Markers of Oxidative Stress in Obstetrics and Gynaecology—A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Characteristics
3.2. Markers of Oxidative Stress
3.3. Materials
3.4. Pregnancy-Related Conditions
3.4.1. Pre-Eclampsia
3.4.2. Gestational Diabetes Mellitus (GDM)
3.4.3. Preterm Birth
3.4.4. General Pregnancy and Antenatal Care
3.5. Reproduction and Gynaecological Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Paper | Country | Population | Oxidative Stress Markers | Materials | Type of Study | |
---|---|---|---|---|---|---|
Pregnancy-Related Conditions | ||||||
Preeclampsia | ||||||
1 | Samimi et al. (2016) [19] | Iran | 60 pregnant women at risk for pre-eclampsia | GSH | blood | randomised controlled clinical trial |
2 | Asemi et al. (2012) [20] | Iran | 42 pregnant women | TAC, GSH | blood | randomised controlled clinical trial |
3 | Mentese et al. (2018) [21] | Turkey | 53 pregnant women; 23 with HELLP syndrome, 30 controls | TOS, TAS, OSI, MDA, carbonic anhydrase IX | serum | case-control study |
4 | Bharadwaj et al. (2018) [22] | India | 143 pregnant women; 71 with pre-eclampsia and 72 controls | TAS, MDA | maternal and cord blood | cohort study |
5 | Sahay et al. (2015) [23] | India | 60 pregnant women; 5 normotensive; 11 with pre-eclampsia delivered at term; 14 with pre-eclampsia, delivered preterm | MDA, CAT, GPx | placenta | cross-sectional study |
6 | Al-Kuraishy et al. (2018) [24] | Iraq | 68 pregnant women; 40 with pre-eclampsia, 28 controls | MDA, NO, peroxynitrite (ONOO−), paraoxonase (PON-1) | serum | case-control study |
7 | Can et al. (2014) [25] | Turkey | 63 pregnant women; 32 with pre-eclampsia, 31 controls | MDA, TAS | placenta | case-control study |
8 | Ahmad et al. (2019) [26] | USA | 114 pregnant women; 23 with pre-eclampsia, 91 controls | O2−, SOD, CAT, GSH, GSSG | blood | case-control study |
9 | Mert et al. (2012) [27] | USA | 81 pregnant women; 24 with pre-eclampsia, 20 with intrauterine growth restriction, 37 controls | TOS, TAS | plasma | case-control study |
10 | Ferguson et al. (2017) [28] | USA | 441 pregnant women; 50 with preeclampsia, 391 controls | 8-OHdG, 8-isoprostane | urine and plasma | cohort study |
Gestational diabetes mellitus (GDM) | ||||||
1 | Zhang et al. (2019) [29] | China | 175 pregnant women; 93 patients with GDM, 82 controls | MDA, GSH, SOD, heme oxygenase 1, nuclear factor erythroid 2-related factor-2, quinone oxidoreductase (NQO1), aldo-keto reductase family 1 member c1 (AKR1C1) | serum, placenta | randomised controlled clinical trial |
2 | Murthy et al. (2018) [30] | India | 60 pregnant women; 30 with GDM, 30 controls | GPx, SOD, uric acid, bilirubin | serum | case-control study |
3 | Razavi et al. (2017) [31] | Iran | 120 pregnant women with GDM | NO, TAC, GSH, MDA | serum | randomised controlled clinical trial |
4 | Jamilian et al. (2019) [32] | Iran | 87 pregnant women with GDM | TAC, GSH, MDA | serum | randomised controlled clinical trial |
5 | Badehnoosh et al. (2018) [33] | Iran | 60 pregnant women with GDM | MDA, TAC, OSI | serum | randomised controlled clinical trial |
6 | Zhu et al. (2015) [34] | China | 72 women: 36 with GDM, 36 control | ceruloplasmin, hs-CRP, transferrin, 3-nitrotyrosin | blood | case-control study |
7 | Jamilian et al. (2019) [35] | Iran | 60 pregnant women at risk of GDM | total nitrite, MDA, TAC, GSH | blood | randomised controlled clinical trial |
8 | Rueangdetnarong et al. (2018) [36] | Thailand | 62 pregnant women; 30 GDM and 32 control | 8-Isoprostane | blood | case-control study |
