The Current Status, Bioactivity, Food, and Pharmaceutical Approaches of Calocybe indica: A Review
Abstract
:1. Introduction
2. Current Status of Calocybe indica
2.1. Origin, Morphological and Physiological Features
2.2. Cultivation
2.3. Casing
3. The Nutritional Profile of Calocybe indica
3.1. Proteins
3.2. Vitamins
3.3. Minerals
3.4. Carbohydrates
3.5. Fatty Acids
4. Bioactive Functions
4.1. Phenolic and Flavonoid Compounds
4.2. Antimicrobial Activity
4.3. Anti-Inflammatory Characteristics
5. Applications in the Food Processing Industry
5.1. Breakfast Recipes
5.2. Bakery Products
5.3. Other Food Items
5.4. Cooking Methods
6. Pharmaceutical Approaches
6.1. Anti-Obesity
6.2. Antidiabetic Activity of Calocybe indica
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sánchez, C. Bioactives from mushroom and their application. In Food Bioactives; Springer: Cham, Germany, 2017; pp. 23–57. [Google Scholar] [CrossRef]
- Mleczek, M.; Rzymski, P.; Budka, A.; Siwulski, M.; Jasińska, A.; Kalač, P.; Niedzielski, P. Elemental characteristics of mushroom species cultivated in China and Poland. J. Food Compos. Anal. 2018, 66, 168–178. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Clementi, F. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Chelladurai, G.; Yadav, T.K.; Pathak, R.K. Chemical Composition and Nutritional Value of Paddy Straw Milky Mushroom (Calocybe indica). Nat. Environ. Pollut. Technol. 2021, 20, 1157–1164. [Google Scholar] [CrossRef]
- Maurya, A.K.; John, V.; Murmu, R.; Simon, S. Impact of different substrates for spawn production and production of milky mushroom (Calocybe indica). Int. J. Pharma. Bio. Sci. 2019, 10, 5–10. [Google Scholar] [CrossRef]
- Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech 2018, 8, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Bijalwan, A.; Bahuguna, K.; Vasishth, A.; Singh, A.; Chaudhary, S.; Tyagi, A.; Thakur, M.P.; Thakur, T.K.; Dobriyal, M.; Kaushal, R.; et al. Insights of medicinal mushroom (Ganoderma lucidum): Prospects and potential in India. Biodivers. Int. J. 2020, 4, 202–209. [Google Scholar]
- Chelladurai, G.; Mohan, J.R.; Sasirekhamani, M. In vitro cultivation technology and nutritional status of milky mushroom (Calocybe indica). Afr. J. Biotechnol. 2014, 13, 3901–3906. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, K.; Shanmugasundaram, K. Optimization of casing process for enhanced bioefficiency of Calocybe indica, an indigenous tropical edible mushroom. Int. J. Recent Sci. 2015, 6, 2594–2598. [Google Scholar]
- Anju, R.P.; Ukkuru, M. Health impact and medicinal properties of nutritionally edible milky mushroom (Calocybe indica). Int. J. Adv. Eng. Res. Sci. 2016, 3, 236932. [Google Scholar]
- Mirunalini, S.; Dhamodharan, G.; Deepalakshmi, K. Antioxidant potential and current cultivation aspects of an edible milky mushroom-Calocybe indica. Int. J. Pharm. Pharm. Sci. 2012, 4, 137–143. [Google Scholar]
- Ghosh, S.K. Study of anticancer effect of Calocybe indica mushroom on breast cancer cell line and human Ewings sarcoma cancer cell lines. NY Sci. J. 2015, 8, 10–15. [Google Scholar]
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Acharya, K. Milky mushroom: A healthy nutritious diet. Food Res. Int. 2022, 156, 111113. [Google Scholar] [CrossRef] [PubMed]
- Anusiya, G.; Gowthama Prabu, U.; Yamini, N.V.; Sivarajasekar, N.; Rambabu, K.; Bharath, G.; Banat, F. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 2021, 12, 11239–11268. [Google Scholar] [CrossRef]
