Occupational Health Aspects with Special Focus on Physiological Differences between Office and Metalworkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sampling
2.3. Laboratory Analysis—Routine Procedures and Cutting-Edge Biomarkers
2.4. Statistics
3. Results
3.1. Group-Specific Differences
3.2. Sex-Specific Differences
3.3. Age-Specific Differences
3.4. BMI-Specific Differences
3.5. Spearman Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Khaliq, F.; Singh, S.; Ahmed, R.; Kumar, R.; Deshmukh, P.S.; Banerjee, B.D. Pulmonary Functions, Oxidative Stress and DNA Damage in Workers of a Copper Processing Industry. Int. J. Occup. Environ. Med. 2016, 7, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venta, R.; Cruz, E.; Valcarcel, G.; Terrados, N. Plasma Vitamins, Amino Acids, and Renal Function in Postexercise Hyperhomocysteinemia. Med. Sci. Sport. Exerc. 2009, 41, 1645–1651. [Google Scholar] [CrossRef]
- Lee, W.; Kang, S.-K.; Choi, W.-J. Effect of long work hours and shift work on high-sensitivity C-reactive protein levels among Korean workers. Scand. J. Work Environ. Health 2021, 47, 200–207. [Google Scholar] [CrossRef]
- Lai, C.Y.; Lai, C.-H.; Chuang, H.-C.; Pan, C.-H.; Yen, C.-C.; Lin, W.-Y.; Chen, J.-K.; Lin, L.-Y.; Chuang, K.-J. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: A study of human coronary artery endothelial cells and welding workers. Sci. Rep. 2016, 6, 33515. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.M.; Cheng, N.; Pu, H.Q.; Liu, S.M.; Li, J.S.; Bassig, B.A.; Dai, M.; Li, H.Y.; Hu, X.B.; Ren, X.W.; et al. Metal Exposure and Risk of Diabetes and Prediabetes among Chinese Occupational Workers. Biomed. Environ. Sci. 2015, 28, 875–883. [Google Scholar] [PubMed]
- Cabral, G.C.; De Souza, A.C.D.; Barbosa, I.R.; Jerez-Roig, J.; Souza, D.L.B. Multimorbidity and Its Impact on Workers: A Review of Longitudinal Studies. Saf. Health Work 2019, 10, 393–399. [Google Scholar] [CrossRef]
- Alavi, S.S.; Makarem, J.; Mehrdad, R.; Abbasi, M. Metabolic Syndrome: A Common Problem among Office Workers. Int. J. Occup. Environ. Med. 2015, 6, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, Y.; Lim, S.-S.; Ryoo, J.-H.; Yoon, J.-H. Long Commute Time and Sleep Problems with Gender Difference in Work-Life Balance: A Cross-sectional Study of More than 25,000 Workers. Saf. Health Work 2019, 10, 470–475. [Google Scholar] [CrossRef]
- Biganeh, J.; Ashtarinezhad, A.; Behzadipour, D.; Khanjani, N.; Nik, A.T.; Hosseinabadi, M.B. Investigating the relationship between job stress, workload and oxidative stress in nurses. J. Occup. Saf. Ergon. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Zelzer, S.; Tatzber, F.; Herrmann, M.; Wonisch, W.; Rinnerhofer, S.; Kundi, M.; Obermayer-Pietsch, B.; Niedrist, T.; Cvirn, G.; Wultsch, G.; et al. Work Intensity, Low-Grade Inflammation, and Oxidative Status: A Comparison between Office and Slaughterhouse Workers. Oxidative Med. Cell. Longev. 