Natural Antioxidant Activities of Plants in Preventing Cataractogenesis
Abstract
:1. Introduction
2. Methods
2.1. What Is a Cataract and What Are Cataract Characteristics?
2.2. Free Radicals Contribute to Cataract Formation
2.3. Natural Ingredients’ Potential as an Alternative Cataract Treatment
2.4. Antioxidant Activities of Plants in Preventing Cataractogenesis
2.4.1. Antioxidant Activities of Plants
2.4.2. Cataract Treatment with Herbal Plants
2.5. Other Natural Ingredients Besides Antioxidants That Can Inhibit Cataracts
2.5.1. Natural Antioxidant as Antiglycation Agent
2.5.2. Natural Antioxidant of Plant as Aldose Reductase Inhibitors in Cataractogenesis
2.5.3. The Potential of Natural Antioxidant as Antiapoptotic against Cataractogenesis
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanwar Hossain, M.; Khanom, T.; Mazaharul islam, M. A Study on Prevalence of Cataract and Importance of Cataract Surgery at Tertiary Care Hospital in Bangladesh. SAS J. Med. 2021, 7, 12–14. [Google Scholar] [CrossRef]
- Wale, M.Z.; Derbew, M.; Tilahun, M.; Terefe, M. Cataract and Associated Factors among Adults Visiting Ophthalmic Clinic at Debre Markos Comprehensive Specialized Hospital, Northwest Ethiopia, 2020. SAGE Open Med. 2021, 9, 205031212198963. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.C.; Lambert, S. Referral Basis for Congenital and Juvenile Cataracts. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus {JAAPOS} 2019, 23, e32. [Google Scholar] [CrossRef]
- Ho, M.-C.; Peng, Y.-J.; Chen, S.-J.; Chiou, S.-H. Senile Cataracts and Oxidative Stress. J. Clin. Gerontol. Geriatr. 2010, 1, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Made, N.; Suryathi, A.; Jayanegara, W.G.; Bagus, I.; Manuaba, P. Characteristics Retinometry Pre and Post Cataract Surgery on Senile Cataract Patients in Sanglah Hospital, Bali Indonesia. Intisari Sains Medis 2020, 11, 1504–1509. [Google Scholar] [CrossRef]
- Muliani, R.; Simanjuntak, R.; Jundiah, S. Hubungan Tingkat Kebiasaan Merokok Dengan Stadium Katarak Senilis Di Poliklinik Katarak Dan Bedah Refraktif (KBR) Rumah Sakit Mata Cicendo Bandung. J. Med. Health 2020, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Brad, H.; Feldman, M.D.; Sebastian Heersink, M. Cataract. In Basic Clinical Science Course (BCSC); American Academy of Ophthalmology: San Francisco, CA, USA, 2021; pp. 1–8. [Google Scholar]
- Jiang, J.; Xiong, Y.L. Natural Antioxidants as Food and Feed Additives to Promote Health Bene Fi Ts and Quality of Meat Products: A Review. MESC 2016, 120, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Mold, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Lima, S.A.C.; Gameiro, P. On the Development of a Cutaneous Flavonoid Delivery System: Advances and Limitations. Antioxidants 2021, 10, 1376. [Google Scholar] [CrossRef]
- Tewari, D.; Samoilă, O.; Gocan, D.; Mocan, A.; Moldovan, C.; Devkota, H.P.; Atanasov, A.G.; Zengin, G.; Echeverría, J.; Vodnar, D.; et al. Medicinal Plants and Natural Products Used in Cataract Management. Front. Pharmacol. 2019, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Thiagarajan, R.; Manikandan, R. Antioxidants and Cataract. Free Radic. Res. 2013, 47, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kukreja, S.; Kaur, A.; Malhotra, N.; Kaur, R. The Oxidative Stress in Cataract Patients. J. Clin. Diagn. Res. JCDR 2012, 6, 1629. [Google Scholar] [CrossRef] [PubMed]
- Dahm, R.; van Marle, J.; Quinlan, R.A.; Prescott, A.R.; Vrensen, G.F.J.M. Homeostasis in the Vertebrate Lens: Mechanisms of Solute Exchange. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1265–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, M.F. Redox Regulation in the Lens. Prog. Retin. Eye Res. 2003, 22, 657–682. [Google Scholar] [CrossRef]
- El-Sayyad, H.; Bakr, E.; El-Ghawet, H.; El-Desoky, T. Overview of Congenital, Senile and Metabolic Cataract. J. Ocul. Biol. 2015, 3, 12. [Google Scholar]
- Kiziltoprak, H.; Tekin, K.; Inanc, M.; Goker, Y.S. Cataract in Diabetes Mellitus. World J. Diabetes 2019, 10, 140. [Google Scholar] [CrossRef]
- Domínguez-Calva, J.A.; Pérez-Vázquez, M.L.; Serebryany, E.; King, J.A.; Quintanar, L. Mercury-Induced Aggregation of Human Lens γ-Crystallins Reveals a Potential Role in Cataract Disease. JBIC J. Biol. Inorg. Chem. 2018, 23, 1105–1118. [Google Scholar] [CrossRef]
- Janzen, N.; Illsinger, S.; Meyer, U.; Shin, Y.S.; Sander, J.; Lücke, T.; Das, A.M. Early Cataract Formation Due to Galactokinase Deficiency: Impact of Newborn Screening. Arch. Med. Res. 2011, 42, 608–612. [Google Scholar] [CrossRef]
- Self, J.E.; Taylor, R.; Solebo, A.L.; Biswas, S.; Parulekar, M.; Dev Borman, A.; Ashworth, J.; McClenaghan, R.; Abbott, J.; O’Flynn, E. Cataract Management in Children: A Review of the Literature and Current Practice across Five Large UK Centres. Eye 2020, 34, 2197–2218. [Google Scholar] [CrossRef]
- Ye, J.; He, J.; Wang, C.; Wu, H.; Shi, X.; Zhang, H.; Xie, J.; Lee, S.Y. Smoking and Risk of Age-Related Cataract: A Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3885–3895. [Google Scholar] [CrossRef] [Green Version]
- Kamari, F.; Hallaj, S.; Dorosti, F.; Alinezhad, F.; Taleschian-Tabrizi, N.; Farhadi, F.; Aslani, H. Phototoxicity of Environmental Radiations in Human Lens: Revisiting the Pathogenesis of UV-Induced Cataract. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2065–2077. [Google Scholar] [CrossRef] [PubMed]