- Gupta, S.; Summuna, B.; Gupta, M.; Annepu, S.K. Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits. In Bioactive Molecules in Food, Reference Series in Phytochemistry; Springer: Cham, Germany, 2018; pp. 1–33. [Google Scholar] [CrossRef]
- Subbiah, K.A.; Balan, V. A comprehensive review of tropical milky white mushroom (Calocybe indica P&C). Mycobiology 2015, 43, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sharma, V.P.; Shirur, M.; Kamal, S. Status of milky mushroom (Calocybe indica) in India–A review. Mushroom Res. 2017, 26, 21–39. [Google Scholar]
- Kumar, V.; Valadez-Blanco, R.; Kumar, P.; Singh, J.; Kumar, P. Effects of treated sugar mill effluent and rice straw on substrate properties under milky mushroom (Calocybe indica P&C) production: Nutrient utilization and growth kinetics studies. Environ. Technol. Innov. 2020, 19, 101041. [Google Scholar] [CrossRef]
- Prabu, M.; Kumuthakalavalli, R. In vitro and in vivo antiinflammatory activity of the methanolic extract of Calocybe indica P. & C. World J. Pharm. Sci. 2014, 3, 776–783. [Google Scholar]
- Das, P.; Sikdar, S.R.; Samanta, A. Nutritional analysis and molecular characterization of hybrid mushrooms developed through intergeneric protoplast fusion between Pleurotus sajor-caju and Calocybe indica with the purpose to achieve improved strains. World J. Microbiol. Biotechnol. 2021, 37, 1–12. [Google Scholar] [CrossRef]
- Kotasthane, T. Morphology and yield performance of edible mushrooms on different substrates. Sci. Prepr. 2021. [Google Scholar] [CrossRef]
- Alam, N.; Amin, R.; Khan, A.; Ara, I.; Shim, M.J.; Lee, M.W.; Lee, T.S. Nutritional analysis of cultivated mushrooms in Bangladesh–Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology 2008, 36, 228–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardar, H.; Anjum, M.A.; Nawaz, A.; Naz, S.; Ejaz, S.; Sajid, A.; Haider, S.A. Effect of different agro-wastes, casing materials and supplements on the growth, yield and nutrition of milky mushroom (Calocybe indica). Folia Hortic. 2020, 32, 115–124. [Google Scholar] [CrossRef]
- Phutela, U.G.; Phutela, R.P. Effect of physical and chemical factors on growth of Calocybe indica (P & C). Int. J. Adv. Life Sci. 2012, 2, 8–16. [Google Scholar]
- Bains, A.; Chawla, P.; Kaur, S.; Najda, A.; Fogarasi, M.; Fogarasi, S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials 2021, 14, 7640. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.B.; Singh, R.P.; Singh, P.; Shukla, P.K. Effect of different substrates on the growth and yield of milky mushroom (Calocybe indica P&C). Mycobiology 2010, 38, 97–101. [Google Scholar]
- Vinod, U.; Kushwaha, K.P.S. Effect of Alcaligens faecalis supplementation to different casing mixtures on its physicochemical properties and yield stimulation of Agaricus bisporus. Bioscan 2014, 9, 659–661. [Google Scholar]
- González, A.; Nobre, C.; Simões, L.S.; Cruz, M.; Loredo, A.; Rodríguez-Jasso, R.M.; Belmares, R. Evaluation of functional and nutritional potential of a protein concentrate from Pleurotus ostreatus mushroom. Food Chem. 2021, 346, 128884. [Google Scholar] [CrossRef]
- Uzun, Y.; Gen, H.; Tun, Y.; Demirel, K. Determination of protein and nitrogen fractions of wild edible mushrooms. Asian J. Chem. 2009, 21, 2769. [Google Scholar]
- Li, Q.; Liu, J.; Shang, X.; Li, Y.; Zhang, L.; Li, Z.; Jiang, N.; Tan, Q.; Yu, H.; Song, C. Characterizing Diversity Based on the Chemical and Nutritional Composition of Shiitake Culinary-Medicinal Mushroom Lentinula edodes (Agaricomycetes) Commonly Cultivated in China. Int. J. Med. Mushrooms 2021, 23, 51–64. [Google Scholar] [CrossRef]
