A Comparative Study on Phytochemical Fingerprint of Two Diverse Phaseolus vulgarisvar. Tondino del Tavo and Cannellino Bio Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Extraction Method
2.3.1. Protein Fraction
2.3.2. Free Phenolic Compounds Fraction
2.3.3. Conjugated Phenolic Compounds Fraction
2.3.4. Bound Phenolic Compounds Fraction
2.4. HPLC-PDA Analysis
2.5. Total Phenolic and Flavonoid Content
2.6. Antioxidant and Enzyme Inhibitory Assays
2.7. Data Analysis
2.8. Zymosan-Induced Oedema Formation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castillo, F.; González, D.R.; Moore-Carrasco, R. Effects of Phaseolus Vulgaris Extract on Lipolytic Activity and Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes: A Strategy to Prevent Obesity. J. Nutr. Metab. 2019, 2019, 5093654. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Lucarini, E.; Trallori, E.; Avagliano, C.; de Caro, C.; Russo, R.; Calignano, A.; Ghelardini, C.; Pacini, A.; di Cesare Mannelli, L. Phaseolus vulgaris L. Extract: Alpha-Amylase Inhibition against Metabolic Syndrome in Mice. Nutrients 2019, 11, 1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollica, A.; Stefanucci, A.; Zengin, G.; Locatelli, M.; Macedonio, G.; Orlando, G.; Ferrante, C.; Menghini, L.; Recinella, L.; Leone, S.; et al. Polyphenolic Composition, Enzyme Inhibitory Effects Ex-Vivo and In-Vivo Studies on Two Brassicaceae of North-Central Italy. Biomed. Pharmacother. 2018, 107, 129–138. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, Y.; Zhu, Y.; Gao, Y.; Ren, G. Comparisons of Phaseolin Type and α-Amylase Inhibitor in Common Bean (Phaseolus vulgaris L.) in China. Crop J. 2016, 4, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Perez-Hernandez, L.M.; Hernández-Álvarez, A.J.; Morgan, M.; Boesch, C.; Orfila, C. Polyphenol Bioaccessibility and Anti-Inflammatory Activity of Mexican Common Beans (Phaseolus vulgaris L.) with Diverse Seed Colour. CYT-J. Food 2021, 19, 682–690. [Google Scholar] [CrossRef]
- Tormo, M.A.; Gil-Exojo, I.; de Tejada, A.R.; Campillo, J.E. Hypoglycaemic and Anorexigenic Activities of an α-Amylase Inhibitor from White Kidney Beans (Phaseolus vulgaris) in Wistar Rats. Br. J. Nutr. 2004, 92, 785–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neil, E.S.; McGinley, J.N.; Fitzgerald, V.K.; Lauck, C.A.; Tabke, J.A.; Streeter-McDonald, M.R.; Yao, L.; Broeckling, C.D.; Weir, T.L.; Foster, M.T.; et al. White Kidney Bean (Phaseolus vulgaris L.) Consumption Reduces Fat Accumulation in a Polygenic Mouse Model of Obesity. Nutrients 2019, 11, 2780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udani, J.; Singh, B.B. Blocking Carbohydrate Absorption and Weight Loss: A Clinical Trial Using a Proprietary Fractionated White Bean Extract. Altern. Ther. Health Med. 2007, 13, 32–37. [Google Scholar]
- Udani, J.; Tan, O.; Molina, J. Systematic Review and Meta-Analysis of a Proprietary Alpha-Amylase Inhibitor from White Bean (Phaseolus vulgaris L.) on Weight and Fat Loss in Humans. Foods 2018, 7, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tormo, M.A.; Gil-Exojo, I.; De Tejada, A.R.; Campillo, J.E. White Bean Amylase Inhibitor Administered Orally Reduces Glycaemia in Type 2 Diabetic Rats. Br. J. Nutr. 2006, 96, 539–544. [Google Scholar] [CrossRef]