- Haeck, I.M.; Rouwen, T.J.; Timmer-de Mik, L.; de Bruin-Weller, M.S.; Bruijnzeel-Koomen, C.A. Topical Corticosteroids in Atopic Dermatitis and the Risk of Glaucoma and Cataracts. J. Am. Acad. Dermatol. 2011, 64, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Z.; Zarina, S. Osmotic Stress Induced Oxidative Damage: Possible Mechanism of Cataract Formation in Diabetes. J. Diabetes Complicat. 2012, 26, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xing, K.; Randazzo, J.; Blessing, K.; Lou, M.F.; Kador, P.F. Osmotic Stress, Not Aldose Reductase Activity, Directly Induces Growth Factors and MAPK Signaling Changes during Sugar Cataract Formation. Exp. Eye Res. 2012, 101, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, A. Diabetic Cataract: Pathogenesis and Management with Focus on Potential Pharmacotherapeutics. SIES J. Pharma. Bio. Manag. 2013, 1, 1–13. [Google Scholar]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. Cataract: A Major Secondary Complication of Diabetes, Its Epidemiology and an Overview on Major Medicinal Plants Screened for Anticataract Activity. Asian Pac. J. Trop. Dis. 2011, 1, 323–329. [Google Scholar] [CrossRef]
- Yan, L. Redox Imbalance Stress in Diabetes Mellitus: Role of the Polyol Pathway. Anim. Model. Exp. Med. 2018, 1, 7–13. [Google Scholar] [CrossRef]
- Obrosova, I.G.; Chung, S.S.M.; Kador, P.F. Diabetic Cataracts: Mechanisms and Management. Diabetes Metab. Res. Rev. 2010, 26, 172–180. [Google Scholar] [CrossRef]
- Neale, R.E.; Purdie, J.L.; Hirst, L.W.; Green, A.C. Sun Exposure as a Risk Factor for Nuclear Cataract. Epidemiology 2003, 14, 701–702. [Google Scholar] [CrossRef]
- Chan, E.; Mahroo, O.A.R.; Spalton, D.J. Complications of Cataract Surgery. Clin. Exp. Optom. 2010, 93, 379–389. [Google Scholar] [CrossRef]
- Bandello, F.; Coassin, M.; Di Zazzo, A.; Rizzo, S.; Biagini, I.; Pozdeyeva, N.; Sinitsyn, M.; Verzin, A.; De Rosa, P.; Calabrò, F.; et al. One Week of Levofloxacin plus Dexamethasone Eye Drops for Cataract Surgery: An Innovative and Rational Therapeutic Strategy. Eye 2020, 34, 2112–2122. [Google Scholar] [CrossRef]
- Zheng Selin, J.; Orsini, N.; Ejdervik Lindblad, B.; Wolk, A. Long-Term Physical Activity and Risk of Age-Related Cataract: A Population-Based Prospective Study of Male and Female Cohorts. Ophthalmology 2015, 122, 274–280. [Google Scholar] [CrossRef]
- Tabin, G.; Chen, M.; Espandar, L. Cataract Surgery for the Developing World. Curr. Opin. Ophthalmol. 2008, 19, 55–59. [Google Scholar] [CrossRef]
- Alió, J.L.; Alió del Barrio, J.L.; Vega-Estrada, A. Accommodative Intraocular Lenses: Where Are We and Where We Are Going. Eye Vis. 2017, 4, 16. [Google Scholar] [CrossRef]
- Staveness, D.; Bosque, I.; Stephenson, C.R.J. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. Acc. Chem. Res. 2016, 49, 2295–2306. [Google Scholar] [CrossRef]
- Cadenas, E. Mitochondrial Free Radical Production and Cell Signaling. Mol. Asp. Med. 2004, 25, 17–26. [Google Scholar] [CrossRef]
- Verhaar, M.C.; Westerweel, P.E.; van Zonneveld, A.J.; Rabelink, T.J. Free Radical Production by Dysfunctional ENOS. Heart 2004, 90, 494–495. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Akaike, T. Oxygen Free Radicals as Pathogenic Molecules in Viral Diseases. Proc. Soc. Exp. Biol. Med. 1991, 198, 721–727. [Google Scholar] [CrossRef]
- Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial Effectors of Cellular Senescence: Beyond the Free Radical Theory of Aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A.J.; Brand, M.D. Reactive Oxygen Species Production by Mitochondria. Mitochondrial DNA 2009, 554, 165–181. [Google Scholar]
- Coleman, J.F. Robbins and Cotran’s Pathologic Basis of Disease. J. Neuropathol. Exp. Neurol. 2010, 69, 214. [Google Scholar]
- Supinski, G.S.; Callahan, L.A. Free Radical-Mediated Skeletal Muscle Dysfunction in Inflammatory Conditions. J. Appl. Physiol. 2007, 102, 2056–2063. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.C. The Phagocyte Respiratory Burst: Historical Perspectives and Recent Advances. Immunol. Lett. 2017, 192, 88–96. [Google Scholar] [CrossRef]
- Radi, R.; Peluffo, G.; Alvarez, M.N.; Naviliat, M.; Cayota, A. Unraveling Peroxynitrite Formation in Biological Systems. Free Radic. Biol. Med. 2001, 30, 463–488. [Google Scholar] [CrossRef]
- Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H.D. Fenton Reaction Driven by Iron Ligands. J. Chil. Chem. Soc. 2013, 58, 2096–2101. [Google Scholar] [CrossRef] [Green Version]
- Al-Dalaen, S.M.; Al-Qtaitat, A.I. Review Article: Oxidative Stress Versus Antioxidants. Am. J. Biosci. Bioeng. 2014, 2, 60. [Google Scholar] [CrossRef] [Green Version]
- Granger, D.N. Role of Xanthine Oxidase and Granulocytes in Ischemia-Reperfusion Injury. Am. J. Physiol. Circ. Physiol. 1988, 255, H1269–H1275. [Google Scholar] [CrossRef]
- Fenton, H.J.H. LXXIII.—Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.-S.; Jin, H.; Sun, X.; Huang, S.; Zhang, F.-L.; Guo, Z.-N.; Yang, Y. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxid. Med. Cell. Longev. 2018, 2018, 3804979. [Google Scholar] [CrossRef]
- Dou, X.; Li, J.; Danelisen, I.; Trush, M.A.; Misra, H.P.; Zhu, H.; Jia, Z.; Li, Y. Acetaminophen, the Active Ingredient of Tylenol, Protects against Peroxynitrite-Induced DNA Damage: A Chemiluminometric and Electron Paramagnetic Resonance Spectrometric Study. React. Oxyg. Species 2017, 3, 127–134. [Google Scholar] [CrossRef]
- Rutkowski, M.; Matuszewski, T.; Kedziora, J.; Paradowski, M.; Kłos, K.; Zakrzewski, A. Vitamins E, A and C as Antioxidatives. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2010, 29, 377–381. [Google Scholar]
- Iskusnykh, I.Y.; Popova, T.N.; Agarkov, A.A.; Pinheiro de Carvalho, M.Â.A.; Rjevskiy, S.G. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats. J. Toxicol. 2013, 2013, 870628. [Google Scholar] [CrossRef]
