Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance
Abstract
:1. Introduction
2. The TrxR/Trx System in Deinococcus
2.1. Deinococcus Thioredoxin Reductases
2.2. Deinococcus Thioredoxins
2.3. Trx-Like Proteins in Deinococcus
2.3.1. Trx-Like Proteins Carrying a CPDC Active Site Motif
Thioredoxin-Related Proteins of 14 kDa
DR_A0072-Related Proteins
DR_B0110-Related Proteins
2.3.2. Trx-Like Proteins Carrying Other Active Site Motifs
DR_0057-Related Proteins
DR_0948-Related Proteins
2.4. FrnE Oxidoreductase
2.5. Periplasmic Disulfide Oxidoreductases
3. Main Trx Partners in Deinococcus
3.1. Methionine Sulfoxide Reductases
3.1.1. MsrA Proteins in Deinococcus
3.1.2. MsrB Proteins in Deinococcus
3.1.3. Non-Thiol-Based Periplasmic and Possible Cytoplasmic Msr Systems
3.2. Thioredoxin-Dependent Peroxidases/Peroxiredoxins
4. Thioredoxin-Independent Thiol Peroxidases
4.1. The AhpF/D-AhpC/E Thiol-Dependent Peroxidase Systems
4.2. Ohr/OsmC/YhfA Thiol-Dependent Peroxidases
5. The Bacillithiol System
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Battista, J.R. Against All Odds: The Survival Strategies of Deinococcus radiodurans. Annu. Rev. MicroBiol. 1997, 51, 203–224. [Google Scholar] [CrossRef] [PubMed]
- Slade, D.; Radman, M. Oxidative Stress Resistance in Deinococcus radiodurans. MicroBiol. Mol. Biol. Rev. 2011, 75, 133–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Jung, J.-H.; Blanchard, L.; de Groot, A. Conservation and Diversity of Radiation and Oxidative Stress Resistance Mechanisms in Deinococcus Species. FEMS MicroBiol. Rev. 2019, 43, 19–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattimore, V.; Battista, J.R. Radioresistance of Deinococcus radiodurans: Functions Necessary to Survive Ionizing Radiation Are Also Necessary to Survive Prolonged Desiccation. J. Bacteriol. 1996, 178, 633–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groot, A.; Dulermo, R.; Ortet, P.; Blanchard, L.; Guerin, P.; Fernandez, B.; Vacherie, B.; Dossat, C.; Jolivet, E.; Siguier, P.; et al. Alliance of Proteomics and Genomics to Unravel the Specificities of Sahara Bacterium Deinococcus deserti. PLoS Genet. 2009, 5, e1000434. [Google Scholar] [CrossRef]
- Daly, M.J.; Gaidamakova, E.K.; Matrosova, V.Y.; Vasilenko, A.; Zhai, M.; Leapman, R.D.; Lai, B.; Ravel, B.; Li, S.M.; Kemner, K.M.; et al. Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance. PLoS Biol. 2007, 5, e92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredrickson, J.K.; Li, S.M.; Gaidamakova, E.K.; Matrosova, V.Y.; Zhai, M.; Sulloway, H.M.; Scholten, J.C.; Brown, M.G.; Balkwill, D.L.; Daly, M.J. Protein Oxidation: Key to Bacterial Desiccation Resistance? ISME J. 2008, 2, 393–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krisko, A.; Radman, M. Protein Damage and Death by Radiation in Escherichia coli and Deinococcus radiodurans. Proc. Natl. Acad. Sci. USA 2010, 107, 14373–14377. [Google Scholar] [CrossRef] [Green Version]
- Daly, M.J. Death by Protein Damage in Irradiated Cells. DNA Repair 2012, 11, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Arnér, E.S.; Holmgren, A. Physiological Functions of Thioredoxin and Thioredoxin Reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Carmel-Harel, O.; Storz, G. Roles of the Glutathione- and Thioredoxin-Dependent Reduction Systems in the Escherichia coli and Saccharomyces cerevisiae Responses to Oxidative Stress. Annu. Rev. MicroBiol. 2000, 54, 439–461. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.B.; Kumar, C.; Le Moan, N.; Spector, D.; Tacnet, F. The System Biology of Thiol Redox. System in Escherichia coli and Yeast: Differential Functions in Oxidative Stress, Iron Metabolism and DNA Synthesis. FEBS Lett. 2007, 581, 3598–3607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.F. Oxidative Stress, Protein Damage and Repair in Bacteria. Nat. Rev. MicroBiol. 2017, 15, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Meyer, Y.; Buchanan, B.B.; Vignols, F.; Reichheld, J.P. Thioredoxins and Glutaredoxins: Unifying Elements in Redox. Biology. Annu. Rev. Genet. 2009, 43, 335–367. [Google Scholar] [CrossRef] [PubMed]
- Vieira Dos Santos, C.; Rey, P. Plant Thioredoxins Are Key Actors in the Oxidative Stress Response. Trends Plant. Sci. 2006, 11, 329–334. [Google Scholar] [CrossRef]
- Staerck, C.; Gastebois, A.; Vandeputte, P.; Calenda, A.; Larcher, G.; Gillmann, L.; Papon, N.; Bouchara, J.-P.; Fleury, M.J.J. Microbial Antioxidant Defense Enzymes. Microb. Pathog. 2017, 110, 56–65. [Google Scholar] [CrossRef]
- Chandrangsu, P.; Loi, V.V.; Antelmann, H.; Helmann, J.D. The Role of Bacillithiol in Gram-Positive Firmicutes. Antioxid. Redox. Signal. 2018, 28, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Imber, M.; Pietrzyk-Brzezinska, A.J.; Antelmann, H. Redox. Regulation by Reversible Protein S-Thiolation in Gram-Positive Bacteria. Redox. Biol. 2019, 20, 130–145. [Google Scholar] [CrossRef]
- Reyes, A.M.; Pedre, B.; De Armas, M.I.; Tossounian, M.-A.; Radi, R.; Messens, J.; Trujillo, M. Chemistry and Redox. Biology of Mycothiol. Antioxid. Redox. Signal. 2018, 28, 487–504. [Google Scholar] [CrossRef]
- Choo, K.; Kim, M.; Nansa, S.A.; Bae, M.K.; Lee, C.; Lee, S.-J. Redox. Potential Change by the Cystine Importer Affected on Enzymatic Antioxidant Protection in Deinococcus geothermalis. Antonie Van Leeuwenhoek 2020, 113, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Obiero, J.; Pittet, V.; Bonderoff, S.A.; Sanders, D.A. Thioredoxin System from Deinococcus radiodurans. J. Bacteriol. 2010, 192, 494–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obiero, J.; Sanders, D.A.R. Design of Deinococcus radiodurans Thioredoxin Reductase with Altered Thioredoxin Specificity Using Computational Alanine Mutagenesis. Protein Sci. 2011, 20, 1021–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Tang, Y.; Hua, Y.; Zhao, Y. Structural Features and Functional Implications of Proteins Enabling the Robustness of Deinococcus radiodurans. Comput. Struct. Biotechnol. J. 2020, 18, 2810–2817. [Google Scholar] [CrossRef]
- Cho, C.; Lee, G.W.; Hong, S.H.; Kaur, S.; Jung, K.-W.; Jung, J.-H.; Lim, S.; Chung, B.Y.; Lee, S.S. Novel Functions of Peroxiredoxin Q from Deinococcus radiodurans R1 as a Peroxidase and a Molecular Chaperone. FEBS Lett. 2019, 593, 219–229. [Google Scholar] [CrossRef]
- Maqbool, I.; Ponniresan, V.K.; Govindasamy, K.; Prasad, N.R. Understanding the Survival Mechanisms of Deinococcus radiodurans against Oxidative Stress by Targeting Thioredoxin Reductase Redox. System. Arch. MicroBiol. 2020, 202, 2355–2366. [Google Scholar] [CrossRef]