9 | López-Tinoco et al. (2013) [37] | Spain | 78 pregnant women; 53 with GDM, 25 controls | lipoperoxides, CAT, SOD, GPx, GSH, GST | blood | case-control study |
10 | Li et al. (2016) [38] | China | 52 pregnant women; 22 with GDM, 30 controls | 8-iso-prostaglandin F2α, advanced oxidative protein products (AOPPs), protein carbonyl (PCO), GPx3, PON-1 | plasma | case-control study |
11 | Usluoğullari et al. (2017) [39] | Turkey | 94 pregnant women; 48 with GDM, 46 controls | TOS, irisin, OSI | serum | case-control study |
12 | Shang et al. (2018) [40] | China | 208 pregnant women; 105 with GDM, 103 controls | MDA, 8-isoprostane, xanthine oxidase | maternal plasma, cord plasma, placenta | case-control study |
13 | Shang et al. (2015) [41] | China | 68 pregnant women; 28 with GDM, 40 controls | MDA, 8-isoprostane, xanthine oxidase, lipid peroxides, SOD, GPx, TAC | maternal and cord plasma and placenta | case-control study |
14 | Jamilian et al. (2017) [42] | Iran | 60 pregnant women with PCOS | TAC, NO, MDA | blood | randomised controlled clinical trial |
15 | Asemi et al. (2013) [43] | Iran | 32 pregnant women with GDM | TAC, GSH | plasma | randomised controlled clinical trial |
16 | Hajifaraji et al. (2018) [44] | Iran | 64 pregnant women with GDM | MDA, GR, GPx | serum | randomised controlled clinical trial |
17 | Toljic et al. (2017) [45] | Serbia | 86 pregnant women; 37 patients who developed GDM, 21 patients with gestational hypertension and 28 healthy pregnant women | malondialdehyde equivalents (TBARS), 8-OHdG | blood | case-control study |
18 | Asemi et al. (2015) [46] | Iran | 70 pregnant women with GDM | NO, TAC, MDA, GSH | plasma | randomised controlled clinical trial |
19 | Zygula et al. (2019) [47] | Poland | 89 pregnant women; 59 with GDM and 30 controls | MDA, TAC, inactivation of aldehyde dehydrogenase, GPx, GST | plasma, saliva | case-control study |
20 | Saifi et al. (2020) [48] | Algeria | 180 pregnant women; 120 with GDM, 60 healthy | CAT, SOD, GPx, GR, plasma and erythrocyte carbonyl proteins, MDA | plasma | case-control study |
21 | Jatavan et al. (2020) [49] | Thailand | 80 pregnant women; 43 with GDM, 37 controls | 8-isoprostane, TNF-α, IL-10 | serum | cross-sectional study |
22 | Jamilian et al. (2018) [50] | Iran | 60 pregnant women at risk of GDM | TAC, MDA, NO | plasma | randomised controlled clinical trial |
23 | Rodrigues et al. (2018) [51] | Brazil | 78 pregnant women; 48 with GDM, 30 controls | thiobarbituric acid reactive substances (TBARS), protein (P-SH) and non-protein thiol (NP-SH), CAT | blood | case-control study |
24 | Li et al. (2019) [52] | China | 152 pregnant women; 72 with GDM, 80 control | MDA | blood | case-control study |
25 | Bulut et al. (2021) [53] | Cyprus, Turkey | 51 pregnant women; 22 with GDM, 29 controls | MDA, NO, sulfhydryl | blood, saliva | case-control study |
26 | Gunasegaran et al. (2021) [54] | India | 70 pregnant women with GDM | GSH | serum | randomised controlled clinical trial |
27 | Ahmadi-Motamayel et al. (2021) [55] | Iran | 40 pregnant women; 20 with GDM, 20 healthy | TAC, MDA, CAT, uric acid, total thiol | saliva | case-control study |
28 | Huang et al. (2021) [56] | China | 30 pregnant women; 15 with GDM, 15 controls | P66Shc mRNA, Drp1 mRNA, protein ROS | serum, placenta | case-control study |
29 | Ma et al. (2021) [57] | China | 230 pregnant women; 104 with GDM, 126 controls | TAC, MDA, GSH, SOD | blood | case-control study |