- Atila, F.; Owaid, M.N.; Shariati, M.A. The nutritional and medical benefits of Agaricus bisporus: A review. J. Microbiol. Biotechnol. Food Sci. 2021, 7, 281–286. [Google Scholar] [CrossRef]
- Sumathy, R.; Kumuthakalavalli, R.; Krishnamoorthy, A.S. Proximate vitamin, aminoacid and mineral composition of milky mushroom, Calocybe indica (P&C). Var. Apk2 commonly cultivated in Tamil Nadu. J. Nat. Prod. Plant Resour. 2015, 5, 38–43. [Google Scholar]
- Shashikant, M.; Bains, A.; Chawla, P.; Sharma, M.; Kaushik, R.; Kandi, S.; Kuhad, R.C. In-vitro antimicrobial and anti-inflammatory activity of modified solvent evaporated ethanolic extract of Calocybe indica: GCMS and HPLC characterization. Int. J. Food Microbiol. 2022, 109741. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Ferreira, M.J.; Queiros, B.; Ferreira, I.C.; Baptista, P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007, 10, 413–419. [Google Scholar] [CrossRef]
- Selvi, S.; Devi, P.U.; Suja, S.; Murugan, S.; Chinnaswamy, P. Comparison of non-enzymic antioxidant status of fresh and dried form of Pleurotus florida and Calocybe indica. Pak. J. Nutr. 2007, 6, 468–471. [Google Scholar] [CrossRef] [Green Version]
- Akyüz, M.; Kirbağ, S. Nutritive value of edible wild and cultured mushrooms. Turk. J. Biol. 2010, 34, 97–102. [Google Scholar]
- Nagulwar, M.M.; More, D.R.; Mandhare, L.L. Nutritional properties and value addition of mushroom: A review. Pharma Innov. J. 2020, 9, 395–398. [Google Scholar]
- Badalyan, S.M. Potential of mushroom bioactive molecules to develop healthcare biotech products. In Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, India, 19–22 November 2014; pp. 373–378. [Google Scholar]
- Govindan, S.; Johnson, E.E.R.; Christopher, J.; Shanmugam, J.; Thirumalairaj, V.; Gopalan, J. Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2. Exp. Toxicol. Pathol. 2016, 68, 329–334. [Google Scholar] [CrossRef]
- Sudha, G.; Pramila, J.; Elizabeth, J.; Rani, E.; Jayasakthi, S.; Kumar, S.; Manoharan, P. Calocybe indica polysaccharides alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. In Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, India, 19–22 November 2014; Volume II, p. 394. [Google Scholar]
- Gençcelep, H.; Uzun, Y.; Tunçtürk, Y.; Demirel, K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009, 113, 1033–1036. [Google Scholar] [CrossRef]
- Sławińska, A.; Jabłońska-Ryś, E.; Stachniuk, A. High-performance liquid chromatography determination of free sugars and mannitol in mushrooms using corona charged aerosol detection. Food Anal. Methods 2021, 14, 209–216. [Google Scholar] [CrossRef]
- Bengu, A.S. The fatty acid composition in some economic and wild edible mushrooms in Turkey. Prog. Nutr. 2020, 22, 185–192. [Google Scholar] [CrossRef]
- Fogarasi, M.; Socaci, S.A.; Dulf, F.V.; Diaconeasa, Z.M.; Fărcaș, A.C.; Tofană, M.; Semeniuc, C.A. Bioactive compounds and volatile profiles of five Transylvanian wild edible mushrooms. Molecules 2018, 23, 3272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maity, K.; Kar, E.; Maity, S.; Gantait, S.K.; Das, D.; Maiti, S.; Islam, S.S. Structural characterization and study of immunoenhancing and antioxidant property of a novel polysaccharide isolated from the aqueous extract of a somatic hybrid mushroom of Pleurotus florida and Calocybe indica variety APK2. Int. J. Biol. Macromol. 2011, 48, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Chawla, P.; Kumar, N.; Bains, A.; Dhull, S.B.; Kumar, M.; Kaushik, R.; Punia, S. Gum arabic capped copper nanoparticles: Synthesis, characterization, and applications. Int. J. Biol. Macromol. 