- Jeong, S.; Jung, J.-H.; Kim, M.-K.; de Groot, A.; Blanchard, L.; Ryu, S.; Bahn, Y.-S.; Lim, S. Atypical Bacilliredoxin AbxC Plays a Role in Responding to Oxidative Stress in Radiation-Resistant Bacterium Deinococcus radiodurans. Antioxidants 2021, 10, 1148. [Google Scholar] [CrossRef]
- Vallenet, D.; Calteau, A.; Dubois, M.; Amours, P.; Bazin, A.; Beuvin, M.; Burlot, L.; Bussell, X.; Fouteau, S.; Gautreau, G.; et al. MicroScope: An Integrated Platform for the Annotation and Exploration of Microbial Gene Functions through Genomic, Pangenomic and Metabolic Comparative Analysis. Nucleic Acids Res. 2020, 48, D579–D589. [Google Scholar] [CrossRef] [Green Version]
- Lipton, M.S.; Pasa-Tolic, L.; Anderson, G.A.; Anderson, D.J.; Auberry, D.L.; Battista, J.R.; Daly, M.J.; Fredrickson, J.; Hixson, K.K.; Kostandarithes, H.; et al. Global Analysis of the Deinococcus radiodurans Proteome by Using Accurate Mass Tags. Proc. Natl. Acad. Sci. USA 2002, 99, 11049–11054. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.K.; Lipton, M.S.; Mottaz, H.; Monroe, M.E.; Smith, R.D.; Lidstrom, M.E. Global Whole-Cell FTICR Mass Spectrometric Proteomics Analysis of the Heat Shock Response in the Radioresistant Bacterium Deinococcus radiodurans. J. Proteome Res. 2005, 4, 709–718. [Google Scholar] [CrossRef]
- de Groot, A.; Roche, D.; Fernandez, B.; Ludanyi, M.; Cruveiller, S.; Pignol, D.; Vallenet, D.; Armengaud, J.; Blanchard, L. RNA Sequencing and Proteogenomics Reveal the Importance of Leaderless MRNAs in the Radiation-Tolerant Bacterium Deinococcus deserti. Genome Biol. Evol. 2014, 6, 932–948. [Google Scholar] [CrossRef] [PubMed]
- Ott, E.; Kawaguchi, Y.; Kölbl, D.; Chaturvedi, P.; Nakagawa, K.; Yamagishi, A.; Weckwerth, W.; Milojevic, T. Proteometabolomic Response of Deinococcus radiodurans Exposed to UVC and Vacuum Conditions: Initial Studies Prior to the Tanpopo Space Mission. PLoS ONE 2017, 12, e0189381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, E.; Fuchs, F.M.; Moeller, R.; Hemmersbach, R.; Kawaguchi, Y.; Yamagishi, A.; Weckwerth, W.; Milojevic, T. Molecular Response of Deinococcus radiodurans to Simulated Microgravity Explored by Proteometabolomic Approach. Sci. Rep. 2019, 9, 18462. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.W.; Nordan, H.C.; Cain, R.F.; Parrish, G.; Duggan, D. Studies on a Radio-Resistant Micrococcus. I. Isolation, Morphology, Cultural Characteristics, and Resistance to Gamma Radiation. Food Technol. 1956, 10, 575–578. [Google Scholar]
- Brooks, B.W.; Murray, R.G.E. Nomenclature for “Micrococcus radiodurans” and Other Radiation-Resistant Cocci: Deinococcaceae Fam. Nov. and Deinococcus Gen. Nov., Including Five Species. Int. J. Syst. Bacteriol. 1981, 31, 353–360. [Google Scholar] [CrossRef] [Green Version]
- White, O.; Eisen, J.A.; Heidelberg, J.F.; Hickey, E.K.; Peterson, J.D.; Dodson, R.J.; Haft, D.H.; Gwinn, M.L.; Nelson, W.C.; Richardson, D.L.; et al. Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science 1999, 286, 1571–1577. [Google Scholar] [CrossRef] [Green Version]
- de Groot, A.; Chapon, V.; Servant, P.; Christen, R.; Fischer-Le Saux, M.; Sommer, S.; Heulin, T. Deinococcus deserti Sp. Nov., a Gamma-Radiation-Tolerant Bacterium Isolated from the Sahara Desert. Int. J. Syst. Evol. MicroBiol. 2005, 55, 2441–2446. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.C.; Nobre, M.F.; Rainey, F.A.; Silva, M.T.; Wait, R.; Burghardt, J.; Chung, A.P.; da Costa, M.S. Deinococcus geothermalis Sp. Nov. and Deinococcus murrayi Sp. Nov., Two Extremely Radiation-Resistant and Slightly Thermophilic Species from Hot Springs. Int. J. Syst. Bacteriol. 1997, 47, 939–947. [Google Scholar] [CrossRef] [Green Version]
- Makarova, K.S.; Omelchenko, M.V.; Gaidamakova, E.K.; Matrosova, V.Y.; Vasilenko, A.; Zhai, M.; Lapidus, A.; Copeland, A.; Kim, E.; Land, M.; et al. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks. PLoS ONE 2007, 2, e955. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, W.; Dai, S.; Wu, J.; Wang, Y.; Tao, T.; Chen, M.; Lin, M. Deinococcus gobiensis Sp. Nov., an Extremely Radiation-Resistant Bacterium. Int. J. Syst. Evol. MicroBiol. 2009, 59, 1513–1517. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Chen, M.; Zhang, W.; Lu, W.; Wang, J.; Yang, M.; Zhao, P.; Tang, R.; Li, X.; Hao, Y.; et al. Genome Sequence and Transcriptome Analysis of the Radioresistant Bacterium Deinococcus gobiensis: Insights into the Extreme Environmental Adaptations. PLoS ONE 2012, 7, e34458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainey, F.A.; Ray, K.; Ferreira, M.; Gatz, B.Z.; Nobre, M.F.; Bagaley, D.; Rash, B.A.; Park, M.J.; Earl, A.M.; Shank, N.C.; et al. Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample. Appl. Environ. MicroBiol. 2005, 71, 5225–5235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pukall, R.; Zeytun, A.; Lucas, S.; Lapidus, A.; Hammon, N.; Deshpande, S.; Nolan, M.; Cheng, J.F.; Pitluck, S.; Liolios, K.; et al. Complete Genome Sequence of Deinococcus maricopensis Type Strain (LB-34). Stand. Genomic Sci. 2011, 4, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Rainey, F.A.; Ferreira, M.; Nobre, M.F.; Ray, K.; Bagaley, D.; Earl, A.M.; Battista, J.R.; Gomez-Silva, B.; McKay, C.P.; da Costa, M.S. Deinococcus peraridilitoris Sp. Nov., Isolated from a Coastal Desert. Int. J. Syst. Evol. MicroBiol. 2007, 57, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Kobatake, M.; Tanabe, S.; Hasegawa, S. New Micrococcus Radioresistant Red Pigment, Isolated from Lama glama Feces, and Its Use as Microbiological Indicator of Radiosterilization. C R Seances Soc. Biol. Fil. 1973, 167, 1506–1510. [Google Scholar] [PubMed]
- Copeland, A.; Zeytun, A.; Yassawong, M.; Nolan, M.; Lucas, S.; Hammon, N.; Deshpande, S.; Cheng, J.F.; Han, C.; Tapia, R.; et al. Complete Genome Sequence of the Orange-Red Pigmented, Radioresistant Deinococcus proteolyticus Type Strain (MRP(T)). Stand. Genomic Sci. 2012, 6, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Laurent, T.C.; Moore, E.C.; Reichard, P. Enzymatic Synthesis Of Deoxyribonucleotides. Iv. Isolation And Characterization of Thioredoxin, The Hydrogen Donor From Escherichia coli B. J. Biol. Chem. 1964, 239, 3436–3444. [Google Scholar] [CrossRef]
- Ritz, D.; Patel, H.; Doan, B.; Zheng, M.; Aslund, F.; Storz, G.; Beckwith, J. Thioredoxin 2 Is Involved in the Oxidative Stress Response in Escherichia coli. J. Biol. Chem. 2000, 275, 2505–2512. [Google Scholar] [CrossRef] [Green Version]
- Argyrou, A.; Blanchard, J.S. Flavoprotein Disulfide Reductases: Advances in Chemistry and Function. Prog. Nucleic Acid Res. Mol. Biol. 2004, 78, 89–142. [Google Scholar] [CrossRef]