2018, 2018, 2737563. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Kurano, M.; Hasegawa, T.; Takano, H.; Iida, H.; Yasuda, T.; Fukuda, T.; Madarame, H.; Uno, K.; Meguro, K.; et al. Pentraxin3 and high-sensitive C-reactive protein are independent inflammatory markers released during high-intensity exercise. Eur. J. Appl. Physiol. 2010, 110, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Mathad, J.S.; Gupte, N.; Balagopal, A.; Asmuth, D.; Hakim, J.; Santos, B.; Riviere, C.; Hosseinipour, M.; Sugandhavesa, P.; Infante, R.; et al. Sex-related Differences in Inflammatory and Immune Activation Markers before and after combined Antiretroviral Therapy Initiation. J. Acquir. Immune Defic. Syndr. 2016, 73, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wonisch, W.; Falk, A.; Sundl, B.; Winklhofer-Roob, B.M.; Lindschinger, M. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male 2012, 15, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.M.; Cox, A.J.; Roberts, L.; Pennell, E.N.; McKeating, D.R.; Fisher, J.J.; Perkins, A.V.; Minahan, C. Temporal changes in blood oxidative stress biomarkers across the menstrual cycle and with oral contraceptive use in active women. Eur. J. Appl. Physiol. 2021, 121, 2607–2620. [Google Scholar] [CrossRef]
- Ou, S.-Y.; Luo, H.-L.; Mailman, R.B.; Li, Z.-C.; Zhang, Y.-W.; Cai, M.; Huang, X.-W.; Li, S.-J.; Jiang, Y.-M. Effect of manganese on neural endocrine hormones in serum of welders and smelters. J. Trace Elem. Med. Biol. 2018, 50, 1–7. [Google Scholar] [CrossRef]
- Tatzber, F.; Wonisch, W.; Lackner, S.; Lindschinger, M.; Pursch, W.; Resch, U.; Trummer, C.; Murkovic, M.; Zelzer, S.; Holasek, S.; et al. A Micromethod for Polyphenol High-Throughput Screening Saves 90 Percent Reagents and Sample Volume. Antioxidants 2020, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Tatzber, F.; Griebenow, S.; Wonisch, W.; Winkler, R. Dual method for the determination of peroxide activity and total peroxides–iodide leads to a significant increase of peroxidase activity in human sera. Anal. Biochem. 2003, 316, 147–153. [Google Scholar] [CrossRef]
- Roob, J.M.; Faustmann, G.; Hafner-Giessauf, H.; Öttl, K.; Wonisch, W.; Sattler, M.C.; Grabher, J.; Kieslinger, P.; Gruber, H.J.; Tiran, B.; et al. Declining renal function and thresholds of estimated glomerular filtration rate: Impact on biomarkers of oxidative stress in the BIOCLAIMS cohort. Free Radic. Biol. Med. 2018, 120, S42–S43. [Google Scholar] [CrossRef]
