A Census of Human Methionine-Rich Prion-like Domain-Containing Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Gene Ontology Enrichment Analyses
2.3. Spatial Methionine Pattern Analysis
2.4. Empirical Null Distributions
2.5. Computational Definition of MR-PrLD
2.6. Compactness Index
2.7. Protein Networks Based on GO Terms and Assortativity Analysis
3. Results
3.1. A Small but Sizeable Fraction of Human Proteins Do Not Contain Methionine Residues Other Than the Initiation One
3.2. Aggregation Versus Dispersion of Methionine Residues through the Primary Structure of Human Proteins
3.3. Proteins from the Aggregation Group Tend to Be Met-Enriched and Larger Than Average
3.4. Screening the Aggregation Group for MR-PrLD-Containing Proteins
3.5. Proteins Containing MR-PrLDs Are Extraordinarily Compact
3.6. GO Analysis of MR-PrLD-Containing Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collins, F.S.; Lander, E.S.; Rogers, J. International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome. Nature 2004, 431, 931–945. [Google Scholar]
- Gibbs, R.A. The Human Genome Project changed everything. Nat. Rev. Genet. 2020, 21, 575–576. [Google Scholar] [CrossRef]
- Kato, M.; Zhou, X.; McKnight, S.L. How do protein domains of low sequence complexity work? RNA 2022, 28, 3–15. [Google Scholar] [CrossRef]
- Haerty, W.; Golding, G.B. Low-complexity sequences and single amino acid repeats: Not just “junk” peptide sequences. Genome 2010, 53, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Ntountoumi, C.; Vlastaridis, P.; Mossialos, D.; Stathopoulos, C.; Iliopoulos, I.; Promponas, V.; Oliver, S.G.; Amoutzias, G.D. Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved. Nucleic Acids Res. 2019, 47, 9998–10009. [Google Scholar] [CrossRef]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Ventura, S.; Zurdo, J.; Narayanan, S.; Parreño, M.; Mangues, R.; Reif, B.; Chiti, F.; Giannoni, E.; Dobson, C.M.; Aviles, F.X.; et al. Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proc. Natl. Acad. Sci. USA 2004, 101, 7258–7263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatchel, J.; Zoghbi, H. Diseases of Unstable Repeat Expansion: Mechanisms and Common Principles. Nat. Rev. Genet. 2005, 6, 743–755. [Google Scholar] [CrossRef]
- Shin, J.S.; Chung, K.W.; Cho, S.Y.; Yun, J.; Hwang, S.J.; Kang, S.H.; Cho, E.M.; Kim, S.-M.; Choi, B.-O. NEFL Pro22Arg mutation in Charcot-Marie-Tooth disease type 1. J. Hum. Genet. 2008, 53, 936–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, V.; Dignon, G.L.; Zerze, G.H.; Chabata, C.V.; Silva, R.; Conicella, A.E.; Amaya, J.; Burke, K.A.; Mittal, J.; Fawzi, N.L. Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Mol. Cell 2018, 69, 465–479.e7. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Pang, Q.; Wang, J.; Zhao, Z.; Wang, O.; Xu, L.; Mao, J.; Jiang, Y.; Li, M.; Xing, X.; et al. Familial Early-Onset Paget’s Disease of Bone Associated with a Novel hnRNPA2B1 Mutation. Calcif. Tissue Res. 2017, 101, 159–169. [Google Scholar] [CrossRef]
- Erro, M.E.; Zelaya, M.V.; Mendioroz, M.; Larumbe, R.; Ortega-Cubero, S.; Lanciego, J.L.; Lladó, A.; Cabada, T.; Tuñón, T.; García-Bragado, F.; et al. Globular glial tauopathy caused by MAPT P301T mutation: Clinical and neuropathological findings. J. Neurol. 2019, 266, 2396–2405. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M.; Jakes, R. Mutations causing neurodegenerative tauopathies. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2005, 1739, 240–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzu, P.; Joosse, M.; Ravid, R.; Hoogeveen, A.; Kamphorst, W.; Van Swieten, J.C.; Willemsen, R.; Heutink, P. Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients. Hum. Mol. Genet. 2000, 9, 3075–3082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Lin, Y.; Kato, M.; Mori, E.; Liszczak, G.; Sutherland, L.; Sysoev, V.O.; Murray, D.T.; Tycko, R.; McKnight, S.L. Transiently structured head domains control intermediate filament assembly. Proc. Natl. Acad. Sci. USA 2021, 118, e2022121118. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.M. Compositionally Biased Dark Matter in the Protein Universe. Proteomics 2018, 18, e1800069. [Google Scholar] [CrossRef]