30 | Kong et al. (2019) [58] | Singapore | 9 pregnant women; 3 mothers without GDM, 3 insulin-controlled GDM mothers, 3 diet-controlled GDM mothers | LPO, antioxidant enzymes and gene expression for mitochondrial function: ND2, TFAM, PGC1α, NDUFB9 | Wharton’s jelly mesenchymal stem cells from umbilical cord | case-control study |
Preterm birth | ||||||
1 | Ferguson et al. (2015) [59] | USA | 482 pregnant women; 130 with preterm birth, 352 controls | 8-OHdG, 8-isoprostane | urine | case-control study |
2 | Moore et al. (2020) [60] | USA | 140 pregnant women at risk of preterm birth | ROS, O2−, peroxynitrite (OONO), hydroxyl radical (OH) | blood | cohort study |
3 | Eick et al. (2020) [61] | Puerto Rico | 460 pregnant women at risk of preterm birth | 8-iso-prostaglandin F2α, prostaglandin F2α | urine | cohort study |
4 | Abiaka et al. (2012) [62] | Oman | 74 pregnant women; 37 with preterm birth, 37 with term birth | NO, CAT, GPx | blood | case-control study |
General pregnancy and antenatal care | ||||||
1 | Hsieh et al. (2012) [63] | Taiwan | 503 pregnant women | plasma: TAC, 8-isoprostane, erythrocyte GPx and SOD; urine: 8-OHdG | plasma, urine | cohort study |
2 | Gerszi et al. (2021) [64] | Hungary | 61 pregnant women | total peroxide, TAC, nitrotyrosine | plasma | case-control study |
3 | Arogbokun et al. (2021) [65] | USA | 736 pregnant women | 8-iso-prostaglandin F2α and its primary metabolite, prostaglandin F2α | urine | cohort study |
4 | Lindström et al. (2012) [66] | Bangladesh | 374 pregnant women | free 8-iso-prostaglandin F(2α), 8-OHdG | urine, blood | cohort study |
5 | Sanhal et al. (2018) [67] | Turkey | 107 pregnant women; 57 with intrahepatic cholestasis, 50 controls | thiol, disulphide | plasma | case-control study |
6 | Yilmaz et al. (2015) [68] | Turkey | 80 pregnant women; 41 with hyperemesis gravidarum, 39 healthy | TOS, TAS | blood | case-control study |
7 | Jiang et al. (2012) [69] | USA | 47 women; 26 pregnant, 21 non-pregnant | DNA damage in blood leukocytes | blood | randomised controlled clinical trial |
8 | Motamed et al. (2020) [70] | Iran | 84 pregnant women | MDA, TAC | serum, cord blood serum | randomised controlled clinical trial |
9 | Lymperaki et al. (2015) [71] | Greece | 75 women; 50 pregnant, 25 non-pregnant | TAC | serum | case-control study |
10 | Kajarabille et al. (2017) [72] | Spain | 110 pregnant women | GPx, SOD, CAT | blood | randomised controlled clinical trial |
11 | Korkmaz et al. (2014) [73] | Turkey | 108 healthy pregnant women | γ-glutamyl transferase | serum | randomised controlled clinical trial |
12 | Aalami-Harandi et al. (2015) [74] | Iran | 44 pregnant women at risk of pre-eclampsia | hs-CRP, GSH | blood | randomised controlled clinical trial |
13 | Malti et al. (2014) [75] | Algeria | 90 pregnant women; 40 with obesity, 50 healthy controls | MDA, NO, SOD, CAT, GSH, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium | Maternal, cord blood, placenta samples | case-control study |
14 | Ballesteros-Guzmán et al. (2019) [76] | Mexico | 33 pregnant women; 18 with pre-pregnancy body mass index (pBMI) within normal range; 15 with pBMI ≥ 30 kg/m2 | TAC, MDA, placental expression of GPx4 | maternal and cord serum, placenta | cross-sectional study |
15 | Zygula et al. (2020) [77] | Poland | 104 pregnant women; 27 with pregnancy-induced hypertension, 30 with intrauterine growth restriction, 47 controls | MDA, TAC, aldehyde dehydrogenase, GPx, GST | saliva and plasma | case-control study |