- Nikolic-Heitzler, V.; Rabuzin, F.; Tatzber, F.; Vrkic, N.; Bulj, N.; Borovic, S.; Wonisch, W.; Sunko, B.M.; Zarkovic, N. Persistent Oxidative Stress after Myocardial Infarction Treated by Percutaneous Coronary Intervention. Tohoku J. Exp. Med. 2006, 210, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Zembron-Lacny, A.; Morawin, B.; Wawrzyniak-Gramacka, E.; Gramacki, J.; Jarmuzek, P.; Kotlega, D.; Ziemann, E. Multiple Cryotherapy Attenuates Oxi-Inflammatory Response Following Skeletal Muscle Injury. Int. J. Environ. Res. Public Health 2020, 17, 7855. [Google Scholar] [CrossRef]
- Wu, W.-T.; Jung, W.-T.; Lee, H.-L. Lipid peroxidation metabolites associated with biomarkers of inflammation and oxidation stress in workers handling carbon nanotubes and metal oxide nanoparticles. Nanotoxicology 2021, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pelclova, D.; Zdimal, V.; Kacer, P.; Komarc, M.; Fenclova, Z.; Vlckova, S.; Zikova, N.; Schwarz, J.; Makes, O.; Navratil, T.; et al. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev. Environ. Health 2017, 32, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Kasperczyk, S.; Kasperczyk, J.; Ostalowska, A.; Zalejska-Fiolka, J.; Wielkoszynski, T.; Swietochowska, E.; Birkner, E. The Role of the Antioxidant Enzymes in Erythrocytes in the Development of Arterial Hypertension among Humans Exposed to Lead. Biol. Trace Elem. Res. 2009, 130, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Bozdemir-Ozel, C.; Arikan, H.; Calik-Kutukcu, E.; Karadüz, B.N.; Inal-Ince, D.; Kabakci, G.; Sumer, E.; Dagdelen, S. Subclinical Inflammation Is Associated with Reductions in Muscle Oxygenation, Exercise Capacity and Quality of Life in Adults with Type 2 Diabetes. Can. J. Diabetes 2020, 44, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Izawa, S.; Tsutsumi, A.; Ogawa, N. Effort-reward imbalance, cortisol secretion, and inflammatory activity in police officers with 24-h work shifts. Int. Arch. Occup. Environ. Health 2016, 89, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chen, B.; Guo, L.; Li, Z.; Zhao, Y.; Zeng, H. High-sensitivity CRP: Possible link between job stress and atherosclerosis. Am. J. Ind. Med. 2015, 58, 773–779. [Google Scholar] [CrossRef]
- Houttu, V.; Boulund, U.; Nicolaou, M.; Holleboom, A.G.; Grefhorst, A.; Galenkamp, H.; van den Born, B.-J.; Zwinderman, K.; Nieuwdorp, M. Physical activity and dietary composition relate to differences in gut microbial patterns in a multi-ethnic cohort–The HELIUS Study. Metabolites 2021, 11, 858. [Google Scholar] [CrossRef]
- Ticinesi, A.; Lauretani, F.; Tana, C.; Nouvenne, A.; Ridolo, E.; Meschi, T. Exercise and immune system as modulators of intestinal microbiome: Implications for the gut-muscle axis hypothesis. Exerc. Immunol. Rev. 2019, 25, 84–95. [Google Scholar]
- Lai, P.S.; Christiani, D.C. Impact of occupational exposure on human microbiota. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 86–91. [Google Scholar] [CrossRef]
- Kakade, A.; Salama, E.-S.; Pengya, F.; Liu, P.; Li, X. Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common car, Cyprinus carpio. Environ. Pollut. 2020, 266, 115293. [Google Scholar] [CrossRef]