- Hammerstad, M.; Hersleth, H.-P. Overview of Structurally Homologous Flavoprotein Oxidoreductases Containing the Low Mr Thioredoxin Reductase-like Fold—A Functionally Diverse Group. Arch. BioChem. Biophys. 2021, 702, 108826. [Google Scholar] [CrossRef] [PubMed]
- Lennon, B.W.; Williams, C.H.; Ludwig, M.L. Twists in Catalysis: Alternating Conformations of Escherichia coli Thioredoxin Reductase. Science 2000, 289, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Joe, M.-H.; Jung, S.-W.; Im, S.-H.; Lim, S.-Y.; Song, H.-P.; Kwon, O.; Kim, D.-H. Genome-Wide Response of Deinococcus radiodurans on Cadmium Toxicity. J. MicroBiol. Biotechnol. 2011, 21, 438–447. [Google Scholar] [CrossRef]
- Zeller, T.; Klug, G. Thioredoxins in Bacteria: Functions in Oxidative Stress Response and Regulation of Thioredoxin Genes. Naturwissenschaften 2006, 93, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Arts, I.S.; Vertommen, D.; Baldin, F.; Laloux, G.; Collet, J.-F. Comprehensively Characterizing the Thioredoxin Interactome in Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox. Control. Mol. Cell Proteomics 2016, 15, 2125–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasapis, C.T.; Makridakis, M.; Damdimopoulos, A.E.; Zoidakis, J.; Lygirou, V.; Mavroidis, M.; Vlahou, A.; Miranda-Vizuete, A.; Spyrou, G.; Vlamis-Gardikas, A. Implications of the Mitochondrial Interactome of Mammalian Thioredoxin 2 for Normal Cellular Function and Disease. Free Radic. Biol. Med. 2019, 137, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, M.E.; Mauriès, A.; Maes, A.; Tourasse, N.J.; Hamon, M.; Lemaire, S.D.; Marchand, C.H. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox. Regulation. Mol. Plant. 2017, 10, 1107–1125. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Vizuete, A.; Damdimopoulos, A.E.; Gustafsson, J.; Spyrou, G. Cloning, Expression, and Characterization of a Novel Escherichia coli Thioredoxin. J. Biol. Chem. 1997, 272, 30841–30847. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.F.; D’Souza, J.C.; Jakob, U.; Bardwell, J.C. Thioredoxin 2, an Oxidative Stress-Induced Protein, Contains a High Affinity Zinc Binding Site. J. Biol. Chem. 2003, 278, 45325–45332. [Google Scholar] [CrossRef] [Green Version]
- Magerand, R.; Rey, P.; Blanchard, L.; de Groot, A. Redox. Signaling through Zinc Activates the Radiation Response in Deinococcus Bacteria. Sci. Rep. 2021, 11, 4528. [Google Scholar] [CrossRef]
- Kim, M.-K.; Zhao, L.; Jeong, S.; Zhang, J.; Jung, J.-H.; Seo, H.S.; Choi, J.-I.; Lim, S. Structural and Biochemical Characterization of Thioredoxin-2 from Deinococcus radiodurans. Antioxidants 2021, 10, 1843. [Google Scholar] [CrossRef]
- Rabinovitch, I.; Yanku, M.; Yeheskel, A.; Cohen, G.; Borovok, I.; Aharonowitz, Y. Staphylococcus aureus NrdH Redoxin Is a Reductant of the Class Ib Ribonucleotide Reductase. J. Bacteriol. 2010, 192, 4963–4972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chibani, K.; Wingsle, G.; Jacquot, J.-P.; Gelhaye, E.; Rouhier, N. Comparative Genomic Study of the Thioredoxin Family in Photosynthetic Organisms with Emphasis on Populus trichocarpa. Mol. Plant. 2009, 2, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Yoon, H.W.; Lee, S.-R.; Rhee, S.G. Identification and Characterization of TRP14, a Thioredoxin-Related Protein of 14 KDa. New Insights into the Specificity of Thioredoxin Function. J. Biol. Chem. 2004, 279, 3142–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, E.; Peluso, I.; Rendina, R.; Digilio, A.; Furia, M. The Clot Gene of Drosophila melanogaster Encodes a Conserved Member of the Thioredoxin-like Protein Superfamily. Mol. Genet. Genomics 2003, 268, 692–697. [Google Scholar] [CrossRef]
- Chibani, K.; Tarrago, L.; Gualberto, J.M.; Wingsle, G.; Rey, P.; Jacquot, J.-P.; Rouhier, N. Atypical Thioredoxins in Poplar: The Glutathione-Dependent Thioredoxin-like 2.1 Supports the Activity of Target Enzymes Possessing a Single Redox. Active Cysteine. Plant. Physiol. 2012, 159, 592–605. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, B.; Arnér, E.S.J. Thioredoxin-Related Protein of 14 KDa as a Modulator of Redox. Signalling Pathways. Br. J. Pharmacol. 2019, 176, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.M.; Raudonikiene, A.; Hoffman, P.S.; Poole, L.B. Essential Thioredoxin-Dependent Peroxiredoxin System from Helicobacter pylori: Genetic and Kinetic Characterization. J. Bacteriol. 2001, 183, 1961–1973. [Google Scholar] [CrossRef] [Green Version]
- Kuhns, L.G.; Wang, G.; Maier, R.J. Comparative Roles of the Two Helicobacter pylori Thioredoxins in Preventing Macromolecule Damage. Infect. Immun. 2015, 83, 2935–2943. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, T.N.; Sahlin, M.; Lu, J.; Sjöberg, B.-M.; Holmgren, A. Bacillus anthracis Thioredoxin Systems, Characterization and Role as Electron Donors for Ribonucleotide Reductase. J. Biol. Chem. 2012, 287, 39686–39697. [Google Scholar] [CrossRef] [Green Version]
- Pader, I.; Sengupta, R.; Cebula, M.; Xu, J.; Lundberg, J.O.; Holmgren, A.; Johansson, K.; Arnér, E.S.J. Thioredoxin-Related Protein of 14 KDa Is an Efficient L-Cystine Reductase and S-Denitrosylase. Proc. Natl. Acad. Sci. USA 2014, 111, 6964–6969. [Google Scholar] [CrossRef] [Green Version]
- Dóka, É.; Pader, I.; Bíró, A.; Johansson, K.; Cheng, Q.; Ballagó, K.; Prigge, J.R.; Pastor-Flores, D.; Dick, T.P.; Schmidt, E.E.; et al. A Novel Persulfide Detection Method Reveals Protein Persulfide- and Polysulfide-Reducing Functions of Thioredoxin and Glutathione Systems. Sci. Adv. 2016, 2, e1500968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhou, J.; Omelchenko, M.V.; Beliaev, A.S.; Venkateswaran, A.; Stair, J.; Wu, L.; Thompson, D.K.; Xu, D.; Rogozin, I.B.; et al. Transcriptome Dynamics of Deinococcus radiodurans Recovering from Ionizing Radiation. Proc. Natl. Acad. Sci. USA 2003, 100, 4191–4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Xu, G.; Chen, H.; Zhao, Y.; Xu, N.; Tian, B.; Hua, Y. DrRRA: A Novel Response Regulator Essential for the Extreme Radioresistance of Deinococcus radiodurans. Mol. MicroBiol. 2008, 67, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Earl, A.M.; Howell, H.A.; Park, M.J.; Eisen, J.A.; Peterson, S.N.; Battista, J.R. Analysis of Deinococcus radiodurans’s Transcriptional Response to Ionizing Radiation and Desiccation Reveals Novel Proteins That Contribute to Extreme Radioresistance. Genetics 2004, 168, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenstern, M.; Stiller, S.B.; Lübbert, P.; Peikert, C.D.; Dannenmaier, S.; Drepper, F.; Weill, U.; Höß, P.; Feuerstein, R.; Gebert, M.; et al. Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale. Cell Rep. 2017, 19, 2836–2852. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The Conserved Domain Database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [Green Version]