- De Gouveia, N.M.; Alves, F.V.; Furtado, F.B.; Scherer, D.L.; Mundim, A.V.; Espindola, F.S. An In Vitro and In Vivo Study of the α-Amylase Activity of Phaseolamin. J. Med. Food 2014, 17, 915–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, M.L.; Udani, J.K. A Proprietary Alpha-Amylase Inhibitor from White Bean (Phaseolus vulgaris): A Review of Clinical Studies on Weight Loss and Glycemic Control. Nutr. J. 2011, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celleno, L.; Tolaini, M.V.; D’Amore, A.; Perricone, N.V.; Preuss, H.G. A Dietary Supplement Containing Standardized Phaseolus vulgaris Extract Influences Body Composition of Overweight Men and Women. Int. J. Med. Sci. 2007, 4, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Liu, S.; Xie, J.; Chen, Y.; Dong, R.; Zhang, X.; Liu, S.; Xie, J.; Hu, X.; Yu, Q. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities of Bound Polyphenols Extracted from Mung Bean Skin Dietary Fiber. LWT 2020, 132, 109943. [Google Scholar] [CrossRef]
- Kitano-Okada, T.; Ito, A.; Koide, A.; Nakamura, Y.; Han, K.H.; Shimada, K.; Sasaki, K.; Ohba, K.; Sibayama, S.; Fukushima, M. Anti-Obesity Role of Adzuki Bean Extract Containing Polyphenols: In Vivo and In Vitro Effects. J. Sci. Food Agric. 2012, 92, 2644–2651. [Google Scholar] [CrossRef] [PubMed]
- De Toledo, N.M.V.; Rocha, L.C.; Da Silva, A.G.; Canniatti Brazaca, S.G. Interaction and Digestibility of Phaseolin/Polyphenol in the Common Bean. Food Chem. 2013, 138, 776–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 7 July. Available online: https://www.fondazioneslowfood.com/it/presidi-slow-food/fagiolo-tondino-del-tavo/ (accessed on 7 July 2022).
- Available online: https://www.colfiorito.it/it/prodotti (accessed on 7 July 2022).
- Qin, G.; Wang, F.; Liang, H.; Tang, S.; Shekh, K.; Wang, Y.; Li, B.; Dong, B.; Wen, P. Subchronic Study of a White Kidney Bean (Phaseolus Vulgaris) Extract with α-Amylase Inhibitory Activity. BioMed Res. Int. 2019, 2019, 9272345. [Google Scholar] [CrossRef] [Green Version]
- Telles, A.C.; Kupski, L.; Furlong, E.B. Phenolic Compound in Beans as Protection against Mycotoxins. Food Chem. 2017, 214, 293–299. [Google Scholar] [CrossRef]
- Locatelli, M.; Macchione, N.; Ferrante, C.; Chiavaroli, A.; Recinella, L.; Carradori, S.; Zengin, G.; Cesa, S.; Leporini, L.; Leone, S.; et al. Graminex Pollen: Phenolic Pattern, Colorimetric Analysis and Protective Effects in Immortalized Prostate Cells (PC3) and Rat Prostate Challenged with LPS. Molecules 2018, 23, 1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and Enzyme Inhibitory Potential of Two Potentilla Species (P. Speciosa L. and P. Reptans Willd.) and Their Chemical Composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Pieretti, S.; Saviano, A.; Mollica, A.; Stefanucci, A.; Aloisi, A.M.; Nicoletti, M. Calceolarioside A, a Phenylpropanoid Glycoside from Calceolaria Spp., Displays Antinociceptive and Anti-Inflammatory Properties. Molecules 2022, 27, 2183. [Google Scholar] [CrossRef]