2020, 146, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Hwang, A.Y.; Yang, S.C.; Kim, J.; Lim, T.; Cho, H.; Hwang, K.T. Effects of non-traditional extraction methods on extracting bioactive compounds from chaga mushroom (Inonotus obliquus) compared with hot water extraction. LWT 2019, 110, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Ba, D.M.; Ssentongo, P.; Beelman, R.B.; Muscat, J.; Gao, X.; Richie, J.P. Higher mushroom consumption is associated with lower risk of cancer: A systematic review and meta-analysis of observational studies. Adv. Nutr. 2021, 12, 1691–1704. [Google Scholar] [CrossRef] [PubMed]
- Mowsumi, F.R.; Rahaman, A.; Sarker, N.C.; Choudhury, B.K.; Hossain, S. In vitro relative free radical scavenging effects of Calocybe indica (milky oyster) and Pleurotus djamor (pink oyster). World J. Pharm. Sci. 2015, 4, 186–195. [Google Scholar]
- Mishra, K.K.; Pal, R.S.; Arunkumar, R. Antioxidant activities and bioactive compound determination from caps and stipes of specialty medicinal mushrooms Calocybe indica and Pleurotus sajor-caju (higher basidiomycetes) from India. Int. J. Med. Mushrooms 2014, 16, 555–567. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Sanyal, T. Antiproliferative and apoptotic effect of ethanolic extract of Calocybe indica on PANC-1 and MIAPaCa2 cell lines of pancreatic cancer. Exp. Oncol. 2020, 42, 178–182. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sehwag, S.; Sharma, S. Vitamin D2 fortification of Calocybe indica mushroom by natural and artificial UVB radiations and their potential effects on nutraceutical properties. 3 Biotech 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Rathore, H.; Sharma, A.; Prasad, S.; Sharma, S. Selenium bioaccumulation and associated nutraceutical properties in Calocybe indica mushroom cultivated on Se-enriched wheat straw. J. Biosci. Bioeng. 2018, 12, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, M.; Manikandan, M. Antimicrobial activity of mushrooms. Res. J. Pharm. Technol. 2014, 7, 399. [Google Scholar]
- Nagaraj, A.; Wilson, S.A.; Vaidyanathan, L. Anti-Obesity Properties of Calocybe Indica in Zebra fishes with Short-Term High-Fat Diet Induction. Biomed. Pharmacol. J. 2021, 14, 411–423. [Google Scholar] [CrossRef]
- Chatterjee, S.; Dey, A.; Dutta, R.; Dey, S.; Acharya, K. Hepatoprotective effect of the ethanolic extract of Calocybe indica on mice with CCl4 hepatic intoxication. Int. J. PharmTech Res. 2011, 3, 2162–2168. [Google Scholar]
- Bains, A.; Chawla, P.; Tripathi, A.; Sadh, P.K. A comparative study of antimicrobial and anti-inflammatory efficiency of modified solvent evaporated and vacuum oven dried bioactive components of Pleurotus floridanus. J. Food Sci. Technol. 2021, 58, 3328–3337. [Google Scholar] [CrossRef] [PubMed]
- M EL-Fakharany, E.; M Haroun, B.; Ng, T.; M Redwan, E.R. Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept. Lett. 2010, 17, 1031–1039. [Google Scholar] [CrossRef]
- Prameela, M.; Kumari, J.A.; Devi, G.U. Influence of pileus size on composition of biochemical parameters in milky mushrooms. IJCS 2020, 8, 2350–2352. [Google Scholar] [CrossRef]
- Chung, J.H.; Kong, J.N.; Choi, H.E.; Kong, K.H. Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food Chem. 2018, 267, 163–169. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Khalkho, S.; Koreti, D.; Kosre, A.; Jadhav, S.K.; Chandrawanshi, N.K. Review on production technique and nutritional status of Calocybe indica (P&C). NewBioWorld 2021, 3, 1–7. [Google Scholar]