- Khairnar, N.P.; Joe, M.H.; Misra, H.S.; Lim, S.Y.; Kim, D.H. FrnE, a Cadmium-Inducible Protein in Deinococcus radiodurans, Is Characterized as a Disulfide Isomerase Chaperone In Vitro and for Its Role in Oxidative Stress Tolerance In Vivo. J. Bacteriol. 2013, 195, 2880–2886. [Google Scholar] [CrossRef] [Green Version]
- Bihani, S.C.; Panicker, L.; Rajpurohit, Y.S.; Misra, H.S.; Kumar, V. DrFrnE Represents a Hitherto Unknown Class of Eubacterial Cytoplasmic Disulfide Oxido-Reductases. Antioxid. Redox. Signal. 2018, 28, 296–310. [Google Scholar] [CrossRef]
- Crow, A.; Lewin, A.; Hecht, O.; Carlsson Möller, M.; Moore, G.R.; Hederstedt, L.; Le Brun, N.E. Crystal Structure and Biophysical Properties of Bacillus subtilis BdbD. An Oxidizing Thiol:Disulfide Oxidoreductase Containing a Novel Metal Site. J. Biol. Chem. 2009, 284, 23719–23733. [Google Scholar] [CrossRef] [Green Version]
- Depuydt, M.; Leonard, S.E.; Vertommen, D.; Denoncin, K.; Morsomme, P.; Wahni, K.; Messens, J.; Carroll, K.S.; Collet, J.F. A Periplasmic Reducing System Protects Single Cysteine Residues from Oxidation. Science 2009, 326, 1109–1111. [Google Scholar] [CrossRef]
- Bushweller, J.H. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. J. Mol. Biol. 2020, 432, 5091–5103. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.M.N.; Gupta, R.S. Novel Sequence Features of DNA Repair Genes/Proteins from Deinococcus Species Implicated in Protection from Oxidatively Generated Damage. Genes 2018, 9, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achard, M.E.S.; Hamilton, A.J.; Dankowski, T.; Heras, B.; Schembri, M.S.; Edwards, J.L.; Jennings, M.P.; McEwan, A.G. A Periplasmic Thioredoxin-like Protein Plays a Role in Defense against Oxidative Stress in Neisseria gonorrhoeae. Infect. Immun. 2009, 77, 4934–4939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanboon, W.; Chuchue, T.; Vattanaviboon, P.; Mongkolsuk, S. Inactivation of Thioredoxin-like Gene Alters Oxidative Stress Resistance and Reduces Cytochrome c Oxidase Activity in Agrobacterium tumefaciens. FEMS MicroBiol. Lett. 2009, 295, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Mohorko, E.; Abicht, H.K.; Bühler, D.; Glockshuber, R.; Hennecke, H.; Fischer, H.-M. Thioredoxin-like Protein TlpA from Bradyrhizobium japonicum Is a Reductant for the Copper Metallochaperone ScoI. FEBS Lett. 2012, 586, 4094–4099. [Google Scholar] [CrossRef] [Green Version]
- Roszczenko, P.; Grzeszczuk, M.; Kobierecka, P.; Wywial, E.; Urbanowicz, P.; Wincek, P.; Nowak, E.; Jagusztyn-Krynicka, E.K. Helicobacter pylori HP0377, a Member of the Dsb Family, Is an Untypical Multifunctional CcmG That Cooperates with Dimeric Thioldisulfide Oxidase HP0231. BMC MicroBiol. 2015, 15, 135. [Google Scholar] [CrossRef] [Green Version]
- Goulding, C.W.; Apostol, M.I.; Gleiter, S.; Parseghian, A.; Bardwell, J.; Gennaro, M.; Eisenberg, D. Gram-Positive DsbE Proteins Function Differently from Gram-Negative DsbE Homologs. A Structure to Function Analysis of DsbE from Mycobacterium tuberculosis. J. Biol. Chem. 2004, 279, 3516–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Levine, R.L. Methionine in Proteins Defends against Oxidative Stress. FASEB J. 2009, 23, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Brot, N.; Weissbach, L.; Werth, J.; Weissbach, H. Enzymatic Reduction of Protein-Bound Methionine Sulfoxide. Proc. Natl. Acad. Sci. USA 1981, 78, 2155–2158. [Google Scholar] [CrossRef] [Green Version]
- Grimaud, R.; Ezraty, B.; Mitchell, J.K.; Lafitte, D.; Briand, C.; Derrick, P.J.; Barras, F. Repair of Oxidized Proteins. Identification of a New Methionine Sulfoxide Reductase. J. Biol. Chem. 2001, 276, 48915–48920. [Google Scholar] [CrossRef] [Green Version]
- Lowther, W.T.; Brot, N.; Weissbach, H.; Honek, J.F.; Matthews, B.W. Thiol-Disulfide Exchange Is Involved in the Catalytic Mechanism of Peptide Methionine Sulfoxide Reductase. Proc. Natl. Acad. Sci. USA 2000, 97, 6463–6468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarrago, L.; Kaya, A.; Weerapana, E.; Marino, S.M.; Gladyshev, V.N. Methionine Sulfoxide Reductases Preferentially Reduce Unfolded Oxidized Proteins and Protect Cells from Oxidative Protein Unfolding. J. Biol. Chem. 2012, 287, 24448–24459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschi-Muller, S.; Branlant, G. Methionine Sulfoxide Reductase: Chemistry, Substrate Binding, Recycling Process and Oxidase Activity. Bioorg. Chem. 2014, 57, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Tarrago, L.; Laugier, E.; Zaffagnini, M.; Marchand, C.; Le Maréchal, P.; Rouhier, N.; Lemaire, S.D.; Rey, P. Regeneration Mechanisms of Arabidopsis thaliana Methionine Sulfoxide Reductases B by Glutaredoxins and Thioredoxins. J. Biol. Chem. 2009, 284, 18963–18971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-H.; Weissbach, H. Origin and Evolution of the Protein-Repairing Enzymes Methionine Sulphoxide Reductases. Biol. Rev. Camb. Philos. Soc. 2008, 83, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Koc, A.; Gasch, A.P.; Rutherford, J.C.; Kim, H.-Y.; Gladyshev, V.N. Methionine Sulfoxide Reductase Regulation of Yeast Lifespan Reveals Reactive Oxygen Species-Dependent and -Independent Components of Aging. Proc. Natl. Acad. Sci. USA 2004, 101, 7999–8004. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, I.; Mary, J.; Perichon, M.; Friguet, B. Rat Peptide Methionine Sulphoxide Reductase: Cloning of the CDNA, and down-Regulation of Gene Expression and Enzyme Activity during Aging. BioChem. J. 2001, 355, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Ezraty, B.; Aussel, L.; Barras, F. Methionine Sulfoxide Reductases in Prokaryotes. Biochim. Biophys. Acta 2005, 1703, 221–229. [Google Scholar] [CrossRef]
- Ruan, H.; Tang, X.D.; Chen, M.-L.; Joiner, M.-L.A.; Sun, G.; Brot, N.; Weissbach, H.; Heinemann, S.H.; Iverson, L.; Wu, C.-F.; et al. High-Quality Life Extension by the Enzyme Peptide Methionine Sulfoxide Reductase. Proc. Natl. Acad. Sci. USA 2002, 99, 2748–2753. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.; Loiseau, L.; Vergnes, A.; Vertommen, D.; Mérida-Floriano, A.; Chitteni-Pattu, S.; Wood, E.A.; Casadesús, J.; Cox, M.M.; Barras, F.; et al. Redox. Controls RecA Protein Activity via Reversible Oxidation of Its Methionine Residues. Elife 2021, 10, e63747. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Moskovitz, J.; Berlett, B.S.; Levine, R.L. Cyclic Oxidation and Reduction of Protein Methionine Residues Is an Important Antioxidant Mechanism. Mol. Cell BioChem. 2002, 234–235, 3–9. [Google Scholar] [CrossRef]