- Park, J.B. Reduction of dehydroascorbic acid by homocysteine. Biochim. Biophys. Acta 2001, 1525, 173–179. [Google Scholar] [CrossRef]
- Pfanzagl, B. Ascorbate is particularly effective against LDL oxidation in the presence of iron(III) and homocysteine/cystine at acidic pH. Biochim. Biophys. Acta 2005, 1736, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Brattström, L.; Lindgren, A.; Israelsson, B.; Andersson, A.; Hultberg, B. Homocysteine and cysteine: Determinants of plasma levels in middle-aged and elderly subjects. J. Intern. Med. 1994, 236, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Stanger, O.; Semmelrock, H.J.; Wonisch, W.; Bös, U.; Pabst, E.; Wascher, T.C. Effects of Folate Treatment and Homocysteine Lowering on Resistance Vessel Reactivity in Atherosclerotic Subjects. J. Pharmacol. Exp. Ther. 2002, 303, 158–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cree, C.; Malinow, M.R.; van Krnanenburg, G.P.; Geurten, P.G.; Longford, N.T.; Keizer, H.A. Influence of exercise and menstrual cycle phase on plasma homost(e)ine levels in young women—A prospective study. Scand. J. Med. Sci. Sport. 1999, 9, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Stanger, O. Homocystein; Verlag Wilhelm Maudrich–Wien-München-Bern: Vienna-Munich-Bern, Germany, 2004; p. 353 ff. [Google Scholar]
- Hartung, D.; Stadeler, M.; Grieshaber, R.; Keller, S.; Jahreis, G. Work and diet-related risk factors of cardiovascular diseases: Comparison of two occupational groups. J. Occup. Med. Toxicol. 2010, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, N.E.; Jones, R.R.; Stolzenberg-Solomon, R.Z.; Medgyesi, D.N.; Kahle, L.L.; Graubard, B.I. Insulin Resistance in Healthy U.S. Adults: Findings from the National Health and Nutrition Examination Survey (NHANES). Cancer Epidemiol. Biomark. Prev. 2020, 29, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Akter, S.; Eguchi, M.; Kuwahara, K.; Kochi, T.; Ito, R.; Kurotani, K.; Tsuruoka, H.; Nanri, A.; Kabe, I.; Mizoue, T. High dietary acid load is associated with insulin resistance: The Furukawa Nutrition and Health Study. Clin. Nutr. 2016, 35, 453–459. [Google Scholar] [CrossRef]
- Akter, S.; Eguchi, M.; Kochi, T.; Kabe, I.; Nanri, A.; Mizoue, T. Association of Serum Calcium and Phosphate Concentrations with Glucose Metabolism Markers: The Furukawa Nutrition and Health Study. Nutrients 2020, 12, 2344. [Google Scholar] [CrossRef]
- Akter, S.; Eguchi, M.; Nanri, A.; Kochi, T.; Kashino, I.; Kuwahara, K.; Hu, H.; Miki, T.; Kabe, I.; Mizoue, T. Association of dietary and serum magnesium with glucose metabolism markers: The Furukawa Nutrition and Health Study. Clin. Nutr. ESPEN 2018, 24, 71–77. [Google Scholar] [CrossRef]