- Ganini, D.; Canistro, D.; Jang, J.; Stadler, K.; Mason, R.P.; Kadiiska, M.B. Ceruloplasmin (Ferroxidase) Oxidizes Hydroxylamine Probes: Deceptive Implications for Free Radical Detection. Free Radic. Biol. Med. 2012, 53, 1514–1521. [Google Scholar] [CrossRef] [Green Version]
- Takami, T.; Sakaida, I. Iron Regulation by Hepatocytes and Free Radicals. J. Clin. Biochem. Nutr. 2011, 48, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Moure, A.; Cruz, J.M.; Franco, D.; Dominguez, J.M.; Sineiro, J.; Dominguez, H.; Nunez, M.J.; Parajo, J.C. Natural Antioxidants from Residual Sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Sunkireddy, P.; Jha, S.N.; Kanwar, J.R.; Yadav, S.C. Natural Antioxidant Biomolecules Promises Future Nanomedicine Based Therapy for Cataract. Colloids Surf. B Biointerfaces 2013, 112, 554–562. [Google Scholar] [CrossRef]
- Spector, A. Oxidative Stress-Induced Cataract: Mechanism of Action. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1995, 9, 1173–1182. [Google Scholar] [CrossRef] [Green Version]
- Truscott, R.J.W. Age-Related Nuclear Cataract-Oxidation Is the Key. Exp. Eye Res. 2005, 80, 709–725. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, H.; Shad, M.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of Solvent Polarity on Extraction Yield and Antioxidant Properties of Phytochemicals from Bean (Phaseolus Vulgaris) Seeds. Braz. J. Pharm. Sci. 2020, 56, e17129. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Choi, A.-H.; Kwon, M.; Joung, E.-J.; Shin, T.; Lee, S.-G.; Kim, N.-G.; Kim, H.-R. Evaluation of Antioxidant Activities of Various Solvent Extract from Sargassum Serratifolium and Its Major Antioxidant Components. Food Chem. 2019, 278, 178–184. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Choo, C.; Watawana, M.I.; Jayawardena, N.; Waisundara, V.Y. An Appraisal of Eighteen Commonly Consumed Edible Plants as Functional Food Based on Their Antioxidant and Starch Hydrolase Inhibitory Activities. J. Sci. Food Agric. 2015, 95, 2956–2964. [Google Scholar] [CrossRef]
- Bendary, E.; Francis, R.R.; Ali, H.M.G.; Sarwat, M.I.; El Hady, S. Antioxidant and Structure—Activity Relationships (SARs) of Some Phenolic and Anilines Compounds. Ann. Agric. Sci. 2013, 58, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Côté, J.; Caillet, S.; Doyon, G.; Sylvain, J.-F.; Lacroix, M. Bioactive Compounds in Cranberries and Their Biological Properties. Crit. Rev. Food Sci. Nutr. 2010, 50, 666–679. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K. Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Crit. Rev. Food Sci. Nutr. 2015, 55, 319–337. [Google Scholar] [CrossRef]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of Antioxidant Activity and Total Phenol in Different Varieties of Lantana Camara Leaves. BMC Res. Notes 2014, 7, 560. [Google Scholar] [CrossRef] [Green Version]
- Alabri, T.H.A.; Al Musalami, A.H.S.; Hossain, M.A.; Weli, A.M.; Al-Riyami, Q. Comparative Study of Phytochemical Screening, Antioxidant and Antimicrobial Capacities of Fresh and Dry Leaves Crude Plant Extracts of Datura metel L. J. King Saud Univ.-Sci. 2014, 26, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, A.A.; Lawal, B.; Abubakar, A.N.; Berinyuy, E.B.; Omonije, Y.O.; Umar, S.I.; Shebe, M.N.; Alhaji, Y.M. In-Vitro Antioxidants, Antimicrobial and Toxicological Evaluation of Nigerian Zingiber Officinale. Clin. Phytosci. 2018, 4, 12. [Google Scholar] [CrossRef]
- Chaphalkar, R.; Apte, K.G.; Talekar, Y.; Ojha, S.K.; Nandave, M. Antioxidants of Phyllanthus Emblica L. Bark Extract Provide Hepatoprotection against Ethanol-Induced Hepatic Damage: A Comparison with Silymarin. Oxid. Med. Cell. Longev. 2017, 2017, 3876040. [Google Scholar] [CrossRef] [Green Version]
- Martiningsih, N.W.; Mudianta, I.W.; Suryanti, I.A.P. Phytochemical Screening and Antioxidant Activity of Hippobroma Longiflora Extracts. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2021; Volume 1115, p. 12078. [Google Scholar]
- Baba, S.A.; Malik, S.A. Determination of Total Phenolic and Flavonoid Content, Antimicrobial and Antioxidant Activity of a Root Extract of Arisaema Jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jia, L.; Kan, J.; Jin, C. In Vitro and in Vivo Antioxidant Activity of Ethanolic Extract of White Button Mushroom (Agaricus bisporus). Food Chem. Toxicol. 2013, 51, 310–316. [Google Scholar] [CrossRef]
- da Silva, J.K.; Cazarin, C.B.B.; Colomeu, T.C.; Batista, Â.G.; Meletti, L.M.M.; Paschoal, J.A.R.; Bogusz Júnior, S.; Furlan, M.F.; Reyes, F.G.R.; Augusto, F.; et al. Antioxidant Activity of Aqueous Extract of Passion Fruit (Passiflora edulis) Leaves: In Vitro and in Vivo Study. Food Res. Int. 2013, 53, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Mansour, R.B.; Jilani, I.B.H.; Bouaziz, M.; Gargouri, B.; Elloumi, N.; Attia, H.; Ghrabi-Gammar, Z.; Lassoued, S. Phenolic Contents and Antioxidant Activity of Ethanolic Extract of Capparis Spinosa. Cytotechnology 2016, 68, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Abu, F.; Mat Taib, C.N.; Mohd Moklas, M.A.; Mohd Akhir, S. Antioxidant Properties of Crue Extract, Partition Extract, and Fermented Medium of Dendrobium Sabin Flower. Evid.-Based Complement. Altern. Med. 2017, 2017, 2907219. [Google Scholar] [CrossRef] [Green Version]
- Ezez, D.; Tefera, M. Effects of Solvents on Total Phenolic Content and Antioxidant Activity of Ginger Extracts. J. Chem. 2021, 2021, 6635199. [Google Scholar] [CrossRef]