- Erickson, J.R.; Joiner, M.A.; Guan, X.; Kutschke, W.; Yang, J.; Oddis, C.V.; Bartlett, R.K.; Lowe, J.S.; O’Donnell, S.E.; Aykin-Burns, N.; et al. A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation. Cell 2008, 133, 462–474. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.C.; Péterfi, Z.; Hoffmann, F.W.; Moore, R.E.; Kaya, A.; Avanesov, A.; Tarrago, L.; Zhou, Y.; Weerapana, E.; Fomenko, D.E.; et al. MsrB1 and MICALs Regulate Actin Assembly and Macrophage Function via Reversible Stereoselective Methionine Oxidation. Mol. Cell 2013, 51, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Rey, P.; Tarrago, L. Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants 2018, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drazic, A.; Miura, H.; Peschek, J.; Le, Y.; Bach, N.C.; Kriehuber, T.; Winter, J. Methionine Oxidation Activates a Transcription Factor in Response to Oxidative Stress. Proc. Natl. Acad. Sci. USA 2013, 110, 9493–9498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruckbauer, S.T.; Minkoff, B.B.; Yu, D.; Cryns, V.L.; Cox, M.M.; Sussman, M.R. Ionizing Radiation-Induced Proteomic Oxidation in Escherichia coli. Mol. Cell Proteomics 2020, 19, 1375–1395. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.L.; Stanley, J.A.; Robinson, M.C.; Sher, J.W.; Li, Z.; Chan, Y.A.; Omdahl, A.R.; Wattiez, R.; Godzik, A.; Matallana-Surget, S. Protein Structure, Amino Acid Composition and Sequence Determine Proteome Vulnerability to Oxidation-Induced Damage. EMBO J. 2020, 39, e104523. [Google Scholar] [CrossRef] [PubMed]
- Rouhier, N.; Vieira Dos Santos, C.; Tarrago, L.; Rey, P. Plant Methionine Sulfoxide Reductase A and B Multigenic Families. Photosynth. Res. 2006, 89, 247–262. [Google Scholar] [CrossRef]
- Coudevylle, N.; Antoine, M.; Bouguet-Bonnet, S.; Mutzenhardt, P.; Boschi-Muller, S.; Branlant, G.; Cung, M.-T. Solution Structure and Backbone Dynamics of the Reduced Form and an Oxidized Form of E. coli Methionine Sulfoxide Reductase A (MsrA): Structural Insight of the MsrA Catalytic Cycle. J. Mol. Biol. 2007, 366, 193–206. [Google Scholar] [CrossRef]
- Delaye, L.; Becerra, A.; Orgel, L.; Lazcano, A. Molecular Evolution of Peptide Methionine Sulfoxide Reductases (MsrA and MsrB): On the Early Development of a Mechanism That Protects against Oxidative Damage. J. Mol. Evol. 2007, 64, 15–32. [Google Scholar] [CrossRef]
- Kumar, R.A.; Koc, A.; Cerny, R.L.; Gladyshev, V.N. Reaction Mechanism, Evolutionary Analysis, and Role of Zinc in Drosophila Methionine-R-Sulfoxide Reductase. J. Biol. Chem. 2002, 277, 37527–37535. [Google Scholar] [CrossRef] [Green Version]
- Olry, A.; Boschi-Muller, S.; Branlant, G. Kinetic Characterization of the Catalytic Mechanism of Methionine Sulfoxide Reductase B from Neisseria meningitidis. Biochemistry 2004, 43, 11616–11622. [Google Scholar] [CrossRef]
- Neiers, F.; Kriznik, A.; Boschi-Muller, S.; Branlant, G. Evidence for a New Sub-Class of Methionine Sulfoxide Reductases B with an Alternative Thioredoxin Recognition Signature. J. Biol. Chem. 2004, 279, 42462–42468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappler, U.; Nasreen, M.; McEwan, A. New Insights into the Molecular Physiology of Sulfoxide Reduction in Bacteria. Adv. Microb. Physiol. 2019, 75, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Alamuri, P.; Maier, R.J. Methionine Sulphoxide Reductase Is an Important Antioxidant Enzyme in the Gastric Pathogen Helicobacter pylori. Mol. MicroBiol. 2004, 53, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Boschi-Muller, S. Molecular Mechanisms of the Methionine Sulfoxide Reductase System from Neisseria meningitidis. Antioxidants 2018, 7, 131. [Google Scholar] [CrossRef] [Green Version]
- Gennaris, A.; Ezraty, B.; Henry, C.; Agrebi, R.; Vergnes, A.; Oheix, E.; Bos, J.; Leverrier, P.; Espinosa, L.; Szewczyk, J.; et al. Repairing Oxidized Proteins in the Bacterial Envelope Using Respiratory Chain Electrons. Nature 2015, 528, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Perkins, A.; Nelson, K.J.; Parsonage, D.; Poole, L.B.; Karplus, P.A. Peroxiredoxins: Guardians against Oxidative Stress and Modulators of Peroxide Signaling. Trends BioChem. Sci. 2015, 40, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.G.; Woo, H.A. Multiple Functions of Peroxiredoxins: Peroxidases, Sensors and Regulators of the Intracellular Messenger H₂O₂, and Protein Chaperones. Antioxid. Redox. Signal. 2011, 15, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Day, A.M.; Brown, J.D.; Taylor, S.R.; Rand, J.D.; Morgan, B.A.; Veal, E.A. Inactivation of a Peroxiredoxin by Hydrogen Peroxide Is Critical for Thioredoxin-Mediated Repair of Oxidized Proteins and Cell Survival. Mol. Cell 2012, 45, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Stöcker, S.; Maurer, M.; Ruppert, T.; Dick, T.P. A Role for 2-Cys Peroxiredoxins in Facilitating Cytosolic Protein Thiol Oxidation. Nat. Chem. Biol. 2018, 14, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.Z.; Kim, I.H.; Kim, K.; Rhee, S.G. Cloning, Sequencing, and Mutation of Thiol-Specific Antioxidant Gene of Saccharomyces cerevisiae. J. Biol. Chem. 1993, 268, 16815–16821. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Tairum, C.A.; Netto, L.E.S.; de Oliveira, A.L.P.; Aleixo-Silva, R.L.; Cabrera, V.I.M.; Breyer, C.A.; Dos Santos, M.C. Relevance of Peroxiredoxins in Pathogenic Microorganisms. Appl. MicroBiol. Biotechnol. 2021, 105, 5701–5717. [Google Scholar] [CrossRef]
- Poole, L.B.; Ellis, H.R. Flavin-Dependent Alkyl Hydroperoxide Reductase from Salmonella typhimurium. 1. Purification and Enzymatic Activities of Overexpressed AhpF and AhpC Proteins. Biochemistry 1996, 35, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Cha, M.K.; Kim, I.H. Thioredoxin-Dependent Hydroperoxide Peroxidase Activity of Bacterioferritin Comigratory Protein (BCP) as a New Member of the Thiol-Specific Antioxidant Protein (TSA)/Alkyl Hydroperoxide Peroxidase C (AhpC) Family. J. Biol. Chem. 2000, 275, 2924–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouhier, N.; Gelhaye, E.; Gualberto, J.M.; Jordy, M.-N.; De Fay, E.; Hirasawa, M.; Duplessis, S.; Lemaire, S.D.; Frey, P.; Martin, F.; et al. Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense. Plant. Physiol. 2004, 134, 1027–1038. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.J.; Mackay, C.L.; Campopiano, D.J.; Langridge-Smith, P.; Brown, A.R. Interrogating the Molecular Details of the Peroxiredoxin Activity of the Escherichia coli Bacterioferritin Comigratory Protein Using High-Resolution Mass Spectrometry. Biochemistry 2009, 48, 3904–3914. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.J.; Ortega, X.P.; Mackay, C.L.; Valvano, M.A.; Govan, J.R.W.; Campopiano, D.J.; Langridge-Smith, P.; Brown, A.R. Subdivision of the Bacterioferritin Comigratory Protein Family of Bacterial Peroxiredoxins Based on Catalytic Activity. Biochemistry 2010, 49, 1319–1330. [Google Scholar] [CrossRef]