- Demir, I.; Toker, A.; Zengin, S.; Laloglu, E.; Aksoy, H. Oxidative stress and insulin resistance in policemen working shifts. Int. Arch. Occup. Environ. Health 2016, 89, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Ledda, C.; Cina, D.; Matera, S.; Mucci, N.; Bracci, M.; Rapisarda, V. High HOMA-IR Index in healthcare shift workers. Medicina 2019, 55, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.-X.; Xiao, H.-B.; Wang, S.-S.; Zhao, J.; He, Y.; Wang, W.; Dong, J. Investigation of the relationship between chronic stress and Insulin resistance in a Chinese population. J. Epidemiol. 2016, 26, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasiakos, S.M.; Karl, J.P.; Lutz, L.J.; Murphy, N.E.; Margolis, L.M.; Rood, J.C.; Cable, S.J.; Williams, K.W.; Young, A.J.; McClung, J.P. Cardiometabolic Risk in US Army Recruits and the Effects of Basic Combat Training. PLoS ONE 2012, 7, e31222. [Google Scholar] [CrossRef] [Green Version]
- Tissandier, O.; Peres, G.; Fiet, J.; Piette, F. Testosterone, dehydroepiandrosterone, insulin-like growth factor 1, and insulin in sedentary and physically trained aged men. Eur. J. Appl. Physiol. 2001, 85, 177–184. [Google Scholar] [CrossRef]
- Tehrani, F.R.; Mansournia, M.A.; Solaymani-Dodaran, M.; Minooee, S.; Azizi, F. Serum variations of anti-mullerian hormone and total testosterone with aging in healthy adult Iranian men: A population-based study. PLoS ONE 2017, 12, e0179634. [Google Scholar]
- Chong, Y.H.; Dennis, N.A.; Connolly, M.J.; Teh, R.; Jones, G.T.; van Rij, A.M.; Farrand, S.; Campbell, A.J.; MLennan, I.S. Elderly Men Have Low Levels of Anti-Müllerian Hormone and Inhibin B, but with High Interpersonal Variation: A Cross-Sectional Study of the Sertoli Cell Hormones in 615 Community-Dwelling Men. PLoS ONE 2013, 8, e70967. [Google Scholar] [CrossRef]
- Bastu, E.; Zeybek, U.; Gurevin, E.G.; Ozgor, B.Y.; Celik, F.; Okumus, N.; Demiral, I.; Dural, O.; Celik, C.; Bulut, H.; et al. Effects of Irisin and Exercise on Metabolic Parameters and Reproductive Hormone Levels in High-Fat Diet-Induced Obese Female Mice. Reprod. Sci. 2018, 25, 281–291. [Google Scholar] [CrossRef]
- Kadariya, D.; Kurbanova, N.; Qayyum, R. Association of Anti-Mullerian Hormone with C-Reactive Protein in Men. Sci. Rep. 2019, 9, 13081. [Google Scholar] [CrossRef]
- Qayyum, R.; Akbar, S. Serum anti-mullerian hormone and all-cause mortality in men. Endocrine 2016, 54, 225–231. [Google Scholar] [CrossRef]
- Kanabar, R.; Mazur, A.; Plum, A.; Schmied, J. Correlates of testosterone change as men age. Aging Male 2022, 25, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Jung, W.-S.; Hong, K.; Kim, Y.-Y.; Kim, S.-W.; Park, H.-Y. Effects of Moderate Combined Resistance- and Aerobic Exercise for 12 Weeks on Body Composition, Cardiometabolic Risk Factors, Blood Pressure, Arterial Stiffness, and Physical Functions, among Obese Older Men: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 7233. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bhattacharjee, R.; Kheirandish-Gozal, L.; Khalyfa, A.; Capdevila, O.S.; Tauman, R.; Gozal, D. Insulin Sensitivity, Serum Lipids, and Systemic Inflammatory Markers in School-Aged Obese and Nonobese Children. Int. J. Pediatrics 2010, 2010, 846098. [Google Scholar] [CrossRef] [PubMed]