16 | Odame et al. (2018) [78] | Ghana | 175 pregnant women | TAC, soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor, 8-epiprostaglandin F2-α | blood | cohort study |
Reproduction and gynaecological conditions | ||||||
1 | Panti et al. (2018) [79] | Nigeria | 200 women with PCOS | GPx, SOD, CAT, MDA | serum | randomised controlled clinical trial |
2 | Liu et al. (2021) [80] | China | 146 women; 86 with PCOS, 60 controls | TAC, MDA, GSH, SOD, TOC | follicular fluid and serum | case-control study |
3 | Özer et al. (2016) [81] | Turkey | 124 women; 71 with PCOS, 53 controls | MDA, GPx, CAT | follicular fluid and serum | case-control study |
4 | Wang et al. (2019) [82] | China | 270 women; 205 with PCOS, 65 controls | MDA, SOD, TAA | blood | cross-sectional study |
5 | Heshmati et al. (2020) [83] | Iran | 72 women with PCOS | GPx, SOD | serum | randomised controlled clinical trial |
6 | Desai et al. (2014) [84] | India | 50 women; 25 with PCOS, 25 controls | MDA, TAC, uric acid | serum | case-control study |
7 | Kazemi et al. (2021) [85] | Iran | 60 women with PCOS | TAC, MDA, CRP, TNF-α | serum | randomised controlled clinical trial |
8 | Turan et al. (2015) [86] | Turkey | 90 women; 33 with PCOS without insulin resistance, 27 with PCOS and insulin resistance, 30 healthy controls | MDA, thiol, CAT, SOD | blood | case-control study |
9 | Sulaiman et al. (2018) [87] | Oman | 96 women; 51 with PCOS, 45 controls | GPx, GR, GSH, TAC | serum | case-control study |
10 | Lai et al. (2018) [88] | China | 47 women; 22 with PCOS, 25 with tubal factor infertility | ROS | granulosa cells | case-control study |
11 | Yilmaz et al. (2016) [89] | Turkey | 63 women; 22 with PCOS, 41 controls | TAC | follicular fluid | case-control study |
12 | Fatemi et al. (2017) [90] | Iran | 105 women with PCOS and infertility | MDA, TAC | serum | randomised controlled clinical trial |
13 | Gongadashetti et al. (2021) [91] | India | 100 women; 43 with PCOS, 57 with tubal factor infertility | ROS, TAC, 8-isoprostane | follicular fluid | cross-sectional study |
14 | Nishihara et al. (2018) [92] | Japan | 117 women with infertility | TAC, GSH, 8-OHdG | follicular fluid | cohort study |
15 | Alam et al. (2019) [93] | Pakistan | 328 women; 164 with infertility, 164 controls | cortisol, GR | serum | case-control study |
16 | Gong et al. (2020) [94] | China | 163 women; 105 with subfertility and poor ovarian response, 58 controls | MDA, TOS, OSI, ROS, SOD, TAC | follicular fluid | randomised controlled clinical trial |
17 | Younis et al. (2012) [95] | USA | 15 women; Group-1 was baseline blood collected on day-2–3 of the menstrual cycle. Group-2 is blood collected at the end of FSH/hMG injection. | PON-1, SOD, IL-6, GPx, 8-isoprostane | serum | case-control study |
18 | Singh et al. (2013) [96] | India | 340 women; 200 with endometriosis, 140 with tubal infertility | ROS, NO, TAC, SOD, GPx, GR, CAT, LPO | follicular fluid | case-control study |
19 | Prieto et al. (2013) [97] | Spain | 91 women; 23 with endometriosis, 68 controls | MDA, SOD | follicular fluid, plasma | case-control study |
20 | Liu et al. (2013) [98] | China | 42 women; 20 with endometriosis, 22 with tubal factor infertility | ROS, SOD | serum, follicular fluid | case-control study |
21 | Santulli et al. (2015) [99] | France | 235 women; 150 women with histologically proven endometriosis, 85 endometriosis-free controls | thiols, advanced oxidation protein products (AOPP), protein carbonyls, nitrates/nitrites | peritoneal fluid | case-control study |