- Alcázar-Valle, M.; Lugo-Cervantes, E.; Mojica, L.; Morales-Hernández, N.; Reyes-Ramírez, H.; Enríquez-Vara, J.N.; García-Morales, S. Bioactive Compounds, Antioxidant Activity, and Antinutritional Content of Legumes: A Comparison between Four Phaseolus Species. Molecules 2020, 25, 3528. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Alonso, L.G.; Lygin, A.; Widholm, J.M.; Valverde, M.E.; Paredes-Lopez, O. Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2006, 54, 4436–4444. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wang, C.; Zhai, L.; Yu, W.; Chang, H.; Kou, X.; Zhou, F. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean during the germination process. Czech J. Food Sci. 2016, 34, 68–78. [Google Scholar] [CrossRef]
- Duenas, M.; Sarmento, T.; Aguilera, Y.; Benítez, V.; Molla, E.; Esteban, R.M.; Martín-Cabrejasa, M.A. Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT-Food Sci. Technol. 2016, 66, 72–78. [Google Scholar] [CrossRef]
- Treviño-Mejía, D.; Luna-Vital, D.A.; Gaytán-Mart ínez, M.; Mendoza, S.; Loarca-Piña, G. Fortification of commercial nixtamalized maize (Zea mays L.) with common bean (Phaseolus vulgaris L.) increased the nutritional and nutraceutical content of tortillas without modifying sensory properties. J. Food Qual. 2016, 39, 569–579. [Google Scholar] [CrossRef]
- Nemitz, M.C.; Moraes, R.C.; Koester, L.S.; Bassani, V.L.; von Poser, G.L.; Teixeira, H.F. Bioactive soy isoflavones: Extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems. Phytochem. Rev. 2015, 14, 849–869. [Google Scholar] [CrossRef]
- Alarcón-Espósito, J.; Nina, N.; Theoduloz, C.; Burgos-Edwards, A.; Paillan, H.; Schmeda-Hirschmann, G. Phenolic Composition and α-Glucosidase Inhibition of Leaves from Chilean Bean Landraces. Plant Foods Hum. Nutr. 2022, 77, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. Plants 2022, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Alcázar-Valle, M.; García-Morales, S.; Mojica, L.; Morales-Hernández, N.; Sánchez-Osorio, E.; Flores-López, L.; Enríquez-Vara, J.N.; Lugo-Cervantes, E. Nutritional, Antinutritional Compounds and Nutraceutical Significance of Native Bean Species (Phaseolus Spp.) of Mexican Cultivars. Agriculture 2021, 11, 1031. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 5, 5990. [Google Scholar] [CrossRef]
- Rossi, G.B.; Seraglio, S.K.T.; Honaiser, T.C.; Toaldo, I.M.; de Oliveira Costa, A.C.; de Faria, J.C.; Arisi, A.C.M. Protein Profile and Antioxidant Capacity of Processed Seeds from Two Common Bean (Phaseolus Vulgaris L.) Cultivars. Int. J. Food Sci. Tech. 2022, 57, ijfs.15537. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total Phenolic Compounds, Radical Scavenging and Metal Chelation of Extracts from Icelandic Seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Canabady-Rochelle, L.L.S.; Harscoat-Schiavo, C.; Kessler, V.; Aymes, A.; Fournier, F.; Girardet, J.-M. Determination of Reducing Power and Metal Chelating Ability of Antioxidant Peptides: Revisited Methods. Food Chem. 2015, 183, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Guerrero, C.J.; Villa-Ruano, N.; Zepeda-Vallejo, L.G.; Hernández-Fuentes, A.D.; Ramirez-Estrada, K.; Zamudio-Lucero, S.; Hidalgo-Martínez, D.; Becerra-Martínez, E. Bean Cultivars (Phaseolus vulgaris L.) under the Spotlight of NMR Metabolomics. Food Res. Int. 2021, 150, 110805. [Google Scholar] [CrossRef]