- Taskiran, B.; Cansu, G.B.; Bahadir, E.; Mutluay, R. Role of Vitamin D in Intima Media Thickness in Patients with Type 1 Diabetes Mellitus. J. Natl. Med. Assoc. 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Farukuoye, M.; Strassburger, K.; Kacerovsky-Bielesz, G.; Giani, G.; Roden, M. Validity and reproducibility of an interviewer-administered food frequency questionnaire in Austrian adults at risk of or with overt diabetes mellitus. Nutr. Res. 2014, 34, 410–419. [Google Scholar] [CrossRef] [PubMed]
Parameter | Office Employees | Metalworkers | ||||
---|---|---|---|---|---|---|
(n = 29) | (n = 19) | |||||
Mean (95% CI) | Mean (95% CI) | p Group | p Sex | p Age | p BMI | |
Age, years | 42.5 (39.9–45.0) | 35.3 (32.1–38.5) | <0.001 | 0.008 | - | - |
Height, cm | 178 (176–181) | 177 (173–180) | 0.439 | <0.001 | - | - |
Weight, kg | 80.1 (76.3–83.9) | 78.3 (73.6–83.1) | 0.569 | <0.001 | - | - |
BMI, kg/m2 | 25.2 (23.9–26.4) | 25.2 (23.6–26.7) | 1.000 | 0.140 | - | - |
hsCRP, mg/L | 0.99 (0.68–1.44) | 1.75 (1.09–2.82) | 0.080 | 0.251 | 0.135 | 0.385 |
DHEAS, µg/dL | 263 (232–299) | 343 (292–403) | 0.017 | 0.040 | <0.001 | 0.242 |
ACTH, pg/mL | 19.6 (16.3–23.7) | 31.22 (24.57–39.66) | 0.005 | 0.421 | 0.889 | 0.290 |
TAC, mmol/L | 1.81 (1.62–2.02) | 1.72 (1.51–1.97) | 0.614 | 0.724 | 0.800 | 0.799 |
EPA, U/L | 8.49 (7.22–9.98) | 7.03 (5.73–8.63) | 0.188 | 0.359 | 0.719 | 0.723 |
Polyphenols, mmol/L | 11.9 (11.7–12.1) | 11.7 (11.5–12.0) | 0.258 | 0.620 | 0.931 | 0.990 |
Uric acid, mg/dL | 5.59 (5.28–5.90) | 5.51 (5.11–5.90) | 0.762 | <0.001 | 0.673 | 0.068 |
TOC, µmol/L | 141 (112–170) | 225 (189–262) | 0.001 | 0.189 | 0.205 | 0.218 |
Homocysteine, µmol/L | 11.6 (10.7–12.7) | 16.0 (14.3–17.8) | <0.001 | 0.004 | 0.463 | 0.623 |
LDL, mg/dL | 120 (109–134) | 129 (113–147) | 0.460 | 0.224 | 0.137 | 0.077 |
HDL, mg/dL | 57.6 (53.8–61.6) | 55.6 (51.0–60.5) | 0.550 | 0.830 | 0.938 | 0.058 |
LDL-HDL ratio | 2.25 (1.95–2.54) | 2.48 (2.10–2.85) | 0.376 | 0.343 | 0.167 | 0.037 |
Cholesterol, mg/dL | 199 (186–214) | 214 (195–234) | 0.253 | 0.121 | 0.102 | 0.160 |
Cholesterol/HDL ratio | 3.45 (3.16–3.78) | 3.84 (3.43–4.30) | 0.170 | 0.190 | 0.210 | 0.013 |
Triglycerides, mg/dL | 82.8 (71.4–96.0) | 126 (105–153) | 0.001 | 0.010 | 0.301 | 0.058 |
Glucose, mg/dL | 90.2 (87.9–92.6) | 87.9 (84.9–90.9) | 0.256 | 0.115 | 0.422 | 0.229 |
HbA1c, mmol/mol | 31.1 (30.2–31.9) | 32.9 (31.8–34.0) | 0.016 | 0.051 | 0.047 | 0.875 |
Copeptin, pmol/L | 5.01 (3.82–6.56) | 6.21 (4.43–8.69) | 0.358 | 0.114 | 0.914 | 0.440 |