- Aledo, J.C. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021, 11, 1248. [Google Scholar] [CrossRef]
- Kato, M.; Han, T.W.; Xie, S.; Shi, K.; Du, X.; Wu, L.C.; Mirzaei, H.; Goldsmith, E.J.; Longgood, J.; Pei, J.; et al. Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels. Cell 2012, 149, 753–767. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Kato, M.; Wu, L.; Lin, Y.; Ding, M.; Zhang, Y.; Yu, Y.; McKnight, S. The LC Domain of hnRNAPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets and Nuclei. Cell 2015, 163, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-S.; Kato, M.; Wu, X.; Litsios, A.; Sutter, B.M.; Wang, Y.; Hsu, C.-H.; Wood, N.E.; Lemoff, A.; Mirzaei, H.; et al. Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth. Cell 2019, 177, 697–710.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzmann, T.M.; Alberti, S. Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior. J. Biol. Chem. 2019, 294, 7128–7136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid–liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 2021, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Yang, Y.-S.; Sutter, B.M.; Wang, Y.; McKnight, S.L.; Tu, B.P. Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain. Cell 2019, 177, 711–721.e8. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhou, X.; Kato, M.; Liu, D.; Ghaemmaghami, S.; Tu, B.P.; McKnight, S.L. Redox-mediated regulation of an evolutionarily conserved cross-β structure formed by the TDP43 low complexity domain. Proc. Natl. Acad. Sci. USA 2020, 117, 28727–28734. [Google Scholar] [CrossRef]
- Aledo, J.C. Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein Sci. 2019, 28, 1785–1796. [Google Scholar] [CrossRef]
- Human Proteome UP000005640. Available online: https://www.uniprot.org/proteomes/UP000005640 (accessed on 29 January 2022).
- Blake, J.A.; Christie, K.R.; Dolan, M.E.; Drabkin, H.J.; Hill, D.P.; Ni, L.; Sitnikov, D.; Burgess, S.; Buza, T.; Gresham, C.; et al. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Casagrande, J.; Thomas, P. Large-scale gene function analysis with PANTHER Classification System. Nat. Protoc. 2013, 8, 1551–1566. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.J.; Castillo, O. A New Approach for Interpreting the Morisita Index of Aggregation through Quadrat Size. ISPRS Int. J. Geo-Inf. 2017, 6, 296. [Google Scholar] [CrossRef]
- McVinish, R.; Lester, R.J.G. Measuring aggregation in parasite populations. J. R. Soc. Interface 2020, 17, 20190886. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.M. fLPS: Fast discovery of compositional biases for the protein universe. BMC Bioinform. 2017, 18, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, P.M. fLPS 2.0: Rapid annotation of compositionally-biased regions in biological sequences. PeerJ 2021, 9, e12363. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, A.; Nutter-Upham, A.; Lindquist, S.; King, O.D. PLAAC: A web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 2014, 30, 2501–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Scripts Accompanying the Current Paper. Available online: https://bitbucket.org/jcaledo/mr-prld/src/master/Scripts/MetDistribution.R (accessed on 27 June 2022).
