2011, 65, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Vandecraen, J.; Monsieurs, P.; Mergeay, M.; Leys, N.; Aertsen, A.; Van Houdt, R. Zinc-induced transposition of insertion sequence elements contributes to increased adaptability of Cupriavidus metallidurans. Front. Microbiol. 2016, 7, 359. [Google Scholar] [CrossRef] [Green Version]
- Eugénie, N.; Zivanovic, Y.; Lelandais, G.; Coste, G.; Bouthier de la Tour, C.; Bentchikou, E.; Servant, P.; Confalonieri, F. Characterization of the radiation desiccation response regulon of the radioresistant bacterium Deinococus radiodurans by integrative genomic analyses. Cells 2021, 10, 2536. [Google Scholar] [CrossRef] [PubMed]
- Ludanyi, M.; Blanchard, L.; Dulermo, R.; Brandelet, G.; Bellanger, L.; Pignol, D.; Lemaire, D.; de Groot, A. Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol. Microbiol. 2014, 94, 434–449. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, L.; Guerin, P.; Roche, D.; Cruveiller, S.; Pignol, D.; Vallenet, D.; Armengaud, J.; de Groot, A. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. MicrobiologyOpen 2017, 6, e477. [Google Scholar] [CrossRef] [PubMed]
- Magerand, R.; Rey, P.; Blanchard, L.; de Groot, A. Redox signaling through zinc activates the radiation response in Deinococcus bacteria. Sci. Rep. 2021, 11, 4528. [Google Scholar] [CrossRef] [PubMed]
- Antelmann, H.; Helmann, J.D. Thiol-based redox switches and gene regulation. Antioxid. Redox Signal. 2011, 14, 1049–1063. [Google Scholar] [CrossRef]
- Hillion, M.; Antelmann, H. Thiol-based redox switches in prokaryotes. Biol. Chem. 2015, 396, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Sevilla, E.; Bes, M.T.; González, A.; Peleato, M.L.; Fillat, M.F. Redox-based transcriptional regulation in prokaryotes: Revisiting model mechanisms. Antioxid. Redox Signal. 2019, 30, 1651–1696. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Jung, J.-H.; Blanchard, L.; de Groot, A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol. Rev. 2019, 43, 19–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Zhou, Z.; Chen, X.; Zhang, W.; Lin, M.; Chen, M. Comparative proteomics analysis reveals new features of the oxidative stress response in the polyextremophilic bacterium Deinococcus radiodurans. Microorganisms 2020, 8, 451. [Google Scholar] [CrossRef] [Green Version]
- Orsi, R.H.; Bowen, B.M.; Wiedmann, M. Homopolymeric tracts represent a general regulatory mechanism in prokaryotes. BMC Genom. 2010, 11, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahrner, K.A.; Berg, H.C. Mutations that stimulate flhDC expression in Escherichia coli K-12. J. Bacteriol. 2015, 197, 3087–3096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Kukita, C.; Humayun, M.Z.; Saier, M.H., Jr. Environmental-directed activation of the Escherichia coli flhDC operon by transposons. Microbiology 2017, 163, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yen, M.R.; Saier, M.H., Jr. Precise excision of IS5 from the intergenic region between the fucPIK and the fucAO operons and mutational control of fucPIK operon expression in Escherichia coli. J. Bacteriol. 2010, 192, 2013–2019. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, E.; Ye, Q.; Lee, S.-J. Active Transposition of Insertion Sequences in Prokaryotes: Insights from the Response of Deinococcus geothermalis to Oxidative Stress. Antioxidants 2022, 11, 481. https://doi.org/10.3390/antiox11030481
Shin E, Ye Q, Lee S-J. Active Transposition of Insertion Sequences in Prokaryotes: Insights from the Response of Deinococcus geothermalis to Oxidative Stress. Antioxidants. 2022; 11(3):481. https://doi.org/10.3390/antiox11030481
Chicago/Turabian StyleShin, Eunjung, Qianying Ye, and Sung-Jae Lee. 2022. "Active Transposition of Insertion Sequences in Prokaryotes: Insights from the Response of Deinococcus geothermalis to Oxidative Stress" Antioxidants 11, no. 3: 481. https://doi.org/10.3390/antiox11030481
APA StyleShin, E., Ye, Q., & Lee, S.-J. (2022). Active Transposition of Insertion Sequences in Prokaryotes: Insights from the Response of Deinococcus geothermalis to Oxidative Stress. Antioxidants, 11(3), 481. https://doi.org/10.3390/antiox11030481