- Ombra, M.N.; d’Acierno, A.; Nazzaro, F.; Riccardi, R.; Spigno, P.; Zaccardelli, M.; Pane, C.; Maione, M.; Fratianni, F. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of Southern Italy before and after cooking. Oxidative Med. Cell. Longev. 2016, 2016, 1398298. [Google Scholar] [CrossRef] [Green Version]
- García-Molina, P.; García-Molina, F.; Teruel-Puche, J.A.; Rodríguez-López, J.N.; García-Cánovas, F.; Muñoz-Muñoz, J.L. Considerations about the Kinetic Mechanism of Tyrosinase in Its Action on Monophenols: A Review. Mol. Catal. 2022, 518, 112072. [Google Scholar] [CrossRef]
- Fawzi Mahomoodally, M.; Mollica, A.; Stefanucci, A.; Zakariyyah Aumeeruddy, M.; Poorneeka, R.; Zengin, G. Volatile Components, Pharmacological Profile, and Computational Studies of Essential Oil from Aegle Marmelos (Bael) Leaves: A Functional Approach. Ind. Crops Prod. 2018, 126, 13–21. [Google Scholar] [CrossRef]
- Schisano, C.; Narciso, V.; Maisto, M.; Annunziata, G.; Grieco, P.; Sommella, E.M.; Tenore, G.C.; Novellino, E. In Vitro Effects of Protein Fractions from Controne Beans (Phaseolus vulgaris L. Ecotype Controne) on Intestinal Permeability, ACE and α-Amylase Activities. Eur. Food Res. Technol. 2019, 245, 2311–2322. [Google Scholar] [CrossRef]
- Fonseca-Hernández, D.; Lugo-Cervantes, E.D.C.; Escobedo-Reyes, A.; Mojica, L. Black Bean (Phaseolus vulgaris L.) Polyphenolic Extract Exerts Antioxidant and Antiaging Potential. Molecules 2021, 26, 6716. [Google Scholar] [CrossRef] [PubMed]
- Rajhi, I.; Boulaaba, M.; Baccouri, B.; Rajhi, F.; Hammami, J.; Barhoumi, F.; Flamini, G.; Mhadhbi, H. Assessment of dehulling effect on volatiles, phenolic compounds and antioxidant activities of faba bean seeds and flours. S. Afr. J. Bot. 2022, 147, 741–753. [Google Scholar] [CrossRef]
- Gomaa, A.A.; Makboul, R.M.; El-Mokhtar, M.A.; Abdel-Rahman, E.A.; Ahmed, I.A.; Nicola, M.A. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Cytokine 2019, 113, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Borioni, J.L.; Cavallaro, V.; Murray, A.P.; Peñéñory, A.B.; Puiatti, M.; García, M.E. Design, synthesis and evaluation of cholinesterase hybrid inhibitors using a natural steroidal alkaloid as precursor. Bioorganic Chem. 2021, 111, 104893. [Google Scholar] [CrossRef] [PubMed]
- Cardador-Martínez, A.; Loarca-Piña, G.; Oomah, B.D. Antioxidant activity in common beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2002, 50, 6975–6980. [Google Scholar] [CrossRef] [PubMed]
Sample ID | p-OH Benzoic Acid | 3-Hydroxybenzoic Acid | p-Coumaric Acid | Sinapinic Acid | t-Ferulic Acid |
---|---|---|---|---|---|
#1TT | |||||
#2TT | BLQ | BLQ | |||
#3TT | BLQ | BLQ | |||
#4TT | BLQ | 0.79 ± 0.08 | 0.30 ± 0.02 | BLQ | BLQ |
#1CB | |||||
#2CB | BLQ | ||||
#3CB | |||||
#4CB | BLQ | 1.1 ± 0.1 | BLQ | BLQ | BLQ |
Samples | TPC (mg GAE/g) | TFC (mg RE/g) | DPPH (mg TE/g) | ABTS (mg TE/g) |
---|---|---|---|---|
#1TT | 6.63 ± 0.11 c | 0.02 ± 0.01 e | n.a. | 0.76 ± 0.03 e |
#2TT | 3.46 ± 0.06 d | 1.68 ± 0.01 a | n.a. | n.a. |
#3TT | 10.86 ± 0.11 b | 0.06 ± 0.02 cde | n.a. | 0.71 ± 0.01 e |
#4TT | 11.59 ± 0.31 b | 0.07 ± 0.02 cd | 1.04 ± 0.02 b | 16.11 ± 0.07 b |
#1CB | 7.22 ± 0.02 c | 0.61 ± 0.02 b | n.a. | 2.90 ± 0.22 c |