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, V.; Paladin, L.; Juan-Blanco, T.; Pallares, I.; Aloy, P.; Tosatto, S.C.E.; Ventura, S. In silico Characterization of Human Prion-Like Proteins: Beyond Neurological Diseases. Front. Physiol. 2019, 10, 314. [Google Scholar] [CrossRef] [Green Version]
- Aledo, J.C.; Aledo, P. Susceptibility of Protein Methionine Oxidation in Response to Hydrogen Peroxide Treatment–Ex Vivo Versus In Vitro: A Computational Insight. Antioxidants 2020, 9, 987. [Google Scholar] [CrossRef]
- Newman, M.E.J. Mixing patterns in networks. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top 2003, 67, 026126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. Inter. J. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Gómez-Tamayo, J.C.; Cordomí, A.; Olivella, M.; Mayol, E.; Fourmy, D.; Pardo, L. Analysis of the interactions of sulfur-containing amino acids in membrane proteins. Protein Sci. 2016, 25, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Mbaye, M.N.; Hou, Q.; Basu, S.; Teheux, F.; Pucci, F.; Rooman, M. A comprehensive computational study of amino acid interactions in membrane proteins. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Toll-Riera, M.; Radó-Trilla, N.; Martys, F.; Albà, M.M. Role of Low-Complexity Sequences in the Formation of Novel Protein Coding Sequences. Mol. Biol. Evol. 2011, 29, 883–886. [Google Scholar] [CrossRef] [Green Version]
- Carugo, O. Amino acid composition and protein dimension. Protein Sci. 2008, 17, 2187–2191. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.; Sodhi, J.; McGuffin, L.; Buxton, B.; Jones, D. Prediction and Functional Analysis of Native Disorder in Proteins from the Three Kingdoms of Life. J. Mol. Biol. 2004, 337, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Kim, G.; Levine, R.L.; Heart, N. Methionine in proteins: It’ s not just for protein initiation anymore. Neurochem. Res. 2019, 44, 247–257. [Google Scholar] [CrossRef]
- Janin, J.; Miller, S.; Chothia, C. Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 1988, 204, 155–164. [Google Scholar] [CrossRef]
- Marcotte, E.; Pellegrini, M.; Yeates, T.; Eisenberg, D. A census of protein repeats. J. Mol. Biol. 1999, 293, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Riback, J.A.; Katanski, C.D.; Kear-Scott, J.L.; Pilipenko, E.V.; Rojek, A.E.; Sosnick, T.R.; Drummond, D.A. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell 2017, 168, 1028–1040.e19. [Google Scholar] [CrossRef] [Green Version]
- Black, S.D.; Mould, D.R. Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal. Biochem. 1991, 193, 72–82. [Google Scholar] [CrossRef]
- Michelitsch, M.D.; Weissman, J.S. A census of glutamine/asparagine-rich regions: Implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 2000, 97, 11910–11915. [Google Scholar] [CrossRef] [Green Version]
- Jacob, F. Evolution and Tinkering. Science 1977, 196, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
ID | Start | End | Length | x | p-Value | MR-PrLD |
---|---|---|---|---|---|---|
O75400 | 65 | 121 | 57 | 19 | 1.79 × 10−13 | PMGMHPMGQRANMPPVPHGMMPQMMPPMGGPPMGQMPGMMSSVMPGMMMSHMSQASM |
Q8WYB5 | 1961 | 2068 | 108 | 21 | 4.53 × 10−13 | MQRGMNMSVNLMPAPAYNVNSVNMNMNTLNAMNGYSMSQPMMNSGYHSNHGYMNQTPQYPMQMQMGMMGTQPYAQQPMQTPPHGNMMYTAPGHHGYMNTGMSKQSLNG |
Q92794 | 1894 | 1977 | 84 | 18 | 5.74 × 10−12 | QRGMNMGVNLMPTPAYNVNSMNMNTLNAMNSYRMTQPMMNSSYHSNPAYMNQTAQYPMQMQMGMMGSQAYTQQPMQPNPHGNMM |
Q96JP2 | 820 | 847 | 28 | 8 | 6.25 × 10−9 | PMVYPGMIQMPAYQPGMVPAPMPMMPAM |
Q9UMZ2 | 37 | 94 | 58 | 12 | 9.29 × 10−9 | PPQAGLMPMQQQGFPMVSVMQPNMQGIMGMNYSSQMSQGPIAMQAGIPMGPMPAAGMP |
Q14677 | 549 | 591 | 43 | 14 | 1.72 × 10−8 | MPMSMPNVMTGTMGMAPLGNTPMMNQSMMGMNMNIGMSAAGMG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aledo, J.C. A Census of Human Methionine-Rich Prion-like Domain-Containing Proteins. Antioxidants 2022, 11, 1289. https://doi.org/10.3390/antiox11071289
Aledo JC. A Census of Human Methionine-Rich Prion-like Domain-Containing Proteins. Antioxidants. 2022; 11(7):1289. https://doi.org/10.3390/antiox11071289
Chicago/Turabian StyleAledo, Juan Carlos. 2022. "A Census of Human Methionine-Rich Prion-like Domain-Containing Proteins" Antioxidants 11, no. 7: 1289. https://doi.org/10.3390/antiox11071289
APA StyleAledo, J. C. (2022). A Census of Human Methionine-Rich Prion-like Domain-Containing Proteins. Antioxidants, 11(7), 1289. https://doi.org/10.3390/antiox11071289