22 | Polak et al. (2013) [100] | Poland | 229 women; 110 with endometriosis, 119 controls with ovarian cysts | 8-OHdG and 8-isoprostane | peritoneal fluid | case-control study |
23 | Amini et al. (2021) [101] | Iran | 60 women with pelvic pain and endometriosis | MDA, ROS, TAC | plasma and serum | randomised controlled clinical trial |
References
- Zarkovic, N. Roles and Functions of ROS and RNS in Cellular Physiology and Pathology. Cells 2020, 9, 767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Liu, H.X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021, 11, 4839–4857. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative stress in preeclampsia and placental diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Motawei, S.M.; Attalla, S.M.; Gouda, H.E.; Harouny, M.A.; Elmansoury, A.M. The effects of N-acetyl cysteine on oxidative stress among patients with pre-eclampsia. Int. J. Gynecol. Obstet. 2016, 135, 226–227. [Google Scholar] [CrossRef] [PubMed]
- Tenório, M.B.; Ferreira, R.C.; Moura, F.A.; Bueno, N.B.; Goulart, M.O.F.; Oliveira, A.C.M. Oral antioxidant therapy for prevention and treatment of preeclampsia: Meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 865–876. [Google Scholar] [CrossRef]
- Sandhu, J.K.; Waqar, A.; Jain, A.; Joseph, C.; Srivastava, K.; Ochuba, O.; Poudel, S. Oxidative stress in polycystic ovarian syndrome and the effect of antioxidant N-acetylcysteine on ovulation and pregnancy rate. Cureus 2021, 13, e17887. [Google Scholar] [CrossRef] [PubMed]
- Showell, M.G.; Mackenzie-Proctor, R.; Jordan, V.; Hart, R.J. Antioxidants for female subfertility. Cochrane Database Syst. Rev. 2020, 8. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Cstat; Kelly, F.J.; Briley, A.; Hunt, B.J.; Charnock-Jones, D.; Mallet, A.; Poston, L. Vitamin C and E supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am. J. Obstet. Gynecol. 2002, 187, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duhig, K.; Chappell, L.C.; Shennan, A.H. Oxidative stress in pregnancy and reproduction. Obstet. Med. 2016, 9, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Costantini, D. Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J. Exp. Biol. 2019, 222, jeb194688. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. Oxidative stress: Introductory remarks. In Oxidative Stress; Sies, H., Ed.; Academic Press: London, UK, 1985; pp. 1–8. [Google Scholar] [CrossRef]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef] [Green Version]
- Costantini, D.; Verhulst, S. Does high antioxidant capacity indicate low oxidative stress? Funct. Ecol. 2009, 23, 506–509. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.P. Redefining oxidative stress. Antiox. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D. Oxidative stress. In Encyclopedia of Stress, 2nd ed.; Fink, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 3, pp. 45–48. [Google Scholar] [CrossRef] [Green Version]
- Samimi, M.; Kashi, M.; Foroozanfard, F.; Karamali, M.; Bahmani, F.; Asemi, Z.; Hamidian, Y.; Talari, H.R.; Esmaillzadeh, A. The effects of vitamin D plus calcium supplementation on metabolic profiles, biomarkers of inflammation, oxidative stress and pregnancy outcomes in pregnant women at risk for pre-eclampsia. J. Hum. Nutr. Diet. 2016, 29, 505–515. [Google Scholar] [CrossRef]