- Bruck de Souza, L.; Leitão Gindri, A.; de Andrade Fortes, T.; Felli Kubiça, T.; Enderle, J.; Roehrs, R.; Moura e Silva, S.; Manfredini, V.; Gasparotto Denardin, E.L. Phytochemical Analysis, Antioxidant Activity, Antimicrobial Activity, and Cytotoxicity of Chaptalia Nutans Leaves. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 3260745. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of Marrubium Vulgare L. Sci. World J. 2021, 2021, 7011493. [Google Scholar] [CrossRef]
- Syed Salleh, S.N.A.; Mohd Hanapiah, N.A.; Ahmad, H.; Wan Johari, W.L.; Osman, N.H.; Mamat, M.R. Determination of Total Phenolics, Flavonoids, and Antioxidant Activity and GC-MS Analysis of Malaysian Stingless Bee Propolis Water Extracts. Scientifica (Cairo) 2021, 2021, 3789351. [Google Scholar] [CrossRef]
- Al-Rimawi, F.; Rishmawi, S.; Ariqat, S.H.; Khalid, M.F.; Warad, I.; Salah, Z. Anticancer Activity, Antioxidant Activity, and Phenolic and Flavonoids Content of Wild Tragopogon Porrifolius Plant Extracts. Evid.-Based Complement. Altern. Med. 2016, 2016, 9612490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beebe, D.C.; Holekamp, N.M.; Shui, Y.-B. Oxidative Damage and the Prevention of Age-Related Cataracts. Ophthalmic Res. 2010, 44, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthoud, V.M.; Beyer, E.C. Oxidative Stress, Lens Gap Junctions, and Cataracts. Antioxid. Redox Signal. 2009, 11, 339–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakthivel, M.; Elanchezhian, R.; Ramesh, E.; Isai, M.; Jesudasan, C.N.; Thomas, P.A.; Geraldine, P. Prevention of Selenite-Induced Cataractogenesis in Wistar Rats by the Polyphenol, Ellagic Acid. Exp. Eye Res. 2008, 86, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Biju, P.G.; Rooban, B.N.; Lija, Y.; Devi, V.G.; Sahasranamam, V.; Abraham, A. Drevogenin D Prevents Selenite-Induced Oxidative Stress and Calpain Activation in Cultured Rat Lens. Mol. Vis. 2007, 13, 1121–1129. [Google Scholar] [PubMed]
- Wojcik, M.; Burzynska-Pedziwiatr, I.; Wozniak, L.A. A Review of Natural and Synthetic Antioxidants Important for Health and Longevity. Curr. Med. Chem. 2010, 17, 3262–3288. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, W.; Wu, W.; Xu, J.; Zheng, S.; Shentu, X.; Chen, X. Cataract-Causing Mutation R48C Increases ΓA-Crystallin Susceptibility to Oxidative Stress and Ultraviolet Radiation. Int. J. Biol. Macromol. 2022, 194, 688–694. [Google Scholar] [CrossRef]
- Hsueh, Y.-J.; Chen, Y.-N.; Tsao, Y.-T.; Cheng, C.-M.; Wu, W.-C.; Chen, H.-C. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int. J. Mol. Sci. 2022, 23, 1255. [Google Scholar] [CrossRef]
- Huang, J.; Yu, W.; He, Q.; He, X.; Yang, M.; Chen, W.; Han, W. Autophagy Facilitates Age-Related Cell Apoptosis—A New Insight from Senile Cataract. Cell Death Dis. 2022, 13, 37. [Google Scholar] [CrossRef]
- Kyselova, Z. Different Experimental Approaches in Modelling Cataractogenesis: An Overview of Selenite-Induced Nuclear Cataract in Rats. Interdiscip. Toxicol. 2010, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, L.; Harikiran, H.; Sharma, A. In Vitro Prophylactic Cataract Prevention Study on Glucose Induced Cataract by Quercetin and Alpha Tocopherol. Int. J. Pharm. Sci. Res. 2010, 1, 41–45. [Google Scholar]
- Isai, M.; Sakthivel, M.; Ramesh, E.; Thomas, P.A.; Geraldine, P. Prevention of Selenite-Induced Cataractogenesis by Rutin in Wistar Rats. Mol. Vis. 2009, 15, 2570–2577. [Google Scholar]
- Nakazawa, Y.; Nagai, N.; Ishimori, N.; Oguchi, J.; Tamura, H. Administration of Antioxidant Compounds Affects the Lens Chaperone Activity and Prevents the Onset of Cataracts. Biomed. Pharmacother. 2017, 95, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Padmaja, S.; Raju, T.N. Antioxidant Effect of Curcumin in Selenium Induced Cataract of Wistar Rats. Indian J. Exp. Biol. 2004, 42, 601–603. [Google Scholar] [PubMed]
- Suryanarayana, P.; Krishnaswamy, K.; Reddy, G.B. Effect of Curcumin on Galactose-Induced Cataractogenesis in Rats. Mol. Vis. 2003, 9, 223–230. [Google Scholar] [PubMed]
- Manikandan, R.; Thiagarajan, R.; Beulaja, S.; Sudhandiran, G.; Arumugam, M. Curcumin Prevents Free Radical-Mediated Cataractogenesis through Modulations in Lens Calcium. Free Radic. Biol. Med. 2010, 48, 483–492. [Google Scholar] [CrossRef]
- Durgapal, S.; Juyal, V.; Verma, A. In Vitro Antioxidant and Ex Vivo Anti-Cataract Activity of Ethanolic Extract of Cineraria Maritima: A Traditional Plant from Nilgiri Hills. Futur. J. Pharm. Sci. 2021, 7, 105. [Google Scholar] [CrossRef]
- Feriyani, F.; Maulanza, H.; Lubis, R.R.; Balqis, U.; Darmawi, D. Effects of Binahong (Anredera Cordifolia (Tenore) Steenis) Extracts on the Levels of Malondialdehyde (MDA) in Cataract Goat Lenses. Sci. World J. 2021, 2021, 6617292. [Google Scholar] [CrossRef]
- Asha, R.; Gayathri Devi, V.; Abraham, A. Lupeol, a Pentacyclic Triterpenoid Isolated from Vernonia Cinerea Attenuate Selenite Induced Cataract Formation in Sprague Dawley Rat Pups. Chem. Biol. Interact. 2016, 245, 20–29. [Google Scholar] [CrossRef]
- Sundararajan, M.; Thomas, P.A.; Babyshalini, K.; Geraldine, P. Identification of Phytoconstituents and In-Vitro Evaluation of the Putative Anticataractogenic Effect of an Ethanolic Root Extract of Leucas Aspera. Biomed. Pharmacother. 2017, 85, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Luo, L.-J.; Lue, S.J.; Lai, J.-Y. The Role of Aromatic Ring Number in Phenolic Compound-Conjugated Chitosan Injectables for Sustained Therapeutic Antiglaucoma Efficacy. Carbohydr. Polym. 2020, 231, 115770. [Google Scholar] [CrossRef] [PubMed]
- Kyei, S.; Koffuor, G.A.; Ramkissoon, P.; Afari, C.; Asiamah, E.A. The Claim of Anti-Cataract Potential of Heliotropium Indicum: A Myth or Reality? Ophthalmol. Ther. 2015, 4, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongare, V.; Kulkarni, C.; Kondawar, M.; Magdum, C.; Haldavnekar, V.; Arvindekar, A. Inhibition of Aldose Reductase and Anti-Cataract Action of Trans-Anethole Isolated from Foeniculum Vulgare Mill. Fruits. Food Chem. 2012, 132, 385–390. [Google Scholar] [CrossRef]