OL, mosmol/kg | 285 (283–286) | 289 (287–290) | <0.001 | 0.001 | 0.199 | 0.597 |
Creatinine, g/L | 1.23 (1.04–1.45) | 1.61 (1.26–2.06) | 0.087 | 0.974 | 0.390 | 0.711 |
Adrenaline, µg/g | 3.08 (2.41–3.93) | 1.58 (1.10–2.27) | 0.004 | 0.342 | 0.036 | 0.749 |
Noradrenaline, µg/g | 12.9 (10.7–15.6) | 14.6 (11.1–19.4) | 0.487 | 0.446 | 0.478 | 0.991 |
Dopamine, µg/g | 147 (126–170) | 169 (135–212) | 0.319 | 0.136 | 0.335 | 0.736 |
AMH, ng/mL | 5.03 (4.00–6.07) | 5.91 (4.61–7.22) | 0.328 | <0.001 | 0.022 | 0.994 |
Androstenedione, ng/mL | 1.88 (1.64–2.15) | 2.44 (2.05–2.89) | 0.027 | 0.575 | 0.259 | 0.212 |
Cortisol, ng/mL | 95.0 (84.9–106) | 143 (124–165) | <0.001 | 0.067 | 0.515 | 0.067 |
FSH, mIU/mL | 4.05 (3.07–5.33) | 3.78 (2.67–5.36) | 0.777 | 0.375 | 0.387 | 0.052 |
Free testo, pg/mL | 7.75 (7.09–8.42) | 8.02 (7.18–8.87) | 0.643 | <0.001 | <0.001 | 0.392 |
Total testo, ng/mL | 3.47 (3.07–3.87) | 3.84 (3.34–4.35) | 0.284 | <0.001 | 0.004 | 0.148 |
HOMA-IR | 0.96 (0.78–1.17) | 1.51 (1.17–1.95) | 0.011 | 0.464 | 0.838 | 0.002 |
Parameter | Office Employees | Metalworkers | ||
---|---|---|---|---|
Males (n = 26) | Females (n = 4) | Males (n = 15) | Females (n = 5) | |
Mean (95% CI) | Mean (95% CI) | |||
Age, years | 43.4 (40.7–46.2) | 37.9 (31.0–44.8) | 36.9 (33.3–40.5) | 27.7 (20.8–34.6) |
Height, cm | 181 (178–183) | 165 (158–172) | 179 (176–183) | 163 (157–170) |
Weight, kg | 84.1 (80.1–88.1) | 58.8 (48.7–68.78) | 80.0 (74.8–85.2) | 68.0 (58.0–78.0) |
BMI, kg/m2 | 25.8 (24.5–27.2) | 21.5 (18.2–24.7) | 25.0 (23.3–26.7) | 25.6 (22.3–28.9) |
hsCRP, mg/L | 0.91 (0.61–1.37) | 1.56 (0.58–4.24) | 1.65 (1.00–2.72) | 2.41 (0.82–7.13) |
DHEAS, µg/dL | 274 (239–315) | 224 (160–314) | 365 (308–432) | 252 (175–364) |
ACTH, pg/mL | 19.7 (16.1–24.1) | 21.4 (13.0–35.2) | 33.6 (26.1–43.1) | 21.6 (12.6–37.0) |
TAC, mmol/L | 1.84 (1.64–2.07) | 1.84 (1.64–2.07) | 1.70 (1.48–1.96) | 1.85 (1.36–2.51) |
EPA, U/L | 8.54 (7.17–10.18) | 8.96 (5.98–13.44) | 7.50 (6.06–9.27) | 5.14 (3.29–8.02) |
Polyphenols, mmol/L | 11.9 (11.7–12.1) | 11.8 (11.3–12.2) | 11.7 (11.5–11.9) | 12.1 (11.6–12.6) |
Uric acid, mg/dL | 5.76 (5.42–6.09) | 4.87 (4.04–5.70) | 5.75 (5.33–6.17) | 4.26 (3.36–5.17) |
TOC, µmol/L | 134 (102–167) | 174 (98.5–250) | 218 (180–257) | 260 (176–344) |
Homocysteine, µmol/L | 12.4 (11.3–13.5) | 8.04 (6.45–10.02) | 16.2 (14.5–18.1) | 14.9 (11.8–19.0) |
LDL, mg/dL | 124 (111–139) | 101 (76.5–133) | 130 (113 -150) | 122 (90.5–165) |
HDL, mg/dL | 57.3 (53.3–61.7) | 59.0 (49.3–70.7) | 55.6 (50.7–60.8) | 55.6 (45.7–67.6) |
LDL-HDL ratio | 2.30 (1.98–2.63) | 1.93 (1.13–2.72) | 2.51 (2.11–2.92) | 2.29 (1.42–3.16) |
Cholesterol, mg/dL | 203 (188–220) | 179 (148–217) | 218 (198–239) | 194 (159–239) |
Cholesterol/HDL ratio | 3.54 (3.21–3.90) | 3.04 (2.40–3.87) | 3.91 (3.47–4.41) | 3.53 (2.72–4.58) |