- Rathore, H.; Sehwag, S.; Prasad, S.; Sharma, S. Technological, nutritional, functional and sensorial attributes of the cookies fortified with Calocybe indica mushroom. J. Food Meas. Charact. 2019, 13, 976–987. [Google Scholar] [CrossRef]
- Salehi, F. Characterization of different mushrooms powder and its application in bakery products: A review. Int. J. Food Prop. 2019, 22, 1375–1385. [Google Scholar] [CrossRef]
- Chatterjee, D.; Halder, D.; Mukherjee, A.; Das, S. Evaluation of mineral and organic composition of mushroom soup. Life Sci. Inform. Publ. 2019, 5, 480–485. [Google Scholar] [CrossRef]
- Shirur, M.; Ahlawat, O.P.; Manikandan, K. Mushroom consumption and purchasing behaviour in India: A study among selected respondents. Mushroom Res. 2014, 23, 226–231. [Google Scholar]
- Arora, B.I.N.D.V.I.; Singh, M. Effect of cooking on antioxidant activity and phenolic content of various species of edible mushrooms of India. In Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products, New Delhi, India, 19–22 November 2014; pp. 576–581. [Google Scholar]
- Ma, G.; Yang, W.; Zhao, L.; Pei, F.; Fang, D.; Hu, Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci. Hum. Wellness 2018, 7, 125–133. [Google Scholar] [CrossRef]
- Roy, A.; Prasad, P. Properties and uses of an Indigenous Mushroom: Calocybe indica. Asian J. Pharm. Technol. 2014, 4, 17–21. [Google Scholar]
- Amit, R.; Pushpa, P. Assessment of antihyperglycemic potential of lyophilized and oven-dried extract of Calocybe indica in experimentally streptozotocin-nicotinamide induced diabetic rats. Int. J. Med. Res. Health Sci. 2016, 5, 82–88. [Google Scholar]
- Thakur, M.P. Advances in mushroom production: Key to food, nutritional and employment security: A review. Indian Phytopathol. 2020, 73, 377–395. [Google Scholar] [CrossRef]
Proximate | Composition of Components | Suitable Estimation Methods | References |
---|---|---|---|
Protein | Alanine (16.05%) Arginine (2.37%) Aspartic acid (11.85%) Glutamic acid (14.75%) Glycine (7.41%) Histidine (8.07%) Isoleucine (12.37%) Leucine (5.17%) Lysine (2.26%) Methionine (0.27%) Phenylalanine (2.29%) Serine (6.78%) Threonine (3.70%) Tyrosine (3.42%) Valine (4.33%) | Kjeldahl method Lowry method Bradford method | [4,18] |
Vitamins | Retinol (0.32 mg/100 g) Vitamin B (Thiamine Riboflavin Pyridoxine Pantothenic acid Nicotinic acid Folic acid Cobalamin) (0.35 mg/g) L-ascorbic acid (1.03 mg/100 g) Calciferol (78.33 µg/g) Tocopherol (2.8 mg/100 g) | High-Performance Liquid chromatography Spectrophotometry Colorimetry Fluorometry | [18,37] |
Minerals | Potassium (28209 ppm) Magnesium (1012 ppm) Phosphorous (381 ppm) Barium (9.3 ppm) Iron (77.55 ppm) Aluminium (38.92 ppm) Manganese (20.56 ppm) Copper (28.20 ppm) Zinc (35.12 ppm) Boron (18.87 ppm) Nickel (0.85 ppm) Chromium (0.89 ppm) Selenium (0.0132 ± 0.001 ppm) Arsenic (0.54 ± 0.004 ppm) Calcium (20.65 ± 2.1 ppm) | Atomic absorption spectrophotometry | [4,24,43] |
Carbohydrates | (Glucose Galactose Fructose Xylose Mannose Fucose Rhamnose Arabinose Trehalose Mannitol (1→3) β-linked glucose (1→6) β-linked glucose) (50.03 kcal/100 g) | Thin-layer chromatography, Gas chromatography, and High-Performance Liquid chromatography | [7,40,44] |
Fatty acids | arachidic acid (0.28%) dichomo-linolenic acid (0.657%) eicosapentaenoic acid (1.86%) elaidic acid (22.47%) erucic acid (0.34%) gondoic acid (1.24%) heneicosylic acid (0.41%) lauric acid (1.42%) lignoceric acid (1.57%) linoleic acid (42.88%) margaric acid (0.27%) myristic acid (1.49%) myristoleic acid (1.56%) palmitic acid (1.30%) palmitoleic acid (0.21%) pentadecyclic acid (0.65%) stearic acid (20.36%) | gas chromatography | [4,45] |