- Asemi, Z.; Samimi, M.; Heidarzadeh, Z.; Khorrammian, H.; Tabassi, Z. A randomized controlled clinical trial investigating the effect of calcium supplement plus low-dose aspirin on hs-CRP, oxidative stress and insulin resistance in pregnant women at risk for pre-eclampsia. Pak. J. Biol. Sci. 2012, 15, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Mentese, A.; Güven, S.; Demir, S.; Sumer, A.; Yaman, S.; Alver, A.; Sönmez, M.; Karahan, S.C. Circulating parameters of oxidative stress and hypoxia in normal pregnancy and HELLP syndrome. Adv. Clin. Exp. Med. 2018, 27, 1567–1572. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, S.K.; Vishnu Bhat, B.; Vickneswaran, V.; Adhisivam, B.; Bobby, Z.; Habeebullah, S. Oxidative stress, antioxidant status and neurodevelopmental outcome in neonates born to pre-eclamptic mothers. Indian J. Pediatrics 2018, 85, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Sahay, A.S.; Sundrani, D.P.; Wagh, G.N.; Mehendale, S.S.; Joshi, S.R. Regional differences in the placental levels of oxidative stress markers in pre-eclampsia. Int. J. Gynecol. Obstet. 2015, 129, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Maiahy, T.J. Concept and connotation of oxidative stress in preeclampsia. J. Lab. Physicians 2018, 10, 276–282. [Google Scholar] [CrossRef]
- Can, M.; Guven, B.; Bektas, S.; Arikan, I. Oxidative stress and apoptosis in preeclampsia. Tissue Cell 2014, 46, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.M.; Zimmerman, M.C.; Moore, T.A. Oxidative stress in early pregnancy and the risk of preeclampsia. Pregnancy Hypertens. 2019, 18, 99–102. [Google Scholar] [CrossRef]
- Mert, I.; Sargın Oruc, A.; Yuksel, S.; Cakar, E.S.; Buyukkagnıcı, U.; Karaer, A.; Danısman, N. Role of oxidative stress in preeclampsia and intrauterine growth restriction. J. Obstet. Gynaecol. Res. 2012, 38, 658–664. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Meeker, J.D.; McElrath, T.F.; Mukherjee, B.; Cantonwine, D.E. Repeated measures of inflammation and oxidative stress biomarkers in preeclamptic and normotensive pregnancies. Am. J. Obstet. Gynecol. 2017, 216, 527.e1–527.e9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, Y.; Chen, R.; Wei, Y.; Feng, Y.; Zheng, W.; Liao, H.; Zhang, Z. Aberrant expression of oxidative stress related proteins affects the pregnancy outcome of gestational diabetes mellitus patients. Am. J. Transl. Res. 2019, 11, 269–279. [Google Scholar]
- Murthy, K.S.; Bhandiwada, A.; Chandan, S.L.; Gowda, S.L.; Sindhusree, G. Evaluation of oxidative stress and proinflammatory cytokines in gestational diabetes mellitus and their correlation with pregnancy outcome. Indian J. Endocrinol. Metab. 2018, 22, 79–84. [Google Scholar] [CrossRef]
- Razavi, M.; Jamilian, M.; Samimi, M.; Afshar Ebrahimi, F.; Taghizadeh, M.; Bekhradi, R.; Hosseini, E.S.; Kashani, H.H.; Karamali, M.; Asemi, Z. The effects of vitamin D and omega-3 fatty acids co-supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in patients with gestational diabetes. Nutr. Metab. 2017, 14, 80. [Google Scholar] [CrossRef] [Green Version]
- Jamilian, M.; Amirani, E.; Asemi, Z. The effects of vitamin D and probiotic co-supplementation on glucose homeostasis, inflammation, oxidative stress and pregnancy outcomes in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 2098–2105. [Google Scholar] [CrossRef]