- Onkaramurthy, M.; Veerapur, V.P.; Thippeswamy, B.S.; Madhusudana Reddy, T.N.; Rayappa, H.; Badami, S. Anti-Diabetic and Anti-Cataract Effects of Chromolaena Odorata Linn., in Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2013, 145, 363–372. [Google Scholar] [CrossRef]
- Mestry, S.N.; Juvekar, A.R. Aldose Reductase Inhibitory Potential and Anti-Cataract Activity of Punica Granatum Linn. Leaves against Glucose-Induced Cataractogenesis in Goat Eye Lens. Orient. Pharm. Exp. Med. 2017, 17, 277–284. [Google Scholar] [CrossRef]
- Sruthi, T.; Sasikala, V.; Vangalapati, M. Anti Cataract Activity of Synthesized Silver Nano Particles from Skin Of Allium Cepa Species. In Proceedings of the Journal of Physics, Xi’an, China, 18–19 October 2020; Volume 1455, p. 12017. [Google Scholar]
- Zhang, X.; Hu, Y. Inhibitory Effects of Grape Seed Proanthocyanidin Extract on Selenite-Induced Cataract Formation and Possible Mechanism. J. Huazhong Univ. Sci. Technol. Med. Sci. 2012, 32, 613–619. [Google Scholar] [CrossRef]
- Bhadada, S.V.; Goyal, R.K. Effect of Aqueous Extract of Tephrosia Purpurea on Cardiovascular Complications and Cataract Associated with Streptozotocin-Induced Diabetes in Rats. Indian J. Pharm. Sci. 2015, 77, 522–529. [Google Scholar] [CrossRef]
- Bhadada, S.V.; Bhadada, V.J.; Goyal, R.K. Preventive Effect of Tephrosia Purpurea on Selenite-Induced Experimental Cataract. Curr. Eye Res. 2016, 41, 222–231. [Google Scholar] [CrossRef]
- Kim, J.; Choung, S.-Y. Pinus Densiflora Bark Extract Prevents Selenite-Induced Cataract Formation in the Lens of Sprague Dawley Rat Pups. Mol. Vis. 2017, 23, 638–648. [Google Scholar]
- Anbukkarasi, M.; Thomas, P.A.; Sheu, J.-R.; Geraldine, P. In Vitro Antioxidant and Anticataractogenic Potential of Silver Nanoparticles Biosynthesized Using an Ethanolic Extract of Tabernaemontana Divaricata Leaves. Biomed. Pharmacother. 2017, 91, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-S.; Choi, Y.-H.; Lee, S.-J.; Choi, S.; Lee, J.; Kim, H.; Hong, E.-K. Water Extract of Aralia Elata Prevents Cataractogenesis in Vitro and in Vivo. J. Ethnopharmacol. 2005, 101, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ferlemi, A.-V.; Makri, O.E.; Mermigki, P.G.; Lamari, F.N.; Georgakopoulos, C.D. Quercetin Glycosides and Chlorogenic Acid in Highbush Blueberry Leaf Decoction Prevent Cataractogenesis in Vivo and in Vitro: Investigation of the Effect on Calpains, Antioxidant and Metal Chelating Properties. Exp. Eye Res. 2016, 145, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Heruye, S.H.; Maffofou Nkenyi, L.N.; Singh, N.U.; Yalzadeh, D.; Ngele, K.K.; Njie-Mbye, Y.-F.; Ohia, S.E.; Opere, C.A. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals 2020, 13, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooban, B.N.; Sasikala, V.; Sahasranamam, V.; Abraham, A. Analysis on the Alterations of Lens Proteins by Vitex Negundo in Selenite Cataract Models. Mol. Vis. 2011, 17, 1239–1248. [Google Scholar] [PubMed]
- Sasikala, V.; Rooban, B.N.; Sahasranamam, V.; Abraham, A. Rutin Ameliorates Free Radical Mediated Cataract by Enhancing the Chaperone Activity of α-Crystallin. Graefe’s Arch. Clin. Exp. Ophthalmol. = Albr. von Graefes Arch. fur Klin. Exp. Ophthalmol. 2013, 251, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Odjakova, M.; Popova, E.; Al, M.; Mironov, R. Plant-Derived Agents with Anti-Glycation Activity. In Glycosylation; InTech: London, UK, 2012. [Google Scholar]
- Hashim, Z.; Zarina, S. Advanced Glycation End Products in Diabetic and Non-Diabetic Human Subjects Suffering from Cataract. Age (Omaha) 2011, 33, 377–384. [Google Scholar] [CrossRef]
- Abbas, G.; Al-Harrasi, A.S.; Hussain, H.; Hussain, J.; Rashid, R.; Choudhary, M.I. Antiglycation Therapy: Discovery of Promising Antiglycation Agents for the Management of Diabetic Complications. Pharm. Biol. 2016, 54, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.A.; Jung, Y.J.; Yoon, N.Y.; Jeong, D.M.; Bae, H.J.; Kim, D.-W.; Na, D.H.; Choi, J.S. Inhibitory Effects of Nelumbo Nucifera Leaves on Rat Lens Aldose Reductase, Advanced Glycation Endproducts Formation, and Oxidative Stress. Food Chem. Toxicol. 2008, 46, 3818–3826. [Google Scholar] [CrossRef]
- Jang, D.S.; Yoo, N.H.; Kim, N.H.; Lee, Y.M.; Kim, C.-S.; Kim, J.; Kim, J.-H.; Kim, J.S. 3,5-Di-O-Caffeoyl-Epi-Quinic Acid from the Leaves and Stems of Erigeron Annuus Inhibits Protein Glycation, Aldose Reductase, and Cataractogenesis. Biol. Pharm. Bull. 2010, 33, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Braakhuis, A.J.; Donaldson, C.I.; Lim, J.C.; Donaldson, P.J. Nutritional Strategies to Prevent Lens Cataract: Current Status and Future Strategies. Nutrients 2019, 11, 1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Kabbani, O.; Ruiz, F.; Darmanin, C.; Chung, R.-T. Aldose Reductase Structures: Implications for Mechanism and Inhibition. Cell. Mol. Life Sci. C 2004, 61, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Reddy, A.; Yadav, U. Aldose Reductase Inhibitors in the Functional Foods: Regulation of Diabetic Complications. In Functional Food and Human Health; Springer: New York, NY, USA, 2018; pp. 555–574. [Google Scholar]
- Quattrini, L.; La Motta, C. Aldose Reductase Inhibitors: 2013-Present. Expert Opin. Ther. Pat. 2019, 29, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Chethan, S.; Dharmesh, S.M.; Malleshi, N.G. Inhibition of Aldose Reductase from Cataracted Eye Lenses by Finger Millet (Eleusine coracana) Polyphenols. Bioorg. Med. Chem. 2008, 16, 10085–10090. [Google Scholar] [CrossRef]