- Hicks, L.D.; Raghavan, R.; Battisti, J.M.; Minnick, M.F. A DNA-Binding Peroxiredoxin of Coxiella burnetii Is Involved in Countering Oxidative Stress during Exponential-Phase Growth. J. Bacteriol. 2010, 192, 2077–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Chung, J.M.; Yun, H.J.; Won, J.; Jung, H.S. New Insight into Multifunctional Role of Peroxiredoxin Family Protein: Determination of DNA Protection Properties of Bacterioferritin Comigratory Protein under Hyperthermal and Oxidative Stresses. BioChem. Biophys. Res. Commun. 2016, 469, 1028–1033. [Google Scholar] [CrossRef]
- Chae, H.Z.; Robison, K.; Poole, L.B.; Church, G.; Storz, G.; Rhee, S.G. Cloning and Sequencing of Thiol-Specific Antioxidant from Mammalian Brain: Alkyl Hydroperoxide Reductase and Thiol-Specific Antioxidant Define a Large Family of Antioxidant Enzymes. Proc. Natl. Acad. Sci. USA 1994, 91, 7017–7021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, F.S.; Morgan, R.W.; Christman, M.F.; Ames, B.N. An Alkyl Hydroperoxide Reductase from Salmonella typhimurium Involved in the Defense of DNA against Oxidative Damage. Purification and Properties. J. Biol. Chem. 1989, 264, 1488–1496. [Google Scholar] [CrossRef]
- Storz, G.; Jacobson, F.S.; Tartaglia, L.A.; Morgan, R.W.; Silveira, L.A.; Ames, B.N. An Alkyl Hydroperoxide Reductase Induced by Oxidative Stress in Salmonella typhimurium and Escherichia coli: Genetic Characterization and Cloning of ahp. J. Bacteriol. 1989, 171, 2049–2055. [Google Scholar] [CrossRef] [Green Version]
- Poole, L.B.; Reynolds, C.M.; Wood, Z.A.; Karplus, P.A.; Ellis, H.R.; Li Calzi, M. AhpF and Other NADH:Peroxiredoxin Oxidoreductases, Homologues of Low Mr Thioredoxin Reductase. Eur. J. BioChem. 2000, 267, 6126–6133. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.B.; Godzik, A.; Nayeem, A.; Schmitt, J.D. AhpF Can Be Dissected into Two Functional Units: Tandem Repeats of Two Thioredoxin-like Folds in the N-Terminus Mediate Electron Transfer from the Thioredoxin Reductase-like C-Terminus to AhpC. Biochemistry 2000, 39, 6602–6615. [Google Scholar] [CrossRef]
- Jang, H.H.; Lee, K.O.; Chi, Y.H.; Jung, B.G.; Park, S.K.; Park, J.H.; Lee, J.R.; Lee, S.S.; Moon, J.C.; Yun, J.W.; et al. Two Enzymes in One; Two Yeast Peroxiredoxins Display Oxidative Stress-Dependent Switching from a Peroxidase to a Molecular Chaperone Function. Cell 2004, 117, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Parsonage, D.; Youngblood, D.S.; Sarma, G.N.; Wood, Z.A.; Karplus, P.A.; Poole, L.B. Analysis of the Link between Enzymatic Activity and Oligomeric State in AhpC, a Bacterial Peroxiredoxin. Biochemistry 2005, 44, 10583–10592. [Google Scholar] [CrossRef] [Green Version]
- Mongkolsuk, S.; Whangsuk, W.; Vattanaviboon, P.; Loprasert, S.; Fuangthong, M. A Xanthomonas Alkyl Hydroperoxide Reductase Subunit C (AhpC) Mutant Showed an Altered Peroxide Stress Response and Complex Regulation of the Compensatory Response of Peroxide Detoxification Enzymes. J. Bacteriol. 2000, 182, 6845–6849. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Jeong, H.; Lee, J.H.; Chung, J.M.; Kim, R.; Yun, H.J.; Won, J.; Jung, H.S. Characterisation of Conformational and Functional Features of Alkyl Hydroperoxide Reductase E-like Protein. BioChem. Biophys Res. Commun. 2017, 489, 217–222. [Google Scholar] [CrossRef]
- Li, S.; Peterson, N.A.; Kim, M.-Y.; Kim, C.-Y.; Hung, L.-W.; Yu, M.; Lekin, T.; Segelke, B.W.; Lott, J.S.; Baker, E.N. Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys Peroxiredoxin. J. Mol. Biol. 2005, 346, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.M.; Hugo, M.; Trostchansky, A.; Capece, L.; Radi, R.; Trujillo, M. Oxidizing Substrate Specificity of Mycobacterium tuberculosis Alkyl Hydroperoxide Reductase E: Kinetics and Mechanisms of Oxidation and Overoxidation. Free Radic. Biol. Med. 2011, 51, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Bryk, R.; Lima, C.D.; Erdjument-Bromage, H.; Tempst, P.; Nathan, C. Metabolic Enzymes of Mycobacteria Linked to Antioxidant Defense by a Thioredoxin-like Protein. Science 2002, 295, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.-J.; Jeong, H.; Lee, D.-S.; Kim, Y.; Lee, H.-S. The ahpD Gene of Corynebacterium glutamicum Plays an Important Role in Hydrogen Peroxide-Induced Oxidative Stress Response. J. BioChem. 2019, 165, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Hillas, P.J.; del Alba, F.S.; Oyarzabal, J.; Wilks, A.; Ortiz De Montellano, P.R. The AhpC and AhpD Antioxidant Defense System of Mycobacterium tuberculosis. J. Biol. Chem. 2000, 275, 18801–18809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Balakrishna, A.M.; Nartey, W.; Manimekalai, M.S.S.; Grüber, G. Redox. Chemistry of Mycobacterium tuberculosis Alkylhydroperoxide Reductase E (AhpE): Structural and Mechanistic Insight into a Mycoredoxin-1 Independent Reductive Pathway of AhpE via Mycothiol. Free Radic. Biol. Med. 2016, 97, 588–601. [Google Scholar] [CrossRef]
- Zhao, L.; Jeong, S.; Zhang, J.; Jung, J.-H.; Choi, J.-I.; Lim, S.; Kim, M.-K. Crystal Structure of the AhpD-like Protein DR1765 from Deinococcus radiodurans R1. BioChem. Biophys Res. Commun. 2020, 529, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Mongkolsuk, S.; Praituan, W.; Loprasert, S.; Fuangthong, M.; Chamnongpol, S. Identification and Characterization of a New Organic Hydroperoxide Resistance (ohr) Gene with a Novel Pattern of Oxidative Stress Regulation from Xanthomonas campestris Pv. phaseoli. J. Bacteriol. 1998, 180, 2636–2643. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, C.; Devedjian, J.C. Osmotic Induction of Gene osmC Expression in Escherichia coli K12. J. Mol. Biol. 1991, 220, 959–973. [Google Scholar] [CrossRef]