- Badehnoosh, B.; Karamali, M.; Zarrati, M.; Jamilian, M.; Bahmani, F.; Tajabadi-Ebrahimi, M.; Jafari, P.; Rahmani, E.; Asemi, Z. The effects of probiotic supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. J. Matern.-Fetal Neonatal Med. 2018, 31, 1128–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Yang, H.; Geng, Q.; Ma, Q.; Long, Y.; Zhou, C.; Chen, M. Association of oxidative stress biomarkers with gestational diabetes mellitus in pregnant women: A case-control study. PLoS ONE 2015, 10, e0126490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamilian, M.; Mirhosseini, N.; Eslahi, M.; Bahmani, F.; Shokrpour, M.; Chamani, M.; Asemi, Z. The effects of magnesium-zinc-calcium-vitamin D co-supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. BMC Pregnancy Childbirth 2019, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Rueangdetnarong, H.; Sekararithi, R.; Jaiwongkam, T.; Kumfu, S.; Chattipakorn, N.; Tongsong, T.; Jatavan, P. Comparisons of the oxidative stress biomarkers levels in gestational diabetes mellitus (GDM) and non-GDM among Thai population: Cohort study. Endocr. Connect. 2018, 7, 681–687. [Google Scholar] [CrossRef]
- López-Tinoco, C.; Roca, M.; García-Valero, A.; Murri, M.; Tinahones, F.J.; Segundo, C.; Bartha, J.L.; Aguilar-Diosdado, M. Oxidative stress and antioxidant status in patients with late-onset gestational diabetes mellitus. Acta Diabetol. 2013, 50, 201–208. [Google Scholar] [CrossRef]
- Li, H.; Yin, Q.; Li, N.; Ouyang, Z.; Zhong, M. Plasma markers of oxidative stress in patients with gestational diabetes mellitus in the second and third trimester. Obstet. Gynecol. Int. 2016, 2016, 3865454. [Google Scholar] [CrossRef] [Green Version]
- Usluoğullari, B.; Usluogullari, C.A.; Balkan, F.; Orkmez, M. Role of serum levels of irisin and oxidative stress markers in pregnant women with and without gestational diabetes. Gynecol. Endocrinol. 2017, 33, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Dong, X.; Hou, L. Correlation of adipokines and markers of oxidative stress in women with gestational diabetes mellitus and their newborns. J. Obstet. Gynaecol. Res. 2018, 44, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Zhao, J.; Yang, L.; Lin, L. Oxidative stress and antioxidant status in women with gestational diabetes mellitus diagnosed by IADPSG criteria. Diabetes Res. Clin. Pract. 2015, 109, 404–410. [Google Scholar] [CrossRef]
- Jamilian, M.; Dizaji, S.H.; Bahmani, F.; Taghizadeh, M.; Memarzadeh, M.R.; Karamali, M.; Akbari, M.; Asemi, Z. A randomized controlled clinical trial investigating the effects of omega-3 fatty acids and vitamin E co-supplementation on biomarkers of oxidative stress, inflammation and pregnancy outcomes in gestational diabetes. Can. J. Diabetes 2017, 41, 143–149. [Google Scholar] [CrossRef]
- Asemi, Z.; Samimi, M.; Tabassi, Z.; Sabihi, S.S.; Esmaillzadeh, A. A randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in gestational diabetes. Nutrition 2013, 29, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Hajifaraji, M.; Jahanjou, F.; Abbasalizadeh, F.; Aghamohammadzadeh, N.; Abbasi, M.M.; Dolatkhah, N. Effect of probiotic supplements in women with gestational diabetes mellitus on inflammation and oxidative stress biomarkers: A randomized clinical trial. Asia Pac. J. Clin. Nutr. 2018, 27, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Toljic, M.; Egic, A.; Munjas, J.; Orlic, N.K.; Milovanovic, Z.; Radenkovic, A.; Vuceljic, J.; Joksic, I. Increased oxidative stress and cytokinesis-block micronucleus cytome assay parameters in pregnant women with gestational diabetes mellitus and gestational arterial hypertension. Reprod. Toxicol. 2017, 71, 55–62. [Google Scholar] [CrossRef]