- Grewal, A.S.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S. Natural Compounds as Source of Aldose Reductase (AR) Inhibitors for the Treatment of Diabetic Complications: A Mini Review. Curr. Drug Metab. 2020, 21, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, H.; Hayashi, R.; Ishizu, T.; Yagi, A. A Flavone from Manilkara Indica as a Specific Inhibitor against Aldose Reductase In Vitro. Planta Med. 2003, 69, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.-Y.; Bao, Y.-D.; Liu, Z.; Qiao, W.; Ma, L.; Huang, Z.-S.; Gu, L.-Q.; Chan, A.S.C. Curcumin Analogs as Potent Aldose Reductase Inhibitors. Arch. Pharm. 2006, 339, 123–128. [Google Scholar] [CrossRef]
- Peng, J.; Zheng, T.; Liang, Y.; Duan, L.; Zhang, Y.; Wang, L.-J.; He, G.; Xiao, H. P-Coumaric Acid Protects Human Lens Epithelial Cells against Oxidative Stress-Induced Apoptosis by MAPK Signaling. Oxid. Med. Cell. Longev. 2018, 2018, 8549052. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Zhu, G.; Li, J.; Yang, X. LncRNA MALAT1 Promotes the Apoptosis and Oxidative Stress of Human Lens Epithelial Cells via P38MAPK Pathway in Diabetic Cataract. Diabetes Res. Clin. Pract. 2018, 144, 314–321. [Google Scholar] [CrossRef]
- Yao, K.; Ye, P.; Zhang, L.; Tan, J.; Tang, X.; Zhang, Y. Epigallocatechin Gallate Protects against Oxidative Stress-Induced Mitochondria-Dependent Apoptosis in Human Lens Epithelial Cells. Mol. Vis. 2008, 14, 217–223. [Google Scholar]
- Yang, Y.; Xu, X.; Liu, Q.; Huang, H.; Huang, X.; Lv, H. Myricetin Prevents Cataract Formation by Inhibiting the Apoptotic Cell Death Mediated Cataractogenesis. Med. Sci. Monit. 2020, 26, e922519-1. [Google Scholar] [CrossRef] [PubMed]
Plants and Parts Used | Solvent/Fraction | Content | Antioxidant Activity | Reference | |
---|---|---|---|---|---|
Torilis leptophylla L. | Methanol (TLM) | Total phenolic content (TPC) (121.9 ± 3.1 mg GAE/g extract) | EC50 value (anti-radical) based on DPPH (41.0 ± 1 μg/mL), ABTS (10.0 ± 0.9 μg/mL), and phosphomolybdate (10.7 ± 2 μg/mL) tests for TLB, radical hydroxyl radicals (8.0 ± 1 g/mL) for TLC, superoxide radicals (57.0 ± 0.3 μg/mL) for TLM and hydrogen peroxide radicals (68.0 ± 2 μg/mL) for TLE were generally lower. Potential antioxidant properties. | [61] | |
Fraction of n-hexane (TLH) | The total flavonoid content (TFC) of TLE (60.9 ± 2.2 mg RTE/g extract) was found to be significantly higher than the other solvent fractions. | ||||
Chloroform Fraction (TLC) | |||||
Ethyl acetate (TLE) fraction | |||||
Fraction of n-butanol (TLB) | |||||
Residual aqueous fraction (TLA) | |||||
Fresh and dried leaves of Datura metel L. (Amethyst) Plant | Methanol | Fresh leaves | Alkaloids, flavonoids, saponins | The antioxidant activity of dry crude extract equivalent to DPPH. (2,2-diphenyl-1-picrylhydrazyl) was in the order of butanol > chloroform > ethyl acetate extract > methanol > hexane extract. However, the order of antioxidant activity of the fresh organic crude extract against DPPH (2,2-diphenyl-1-picrylhydrazyl) was methanol > hexane > chloroform > ethyl acetate extract > butanol. | [70] |
Dry leaves | Alkaloids, flavonoids, saponins | ||||
Chloroform | Fresh leaves | Alkaloids, saponins, tannins | |||
Dry leaves | Alkaloids, saponins, tannins | ||||
Hexane | Fresh leaves | Saponins, tannins | |||
Dry leaves | Saponins, tannins | ||||
Ethyl acetate | Fresh leaves | Alkaloids, saponins | |||
Dry leaves | Alkaloids, saponins | ||||
Butanol | Fresh leaves | Alkaloids, flavonoids | |||
Dry leaves | Alkaloids, flavonoids | ||||
Nigerian Zingiber officinale | Methanol | The extract’s total phenol and flavonoid contents were 15.24 ± 0.02 mg GAE/g and 19.84 ± 0.32 mg/g CE. | DPPH test showed IC50 value 47.05 ± 2.03 μg/mL | [71] | |
FRAP test showed IC50 value 89.15 ± 0.29 μg/mL | |||||
The bark of Phyllanthus Emblica L. | Ethanol: water (7:3) (PEE) | Total phenol content 99.523 ± 1.91 (mg of GAE/g extract) Total Flavonoid Content 389.33 ± 1.25 (mg of quercetin hydrate/g extract) Total Tannin Content 310 ± 0.21 (mg of catechin/g extract) | Based on the hydrogen peroxide scavenging activity test, the ability to inhibit PEE (polyphenolic-enriched extract) free radicals depends on the PEE dose. At a 200 μg/mL concentration, the percentage of PEE inhibition (43.20%) was almost comparable to ascorbic acid (55.39%). However, at the concentration of PEE 250 μg/mL, the percentage inhibition of PEE was 79.62%, which was found to be better than ascorbic acid (71.34%). The IC50 PEE value was 188.80 μg/mL, while ascorbic acid was 177.7 μg/mL. | [72] | |
Based on the ABTS ((2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, the free radical inhibitory activity of PEE was found to be concentration-dependent. The maximum inhibition of ABTS radicals at a 250 μg/mL concentration was 42.91%, which was less effective than the standard (ascorbic acid). The IC50 value of PEE was 329.20 μg/mL, while ascorbic acid was 133.96 μg/mL. | |||||
Isotome longiflora | Ethanol | Flavonoids, saponins, triterpenoids, and alkaloids | IC50: value: 9.57 ppm | [73] | |
n-hexane fraction | Steroids and alkaloids | IC50: value: 99.59 ppm | |||
Chloroform fraction | Flavonoids, steroids, and alkaloids | IC50: value: 48.54 ppm | |||
Sargassum serratifolium | Ethyl acetate | TPC 105.0 ± 2.44 mg Phloroglucinol eq/g extract | Ethyl acetate, ethanol, and methanol extracts showed relatively strong DPPH, ABTs, and superoxide radical activities. The hexane and ethyl acetate extracts exhibited the most potent hydroxyl radicals and ROS scavenging activity. Sargahydroquinoic acid (SHQA), sargachromanol (SCM) and sargaquinoic acid (SQA) are the main antioxidant components in S. serratifolium. | [63] | |