- Shin, D.H.; Choi, I.G.; Busso, D.; Jancarik, J.; Yokota, H.; Kim, R.; Kim, S.H. Structure of OsmC from Escherichia coli: A Salt-Shock-Induced Protein. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 903–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atichartpongkul, S.; Loprasert, S.; Vattanaviboon, P.; Whangsuk, W.; Helmann, J.D.; Mongkolsuk, S. Bacterial Ohr and OsmC Paralogues Define Two Protein Families with Distinct Functions and Patterns of Expression. Microbiology 2001, 147, 1775–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meireles, D.A.; Domingos, R.M.; Gaiarsa, J.W.; Ragnoni, E.G.; Bannitz-Fernandes, R.; da Silva Neto, J.F.; de Souza, R.F.; Netto, L.E.S. Functional and Evolutionary Characterization of Ohr Proteins in Eukaryotes Reveals Many Active Homologs among Pathogenic Fungi. Redox. Biol. 2017, 12, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Alegria, T.G.P.; Meireles, D.A.; Cussiol, J.R.R.; Hugo, M.; Trujillo, M.; de Oliveira, M.A.; Miyamoto, S.; Queiroz, R.F.; Valadares, N.F.; Garratt, R.C.; et al. Ohr Plays a Central Role in Bacterial Responses against Fatty Acid Hydroperoxides and Peroxynitrite. Proc. Natl. Acad. Sci. USA 2017, 114, E132–E141. [Google Scholar] [CrossRef] [Green Version]
- Lesniak, J.; Barton, W.A.; Nikolov, D.B. Structural and Functional Characterization of the Pseudomonas Hydroperoxide Resistance Protein Ohr. EMBO J. 2002, 21, 6649–6659. [Google Scholar] [CrossRef] [Green Version]
- Lesniak, J.; Barton, W.A.; Nikolov, D.B. Structural and Functional Features of the Escherichia coli Hydroperoxide Resistance Protein OsmC. Protein Sci. 2003, 12, 2838–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Baseman, J.B. Functional Characterization of Osmotically Inducible Protein C (MG_427) from Mycoplasma genitalium. J. Bacteriol. 2014, 196, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Cussiol, J.R.R.; Alegria, T.G.P.; Szweda, L.I.; Netto, L.E.S. Ohr (Organic Hydroperoxide Resistance Protein) Possesses a Previously Undescribed Activity, Lipoyl-Dependent Peroxidase. J. Biol. Chem. 2010, 285, 21943–21950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, M.; Su, T.; Chen, C.; Wei, Z.; Gong, Z.; Li, G. OsmC in Corynebacterium glutamicum Was a Thiol-Dependent Organic Hydroperoxide Reductase. Int. J. Biol. Macromol. 2019, 136, 642–652. [Google Scholar] [CrossRef]
- Basu, B.; Apte, S.K. Gamma Radiation-Induced Proteome of Deinococcus radiodurans Primarily Targets DNA Repair and Oxidative Stress Alleviation. Mol. Cell Proteomics 2012, 11, M111.011734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier-Jamin, C.; Kapp, U.; Leonard, G.A.; McSweeney, S. The Structure of the Organic Hydroperoxide Resistance Protein from Deinococcus radiodurans. Do Conformational Changes Facilitate Recycling of the Redox. Disulfide? J. Biol. Chem. 2004, 279, 25830–25837. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, J.; Liu, M.; Yang, S.; Zhao, Y.; Cheng, K.; Xu, G.; Li, M.; Tian, B.; Hua, Y. Proteomic Insights into the Functional Basis for the Response Regulator DrRRA of Deinococcus radiodurans. Int. J. Radiat. Biol. 2016, 92, 273–280. [Google Scholar] [CrossRef]
- Hiras, J.; Sharma, S.V.; Raman, V.; Tinson, R.A.J.; Arbach, M.; Rodrigues, D.F.; Norambuena, J.; Hamilton, C.J.; Hanson, T.E. Physiological Studies of Chlorobiaceae Suggest That Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria. mBio 2018, 9, e01603-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, G.L.; Rawat, M.; La Clair, J.J.; Jothivasan, V.K.; Budiarto, T.; Hamilton, C.J.; Claiborne, A.; Helmann, J.D.; Fahey, R.C. Bacillithiol Is an Antioxidant Thiol Produced in Bacilli. Nat. Chem. Biol. 2009, 5, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Linzner, N.; Loi, V.V.; Fritsch, V.N.; Tung, Q.N.; Stenzel, S.; Wirtz, M.; Hell, R.; Hamilton, C.J.; Tedin, K.; Fulde, M.; et al. Staphylococcus aureus Uses the Bacilliredoxin (BrxAB)/Bacillithiol Disulfide Reductase (YpdA) Redox. Pathway to Defend against Oxidative Stress under Infections. Front. MicroBiol. 2019, 10, 1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerstad, M.; Gudim, I.; Hersleth, H.-P. The Crystal Structures of Bacillithiol Disulfide Reductase Bdr (YpdA) Provide Structural and Functional Insight into a New Type of FAD-Containing NADPH-Dependent Oxidoreductase. Biochemistry 2020, 59, 4793–4798. [Google Scholar] [CrossRef]
- Gaballa, A.; Su, T.T.; Helmann, J.D. The Bacillus subtilis Monothiol Bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) Disulfide Reductase Reduce S-Bacillithiolated Proteins. Redox. Biol. 2021, 42, 101935. [Google Scholar] [CrossRef]
- Mikheyeva, I.V.; Thomas, J.M.; Kolar, S.L.; Corvaglia, A.-R.; Gaϊa, N.; Leo, S.; Francois, P.; Liu, G.Y.; Rawat, M.; Cheung, A.L. YpdA, a Putative Bacillithiol Disulfide Reductase, Contributes to Cellular Redox. Homeostasis and Virulence in Staphylococcus aureus. Mol. MicroBiol. 2019, 111, 1039–1056. [Google Scholar] [CrossRef]
- Chi, B.K.; Roberts, A.A.; Huyen, T.T.T.; Bäsell, K.; Becher, D.; Albrecht, D.; Hamilton, C.J.; Antelmann, H. S-Bacillithiolation Protects Conserved and Essential Proteins against Hypochlorite Stress in Firmicutes Bacteria. Antioxid. Redox. Signal. 2013, 18, 1273–1295. [Google Scholar] [CrossRef] [Green Version]
- Imber, M.; Huyen, N.T.T.; Pietrzyk-Brzezinska, A.J.; Loi, V.V.; Hillion, M.; Bernhardt, J.; Thärichen, L.; Kolšek, K.; Saleh, M.; Hamilton, C.J.; et al. Protein S-Bacillithiolation Functions in Thiol Protection and Redox. Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus under Hypochlorite Stress. Antioxid. Redox. Signal. 2018, 28, 410–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaballa, A.; Chi, B.K.; Roberts, A.A.; Becher, D.; Hamilton, C.J.; Antelmann, H.; Helmann, J.D. Redox. Regulation in Bacillus subtilis: The Bacilliredoxins BrxA(YphP) and BrxB(YqiW) Function in de-Bacillithiolation of S-Bacillithiolated OhrR and MetE. Antioxid. Redox. Signal. 2014, 21, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wei, J.; Zheng, Z.; Ying, N.; Sheng, D.; Hua, Y. Proteomic Analysis of Deinococcus radiodurans Recovering from Gamma-Irradiation. Proteomics 2005, 5, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Ujaoney, A.K.; Padwal, M.K.; Basu, B. Proteome Dynamics during Post-Desiccation Recovery Reveal Convergence of Desiccation and Gamma Radiation Stress Response Pathways in Deinococcus radiodurans. Biochim Biophys Acta Proteins Proteom 2017, 1865, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, T.; Murata, K.; Kawai, S. Extremely High Intracellular Concentration of Glucose-6-Phosphate and NAD(H) in Deinococcus radiodurans. Extremophiles 2017, 21, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Limauro, D.; Pedone, E.; Galdi, I.; Bartolucci, S. Peroxiredoxins as Cellular Guardians in Sulfolobus solfataricus: Characterization of Bcp1, Bcp3 and Bcp4. FEBS J. 2008, 275, 2067–2077. [Google Scholar] [CrossRef]