Triglycerides, mg/dL | 87.3 (74.4–103) | 66.9 (45.1–99.1) | 139 (114–169) | 78.3 (51.1–120) |
Glucose, mg/dL | 90.8 (88.2–93.4) | 87.5 (81.2–93.9) | 88.7 (85.5–91.9) | 83.8 (76.9–90.7) |
HbA1c, mmol/mol | 31.2 (30.4–32.2) | 30.5 (28.4–32.7) | 33.4 (32.2–34.6) | 30.4 (28.2–32.8) |
Copeptin, pmol/L | 5.26 (3.93–7.05) | 4.40 (2.16–8.95) | 7.03 (4.93–10.02) | 3.28 (1.52–7.05) |
OL, mosmol/kg | 285 (284–287) | 282 (278–285) | 290 (288–291) | 284 (280–288) |
Creatinine, g/L | 1.22 (1.02–1.46) | 1.32 (0.83–2.09) | 1.64 (1.26–2.14) | 1.44 (0.82–2.54) |
Adrenaline, µg/g | 3.30 (2.54–4.29) | 1.93 (0.99–3.75) | 1.55 (1.06–2.28) | 1.74 (0.77–3.96) |
Noradrenaline, µg/g | 12.9 (10.6–15.8) | 11.4 (6.9–18.9) | 13.3 (9.9–17.8) | 24.2 (13.0–45.1) |
Dopamine, µg/g | 140 (119–165) | 189 (124–286) | 163 (128–208) | 202 (121–337) |
AMH, ng/mL | 4.53 (3.64–5.65) | 0.67 (0.12–3.90) | 6.20 (4.66–8.24) | 1.96 (0.30–12.9) |
Androstenedione, ng/mL | 11.9 (1.63–2.13) | 1.70 (0.76–3.79) | 2.53 (2.07–3.10) | 2.47 (1.41–4.31) |
Cortisol, ng/mL | 98.8 (87.9–111) | 72.5 (47.2–112) | 149 (127–175) | 127 (71.5–224) |
FSH, mIU/mL | 4.63 (3.66–5.85) | 3.29 (0.17–62.7) | 4.07 (2.95–5.61) | 3.35 (0.40–28.2) |
Free testo, pg/mL | 8.45 (7.62–9.36) | 0.90 (0.44–1.84) | 9.76 (8.47–11.3) | 1.34 (0.67–2.67) |
Total testo, ng/mL | 3.45 (2.56–4.65) | 0.12 (0.06–0.24) | 4.77 (4.09–5.55) | 0.19 (0.11–0.33) |
HOMA-IR | 1.00 (0.78–1.28) | 0.80 (0.31–2.03) | 1.61 (1.12–2.31) | 0.96 (0.69–1.35) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatzber, F.; Zelzer, S.; Obermayer-Pietsch, B.; Rinnerhofer, S.; Kundi, M.; Cvirn, G.; Wultsch, G.; Herrmann, M.; Mangge, H.; Niedrist, T.; et al. Occupational Health Aspects with Special Focus on Physiological Differences between Office and Metalworkers. Antioxidants 2022, 11, 633. https://doi.org/10.3390/antiox11040633
Tatzber F, Zelzer S, Obermayer-Pietsch B, Rinnerhofer S, Kundi M, Cvirn G, Wultsch G, Herrmann M, Mangge H, Niedrist T, et al. Occupational Health Aspects with Special Focus on Physiological Differences between Office and Metalworkers. Antioxidants. 2022; 11(4):633. https://doi.org/10.3390/antiox11040633
Chicago/Turabian StyleTatzber, Franz, Sieglinde Zelzer, Barbara Obermayer-Pietsch, Stefan Rinnerhofer, Michael Kundi, Gerhard Cvirn, Georg Wultsch, Markus Herrmann, Harald Mangge, Tobias Niedrist, and et al. 2022. "Occupational Health Aspects with Special Focus on Physiological Differences between Office and Metalworkers" Antioxidants 11, no. 4: 633. https://doi.org/10.3390/antiox11040633
APA StyleTatzber, F., Zelzer, S., Obermayer-Pietsch, B., Rinnerhofer, S., Kundi, M., Cvirn, G., Wultsch, G., Herrmann, M., Mangge, H., Niedrist, T., & Wonisch, W. (2022). Occupational Health Aspects with Special Focus on Physiological Differences between Office and Metalworkers. Antioxidants, 11(4), 633. https://doi.org/10.3390/antiox11040633