Methanol | TPC 100.9 ± 2.61 mg Phloroglucinol eq/g extract | ||||
Ethanol | TPC 100.2 ± 2.20 mg Phloroglucinol eq/g extract | ||||
Acetone | TPC 91.9 ± 0.65 mg Phloroglucinol eq/g extract | ||||
Hexane | TPC 53.7 ± 1.43 mg Phloroglucinol eq/g extract | ||||
Chloroform | TPC 53.2 ± 1.64 mg Phloroglucinol eq/g extract | ||||
Water | TPC 23.0 ± 1.57 mg Phloroglucinol eq/g extract | ||||
Arisaema jacquemontii root Blume | Methanol | TPC 45 ± 1.7 GAE/g TFC (Total flavonoid compound) 35.5 ± 2.2 mg rutin equivalent/g | The extract had significant antioxidant activity in all assays, with 64.16 ± 0.19% in DPPH and 62.16 ± 0.17% in NBT (nitroblue tetrazolium) assays, and reduced Fe3+ ferricyanide complexes to form iron (Fe2 +). | [74] | |
Straw mushroom | Alcohol | The total phenolic content in the extract determined by the Folin–Ciocalteu method was 6.18 mg GAE/g extract | These results indicate that the ethanolic extract of A. bisporus has potent antioxidant activity and can be explored as a new natural antioxidant. | [75] | |
Passion Fruit (Passiflora edulis) Leaves | Aqueous | Total phenolic content 8.3 ± 0.22 mg GAE g | P. edulis leaf aqueous extract is a powerful source of antioxidants. The extract showed that it could reduce oxidative stress in vivo, increasing antioxidant power and lipid peroxidation in mice, especially in organs. | [76] | |
Capparis spinosa | Water:ethanol 20:80 (v/v) | Total phenol content 427.27 ± 3.21 (mg GAE/g dry matter) Flavonoids 57.93 ± 2.31 (mg QE/g dry matter) Anthocyanins 4.81 ± 0.85 (mg Cy-3-glu E/g dry matter) | DPPH test showed that plant extracts showed higher antioxidant activity than BHT (IC50 = 7.41 vs. 8.31 µg/ mL). | [77] | |
Dendrobium sabin flower (DS) | 100% methanol (w/v), 100% ethanol (w/v), and 100% water (w/v). | 100% methanol crude extract showed the highest total phenolic content (40.33 ± mg GAE/g extract) | The correlation between antioxidant activity and total phenolic content indicates that phenolic compounds are the dominant antioxidant components in this flower extract. Microbial fermentation on DS flower media showed the potential to increase the phenolic content and scavenging activity of DPPH. | [78] | |
Ginger | Ethanol, methanol, acetone, and ethyl acetate | The methanol extract showed the maximum phenolic content (1183.813 mg GAE/100 g in Ayikel and 1022.409 mg GAE/100 g in Mandura). The least phenolic content was found in acetone extract (748.865 mg GAE/100 g in Ayikel). and 690.152 mg GAE/100 g in Mandura) | The highest DPPH radical scavenging activity (84.868% in Ayikel and 82.883% in Mandura) was observed in methanol. However, acetone showed minor DPPH radical scavenging activity (73.864% in Ayikel and 70.597% in Mandura). The antioxidant activity of the ginger extract was also expressed as IC50 value, and acetone extract had the maximum IC50 value (0.654 and 0.812 mg/mL), followed by ethyl acetate and ethanol, while methanol was the lowest (0.481 and 0.525 mg/mL). | [79] | |
Chaptalia nutans Daun leaves | Hydromethanol (30/70 methanol-water) | Quantitative studies of phytochemicals showed total phenols (30.17 ± 1.44 mg/g), flavonoids (21.64 ± 0.66 mg/g), and condensed tannins (9.58 ± 0.99 mg/g) | DPPH (345.41 ± 5.35 μg/mL) and FRAP (379.98 ± 39.25 μM FeSO4/mg sample). | [80] | |
Leaves of Marrubium vulgare L. | Hydroethanolic (MVE) and hydroacetonic (MVA) | The results showed that the total phenol content was higher in the MVA (112.09 ± 4.77 mg GAE/DW) than in the MVE extract (98.77 ± 1.68 mg GAE/DW). Total flavonoid content was also higher in MVA extract (21.08 ± 0.38 mg QE/g DW) compared to MVE (17.65 ± 0.73 mg QE/g DW). | Both extracts had good total antioxidant activity. DPPH and FRAP tests showed that MVE extract had better antioxidant activity, with IC50 = 52.04 μg/mL ± 0.2 and EC50 4.51 ± 0.5 mg/mL, compared to MVA extract (IC50 = 60.57 ± 0.6 μg/mL and EC50 of 6.43 ± 0.0411 mg/mL). | [81] | |
Three species of bee propolis | Water extract | The highest TPC was found in the H. Fimbriata extract at 13.21 mg/mL, followed by the T. Binghami and T. apicalis extracts at 10.11 and 7.60 mg/mL, respectively. The highest TFC observed was from the aqueous extract of H. Fimbriata propolis, which was 34.53 mg/mL, while the lowest TFC recorded was from the extract of T. binghami species at 34.17 mg/mL. The aqueous extract of T. apicalis showed an average TFC value of 34.50 mg/mL | The results showed that the percentage of H. fimbriata DPPH scavenging activity (56.91%), especially at a concentration of 5 mL was higher than ascorbic acid (48.22%), T. apicalis (47.56%), and T. binghami (41.87%). | [82] | |
Tragopogon porrifolius | Water, 80% ethanol, and 100% ethanol | The results showed that the polarity of the extraction solvent affected TPC, TFC, and antioxidants. | [83] |
Plants and Parts Used | Solvent | Test Animals | Results | Reference |
---|---|---|---|---|
Binahong (Anredera cordifolia (Tenore) Steenis) | Ethanol | Glucose-induced goat lens (ex vivo) | The lens group with added binahong extract had more transparent outcomes than the lens group induced with 55 mM glucose concentration). Binahong can suppress malondialdehyde generation at doses of 100 or 200. | [101] |
Lupeol, a pentacyclic triterpenoid isolated from Vernonia cinerea | Ethyl acetate fraction of Vernonia cinerea methanol extract | Selenite-induced Sprague Dawley rat eye lens (in vivo) | Biochemical parameters such as the activity of SOD, CAT, GPx, GR, GST, Ca2+ ATPase, glutathione content, ROS, a lipid peroxidation product (malondialdehyde) was estimated and found to be effective in the treatment of cataracts with lupeol. | [102] |