Bioactivity | Compounds | Effects | References |
---|---|---|---|
Anti-oxidant | Crude polysaccharide Ergothioneine Glutathione | The antioxidant assays revealed strong potential free radical scavenging potential as well as effective reducing power at the highest concentration (10 mg/mL) tested. | [41] |
Anti-cancer | Ethanolic extract Crude polysaccharides Polysaccharide peptide complexes | Strong antiproliferative effects against the tested cell lines within the concentration range of 100–500 µg/mL. The extract impedes cell migration and induces apoptosis through activation of the intrinsic pathway. This was the first report of the anticancer effect of ethanolic extract from Calocybe indica on human pancreatic cancer. | [57] |
Anti-obesity | Hot aqueous extract Squalene Protein-polysaccharide complexes | Excellent anti-obesity effect in diet-induced obese zebrafish model was observed wherein, treatment with 200 µg extract, a dose-dependent decrease in blood glucose, cholesterol, and triglyceride levels which had increased due to a high-fat calorie-rich diet. Furthermore, less lipid accumulation and decreased lipid droplet size in the treated fishes were observed. | [57] |
Hepatoprotective | Ethanolic extract | Oral administration of 150 mg/kg body wt. dosage for one week (once daily) protected the mice from hepatic damage induced by carbon tetrachloride in experimental mice by restoring the elevated serum marker enzyme level. The antioxidant status was also improved to normal after the treatment with the extract. | [58] |
Anti-aging | Crude polysaccharide | Orally administered 400 mg/kg body wt. dose significantly increased the levels of antioxidant enzymes. D-galactose induced mice showed elevated levels of malondialdehyde which is reported to be associated with aging but upon treatment, a significant reduction in malondialdehyde content was observed in serum and brain tissues. | [41] |
Antimicrobial | ethyl tridecanoate undecanoic acid ethyl ester diallyl divinylsilane 3-phenyl-pyrrolo (2,3-) pyrazine Phytol | Inhibition zone measurement against Escherichia coli and Staphylococcus aureus. | [15,59] |
Anti-inflammatory | Catechin Syringic acid p-coumaric acid Caffeic acid ethyl tridecanoate diallyl divinylsilane 3-phenyl-pyrrolo (2,3-) pyrazine N,’-trimethyl diphenethylamine | Inhibition of carrageenan-induced acute inflammation. | [21,59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shashikant, M.; Bains, A.; Chawla, P.; Fogarasi, M.; Fogarasi, S. The Current Status, Bioactivity, Food, and Pharmaceutical Approaches of Calocybe indica: A Review. Antioxidants 2022, 11, 1145. https://doi.org/10.3390/antiox11061145
Shashikant M, Bains A, Chawla P, Fogarasi M, Fogarasi S. The Current Status, Bioactivity, Food, and Pharmaceutical Approaches of Calocybe indica: A Review. Antioxidants. 2022; 11(6):1145. https://doi.org/10.3390/antiox11061145
Chicago/Turabian StyleShashikant, Meghna, Aarti Bains, Prince Chawla, Melinda Fogarasi, and Szabolcs Fogarasi. 2022. "The Current Status, Bioactivity, Food, and Pharmaceutical Approaches of Calocybe indica: A Review" Antioxidants 11, no. 6: 1145. https://doi.org/10.3390/antiox11061145
APA StyleShashikant, M., Bains, A., Chawla, P., Fogarasi, M., & Fogarasi, S. (2022). The Current Status, Bioactivity, Food, and Pharmaceutical Approaches of Calocybe indica: A Review. Antioxidants, 11(6), 1145. https://doi.org/10.3390/antiox11061145