#2CB | 3.32 ± 0.02 d | 0.08 ± 0.01 c | n.a. | n.a. |
#3CB | 11.84 ± 0.03 b | 0.02 ± 0.01 de | n.a. | 1.30 ± 0.02 d |
#4CB | 25.42 ± 1.23 a | 0.61 ± 0.03 b | 6.65 ± 0.11 a | 55.96 ± 0.01 a |
Samples | CUPRAC (mg TE/g) | FRAP (mg TE/g) | Chelating Activity (mg EDTAE/g) | PBD (mg TE/g) |
---|---|---|---|---|
#1TT | 19.97 ± 0.57 f | 6.17 ± 0.07 e | 16.24 ± 0.07 a | 0.26 ± 0.02 d |
#2TT | 15.14 ± 0.13 g | 7.40 ± 0.28 d | 3.34 ± 0.87 cd | 0.56 ± 0.09 c |
#3TT | 30.43 ± 0.13 c | 6.96 ± 0.03 de | 7.64 ± 0.21 b | 1.13 ± 0.05 b |
#4TT | 37.05 ± 0.92 b | 21.01 ± 0.71 b | 15.68 ± 2.31 a | 1.18 ± 0.05 b |
#1CB | 24.14 ± 1.53 e | 6.78 ± 0.02 de | 16.51 ± 0.06 a | 0.12 ± 0.01 e |
#2CB | 16.95 ± 0.67 g | 9.48 ± 0.69 c | 2.65 ± 0.52 d | 0.59 ± 0.03 c |
#3CB | 27.48 ± 0.35 d | 6.83 ± 0.12 de | 1.81 ± 0.10 d | 1.10 ± 0.02 b |
#4CB | 64.69 ± 0.55 a | 42.94 ± 0.03 a | 5.63 ± 0.10 bc | 1.55 ± 0.01 a |
Samples | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mg TE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|
#1TT | 0.02 ± 0.01 d | 4.30 ± 0.01 a | 15.07 ± 0.57 d | 0.05 ± 0.01 e | n.a. |
#2TT | 2.57 ± 0.03 a | 3.96 ± 0.18 bc | 57.94 ± 0.23 c | 0.30 ± 0.02 d | 1.11 ± 0.04 a |
#3TT | n.a. | 3.85 ± 0.01 c | 62.02 ± 0.20 b | 0.39 ± 0.02 bc | 1.15 ± 0.01 a |
#4TT | 2.18 ± 0.03 b | n.a. | 66.44 ± 0.14 a | 0.43 ± 0.01 b | 1.15 ± 0.01 a |
#1CB | n.a. | 0.61 ± 0.07 e | 15.73 ± 1.15 d | 0.05 ± 0.00 e | n.a. |
#2CB | 2.51 ± 0.07 a | 4.07 ± 0.08 b | 60.93 ± 0.40 b | 0.30 ± 0.01 d | 1.14 ± 0.02 a |
#3CB | 2.57 ± 0.04 a | 3.76 ± 0.04 cd | 65.45 ± 0.49 a | 0.38 ± 0.02 c | 1.11 ± 0.01 a |
#4CB | 1.90 ± 0.02 c | 3.57 ± 0.01 d | 61.36 ± 0.67 b | 0.57 ± 0.03 a | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanucci, A.; Scioli, G.; Marinaccio, L.; Zengin, G.; Locatelli, M.; Tartaglia, A.; Della Valle, A.; Cichelli, A.; Novellino, E.; Pieretti, S.; et al. A Comparative Study on Phytochemical Fingerprint of Two Diverse Phaseolus vulgarisvar. Tondino del Tavo and Cannellino Bio Extracts. Antioxidants 2022, 11, 1474. https://doi.org/10.3390/antiox11081474
Stefanucci A, Scioli G, Marinaccio L, Zengin G, Locatelli M, Tartaglia A, Della Valle A, Cichelli A, Novellino E, Pieretti S, et al. A Comparative Study on Phytochemical Fingerprint of Two Diverse Phaseolus vulgarisvar. Tondino del Tavo and Cannellino Bio Extracts. Antioxidants. 2022; 11(8):1474. https://doi.org/10.3390/antiox11081474
Chicago/Turabian StyleStefanucci, Azzurra, Giuseppe Scioli, Lorenza Marinaccio, Gokhan Zengin, Marcello Locatelli, Angela Tartaglia, Alice Della Valle, Angelo Cichelli, Ettore Novellino, Stefano Pieretti, and et al. 2022. "A Comparative Study on Phytochemical Fingerprint of Two Diverse Phaseolus vulgarisvar. Tondino del Tavo and Cannellino Bio Extracts" Antioxidants 11, no. 8: 1474. https://doi.org/10.3390/antiox11081474
APA StyleStefanucci, A., Scioli, G., Marinaccio, L., Zengin, G., Locatelli, M., Tartaglia, A., Della Valle, A., Cichelli, A., Novellino, E., Pieretti, S., & Mollica, A. (2022). A Comparative Study on Phytochemical Fingerprint of Two Diverse Phaseolus vulgarisvar. Tondino del Tavo and Cannellino Bio Extracts. Antioxidants, 11(8), 1474. https://doi.org/10.3390/antiox11081474