- Parsonage, D.; Karplus, P.A.; Poole, L.B. Substrate Specificity and Redox. Potential of AhpC, a Bacterial Peroxiredoxin. Proc. Natl. Acad. Sci. USA 2008, 105, 8209–8214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinz, W.A.; Aslund, F.; Holmgren, A.; Beckwith, J. The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coli Cytoplasm. J. Biol. Chem. 1997, 272, 15661–15667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashandy, T.; Guilleminot, J.; Vernoux, T.; Caparros-Ruiz, D.; Ljung, K.; Meyer, Y.; Reichheld, J.-P. Interplay between the NADP-Linked Thioredoxin and Glutathione Systems in Arabidopsis Auxin Signaling. Plant. Cell 2010, 22, 376–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaballa, A.; Newton, G.L.; Antelmann, H.; Parsonage, D.; Upton, H.; Rawat, M.; Claiborne, A.; Fahey, R.C.; Helmann, J.D. Biosynthesis and Functions of Bacillithiol, a Major Low-Molecular-Weight Thiol in Bacilli. Proc. Natl. Acad. Sci. USA 2010, 107, 6482–6486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network Protein Sequence Analysis. Trends Biochem. Sci. 2000, 25, 147–150. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
Species (Abbreviation) | Identified in | Genome Size (Mb) | Replicons (Kb) | Proteins | References |
---|---|---|---|---|---|
D. radiodurans (DR) | Canned meat, USA | 3.28 | 4 (2649, 412, 177, 46) | 3167 | [34,35,36] |
D. deserti (Deide) | Sahara Desert sand, Morocco/Tunisia | 3.86 | 4 (2820, 325, 314, 396) | 3503 | [5,37] |
D. geothermalis (Dgeo) | Hot spring, Italy | 3.25 | 3 (2467, 574, 206) | 3003 | [38,39] |
D. gobiensis (DGo) | Gobi Desert sand, China | 4.41 | 7 (3137, 433, 425, 232, 72, 55, 53) | 4140 | [40,41] |
D. maricopensis (Deima) | Sonoran Desert soil, USA | 3.5 | 1 (3499) | 3242 | [42,43] |
D. peraridilitoris (Deipe) | Coastal desert soil, Chile | 4.51 | 3 (3882, 557, 75) | 4223 | [44] |
D. proteolyticus (Deipr) | Lama glama faeces, Japan | 2.89 | 5 (2147, 315, 196, 132, 97) | 2645 | [35,45,46] |
Name/Description | DR | Deide | Dgeo | DGo | Deima | Deipe | Deipr |
---|---|---|---|---|---|---|---|
Thioredoxin reductase, thioredoxins, and thioredoxin-like proteins | |||||||
TrxR | _1982 | _05800 | _1576 _2772 | _CA2339 | _1454 | _0175 _3902 | _0873 |
TrxA (Trx1) | _0944 | _18600 | _1837 | _CA0861 | _2910 | _3068 _3873 _3901 | _0424 |
TrxC (Trx2) | _A0164 | _01140 | _2518 | ||||
Trx-like | _2085 | _06390 | _1508 | _CA2073 | _1013 | _0695 | _0576 |
Trx-like | _0057 | _13741 | _0729 | _CA0407 | _1186 | _0565 | _1451 |
Trx-like | _A0072 | _2583 | _PC0201 _PC0211 | _2424 _2732 | |||
Trx-like | _B0110 | _1776 | _PA0204 | _2190 | |||
Trx-like | _0948 | _06780 | _1960 | _CA2541 | _2994 | _1792 | |
Other thiol-based disulfide oxidoreductases, (predicted) cytoplasmic | |||||||
FrnE | _0659 | _00690 | _2073 | _CA0380 | _0892 | _2202 | _1901 |
FrnE-like | _3p01230 | _1559 | |||||
DSBA-like Trx domain-containing protein | _2335 | _22890 | _CA0030 | _0620 | _1019 | ||
Other thiol-based disulfide oxidoreductases, (predicted) periplasmic or cytoplasmic membrane | |||||||
DsbA family protein | _2019 _0560 | _06420 | _0747 | _CA1399 | _1134 | _0943 | |
DsbA family protein | _0753 | _12740 | _0692 | _CA1008 | _1749 | _0493 (and _2421?) | |
DsbB family | _0754 | _12730 | _0691 | _CA1007 | _1748 | _0492 | |
DsbD family; CcdA | _1300 | _08350 | _1241 | _CA1639 | _1155 | _0794 | _0982 |
TlpA-like family; DsbE/CcmG | _0345 _0189 | _08290 | _1248 | _CA2017 _PC0193 | _1148 (and _1627?) | _0801 _4366 | _0892 |
DsbD family; CcdA | _2p00430 | _0661 | |||||
TlpA-like family; DsbE/CcmG | _2p00420 | _0660 | |||||
Thioredoxin-dependent methionine sulfoxide reductases, cytoplasmic | |||||||
MsrA | _1849 | _10980 | _0843 | _CA1541 | _1788 | _3499 | _1412 |
MsrB | _1378 | _04050 | _2072 | _CA0919 | _1441 | _4299 | _1900 |
Potential Mo-dependent methionine sulfoxide reductases, predicted cytoplasmic | |||||||
Molybdopterin oxidoreductase family protein | _0397 | _18410 | _0402 | _CA0112 | _0538 | _1423 | _1886 |
Sulfite oxidase family, molybdopterin-binding domain | _0716 | _17540 | _1719 | _CA1115 | _0813 | _2833 | _0695 |
Mo-dependent methionine sulfoxide reductase system, periplasmic | |||||||
MsrP | “_2536” (frame-shift) | _20380 | _0877 | _CA2733 | _3114 | _2978 | _1129 |
MsrQ | _2537 | _20370 | _0878 | _CA2734 | _3115 | _2977 | _1128 |
Thioredoxin-dependent peroxidases | |||||||
PRX_BCP | _0846 | _10900 | DgeoAM_1323 a | _CA1364 | _2368 | _0259 | _0703 |
PRX_BCP | _1209 _1208 | _09051 | _0990 _2729 | _CA1403 | _1714 _0169 | _3580 _3178 | _1557 |
PRX_BCP | _23291 (partial?) | _CA0314 | |||||
Alkyl hydroperoxide reductases | |||||||
AhpE (PRX_AhpE_like) | _2242 | _02430 | _0122 | _CA2657 | _0618 | _1016 | _0175 |
AhpD-like | _1765 | _13030 _1p00700 | _1446 | _CA1027 | _0298 | _3296 _4199 _3903 _3878 _3900 | _2741 |
OsmC/Ohr/YhfA family proteins | |||||||
OsmC | _1538 | _16090 | _0526 | _CA1241 | _0667 | _3743 | |
Ohr | _1857 | _0446 | _CA0901 _CA1828 | _2331 _0137 | _0225 | _0815 _0816 | |
YhfA | _1177 | _10790 _21170 | _1268 | _CA1763 | _2343 | _0234 _0648 | _0697 |
Bacillithiol disulfide reductase, bacilliredoxin | |||||||
Bdr | _2623 | _23360 | _2331 | _CA0078 | _0670 | _2475 | _1732 |
Brx (AbxC) | _1832 | _14700 | _1464 | _CA1021 | _1446 | _3166 | _0555 |
Trx1/Trx2 | DR_2085-Type (TRP14-Like) | DR_A0072-Type | DR_B0110-Type | DR_0057-Type (MGP12-Like) | DR_0948-Type | |
---|---|---|---|---|---|---|
DR | WCGPC | WCPDC | DCPDC | ACPGC | GCHLC | ECPGC |
Deide | WCGPC | WCPDC | GCHLC | ECSGC | ||
Dgeo | WCGPC | WCPDC | NCSSC | NCPAC | GCHLC | ECPGC |
DGo | WCGPC | WCPDC | QCADC GCASC | ACPDC | GCHLC | ECPGC |
Deima | WCGPC | WCPDC | GCHLC | ECAGC | ||
Deipe | WCGPC | WCPDC | GCHLC | |||
Deipr | WCGPC | WCPDC | DCADC TCPDC | NCPNC | SCKLC | ECAGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Groot, A.; Blanchard, L.; Rouhier, N.; Rey, P. Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants 2022, 11, 561. https://doi.org/10.3390/antiox11030561
de Groot A, Blanchard L, Rouhier N, Rey P. Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants. 2022; 11(3):561. https://doi.org/10.3390/antiox11030561
Chicago/Turabian Stylede Groot, Arjan, Laurence Blanchard, Nicolas Rouhier, and Pascal Rey. 2022. "Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance" Antioxidants 11, no. 3: 561. https://doi.org/10.3390/antiox11030561
APA Stylede Groot, A., Blanchard, L., Rouhier, N., & Rey, P. (2022). Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants, 11(3), 561. https://doi.org/10.3390/antiox11030561