Heliotropium indicum | Water | 10-day-old Sprague Dawley rat pups of both sexes (in vivo) | Cataract scores showed that the extract significantly reduced selenite-induced cataracts at all dose levels (P 0.001). Lens transparency markers (aquaporin 0, alpha A and B crystallins) and total lens protein and lens glutathione levels were significantly preserved (P 0.01–0.001). The extract exhibited relevant activities for free radical scavenging and lipid peroxidation inhibition. The integrity of the lens epithelium and fibers in histopathological assessment was maintained with Heliotropium indicum extract treatment. | [105] |
Foeniculum vulgare Mill. | Petroleum ether, chloroform, and dichloromethane | Streptozotocin induced mice (in vivo) | Trans-anethole can effectively exhibit anticataract activity by increasing soluble lens protein, decreasing glutathione, CAT, and SOD activity on in vitro incubation of ocular lens with 55 mM glucose. Trans-anethole showing non-competitiveness for mixed type lens aldose reductase inhibition using Lineweaver–Burk plots. | [106] |
Cineraria maritime leaves and stems | Ethanol | Goat eye lens (ex vivo) | From the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, the IC50 value of the standard compound was found to be 5.45 μg/mL and that of the ethanolic extract of the plant was 73.26 μg/mL. The hydrogen peroxide method was the second method which was used for the determination of antioxidant potential. In this method, ascorbic acid was used as a standard which showed an IC50 value of 0.89 mg/mL, while the IC50 value of the ethanolic extract of the plant was found to be 1.30 mg/mL. | [100] |
Chromolaena odorata leaves | Ethanol extract Chromolaena odorata leaves (ACO) | Streptozotocin-induced diabetic mice (in vivo) | ACO treatment resulted in substantial improvements in glucose and insulin tolerance, glycogen content, glucose absorption by skeletal muscle, serum insulin, and HDL-c levels, and a reduction in HOMA and lipid profile. Furthermore, by boosting endogenous antioxidants, ACO decreases oxidative stress. Moreover, ACO therapy significantly reduced the incidence and extent of cataracts. | [107] |
Leaves of Punica granatum | Methanolic extract of Punica granatum leaves (MPGL) | Goat eye lens (ex vivo) | Reduced glutathione and SOD levels were lower in the cataract lens, indicating opacity. MPGL and quercetin treatment reduced opacity and increased antioxidant activity. Punica granatum leaves reduced glucose-induced cataractogenesis by inhibiting AR, reducing oxidative stress, and enhancing antioxidant defense mechanisms. | [108] |
Allium cepa (Onion) | Extraction of flavonoids from onion peel and its combination with silver particles showed its activity as nanoparticles. | - | From the observations, the anticataract activity of silver nanoparticles from the Allium cepa peel showed better results than the Allium cepa peel. | [109] |
Grape Seed Proanthocyanidin Extract (GSPE) | Proanthocyanidin | Selenite-induced cataract in mice (in vivo) | Administration of GSPE was able to maintain this antioxidant enzyme activity and anti-OH independently-ability, accompanied by a significant decrease in malondialdehyde, NO, Ca2+ and iNOS levels, and calpain-2 protein and mRNA expression. | [110] |
Tephrosia purpurea | Water | Streptozotocin-induced rats (in vivo) | The results showed that the aqueous extract of Tephrosia purpurea prevented streptozotocin-induced metabolic disorders and cardiovascular complications and reduced the risk of cataract development. | [111] |
Tephrosia purpurea | 95% alcohol | Cataracts were induced by a single injection of sodium selenite (4 mg/kg, sc) into 9-day-old Sprague-Dawley rat pups (in vivo) | T. purpurea extract reduced core opacity in the lens while increasing insoluble protein, sulfhydryl protein, total nitrite, calcium levels, and Ca(2+)-ATPase activity. The extract reduces malondialdehyde levels while simultaneously preventing glutathione depletion. | [112] |
P. densiflora pine bark | Extraction was performed using 60% EtOH in 50 °C for 3 h | Selenite-induced cataracts in the lens of Sprague Dawley rat pups (in vivo) | This study showed that the bark extract of P. densiflora independently could prevent cataract formation. Water-soluble protein, glutathione, SOD, glutathione peroxidase, and CAT activity levels were high. Conversely, water-insoluble protein, malondialdehyde and Ca2+-ATPase were low in the group treated with P. densiflora bark extract. | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imelda, E.; Idroes, R.; Khairan, K.; Lubis, R.R.; Abas, A.H.; Nursalim, A.J.; Rafi, M.; Tallei, T.E. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants 2022, 11, 1285. https://doi.org/10.3390/antiox11071285
Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants. 2022; 11(7):1285. https://doi.org/10.3390/antiox11071285
Chicago/Turabian StyleImelda, Eva, Rinaldi Idroes, Khairan Khairan, Rodiah Rahmawaty Lubis, Abdul Hawil Abas, Ade John Nursalim, Mohamad Rafi, and Trina Ekawati Tallei. 2022. "Natural Antioxidant Activities of Plants in Preventing Cataractogenesis" Antioxidants 11, no. 7: 1285. https://doi.org/10.3390/antiox11071285
APA StyleImelda, E., Idroes, R., Khairan, K., Lubis, R. R., Abas, A. H., Nursalim, A. J., Rafi, M., & Tallei, T. E. (2022). Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants, 11(7), 1285. https://doi.org/10.3390/antiox11071285