- Asemi, Z.; Jamilian, M.; Mesdaghinia, E.; Esmaillzadeh, A. Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: Randomized, double-blind, placebo-controlled trial. Nutrition 2015, 31, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Zygula, A.; Kosinski, P.; Zwierzchowska, A.; Sochacka, M.; Wroczynski, P.; Makarewicz-Wujec, M.; Pietrzak, B.; Wielgos, M.; Rzentala, M.; Giebultowicz, J. Oxidative stress markers in saliva and plasma differ between diet-controlled and insulin-controlled gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 148, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Saifi, H.; Mabrouk, Y.; Saifi, R.; Benabdelkader, M.; Saidi, M. Influence of selenium supplementation on carbohydrate metabolism and oxidative stress in pregnant women with gestational diabetes mellitus. J. Med. Biochem. 2020, 39, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Jatavan, P.; Lerthiranwong, T.; Sekararithi, R.; Jaiwongkam, T.; Kumfu, S.; Chattipakorn, N.; Tongsong, T. The correlation of fetal cardiac function with gestational diabetes mellitus (GDM) and oxidative stress levels. J. Perinat. Med. 2020, 48, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, M.; Ravanbakhsh, N. Effects of Vitamin E plus Omega-3 Supplementation on Inflammatory Factors, Oxidative Stress Biomarkers and Pregnancy Consequences in Women with Gestational Diabetes. J. Arak Univ. Med. Sci. 2018, 21, 32–41. [Google Scholar] [CrossRef]
- Rodrigues, F.; de Lucca, L.; Neme, W.S.; Goncalves, T.D.L. Influence of gestational diabetes on the activity of δ-aminolevulinate dehydratase and oxidative stress biomarkers. Redox Rep. 2018, 23, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Dong, A.; Lv, X. Advanced glycation end products and adipocytokines and oxidative stress in placental tissues of pregnant women with gestational diabetes mellitus. Exp. Ther. Med. 2019, 18, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Bulut, A.; Akca, G.; Aktan, A.K.; Akbulut, K.G.; Babül, A. The significance of blood and salivary oxidative stress markers and chemerin in gestational diabetes mellitus. Taiwan. J. Obstet. Gynecol. 2021, 60, 695–699. [Google Scholar] [CrossRef]
- Gunasegaran, P.; Tahmina, S.; Daniel, M.; Nanda, S.K. Role of vitamin D-calcium supplementation on metabolic profile and oxidative stress in gestational diabetes mellitus: A randomized controlled trial. J. Obstet. Gynaecol. Res. 2021, 47, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Motamayel, F.; Fathi, S.; Goodarzi, M.T.; Borzouei, S.; Poorolajal, J.; Barakian, Y. Comparison of Salivary Antioxidants and Oxidative Stress Status in Gestational Diabetes Mellitus and Healthy Pregnant Women. Endocr. Metab. Immune Disord.-Drug Targets 2021, 21, 1485–1490. [Google Scholar] [CrossRef]
- Huang, T.T.; Sun, W.J.; Liu, H.Y.; Ma, H.L.; Cui, B.X. p66Shc-mediated oxidative stress is involved in gestational diabetes mellitus. World J. Diabetes 2021, 12, 1894–1907. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Qiao, Z.; Li, N.; Zhao, Y.; Zhang, S. The relationship between changes in vitamin A, vitamin E, and oxidative stress levels, and pregnancy outcomes in patients with gestational diabetes mellitus. Ann. Palliat. Med. 2021, 10, 6630–6636. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.M.; Subramanian, A.; Biswas, A.; Stunkel, W.; Chong, Y.S.; Bongso, A.; Fong, C.Y. Changes in stemness properties, differentiation potential, oxidative stress, senescence and mitochondrial function in Wharton’s jelly stem cells of umbilical cords of mothers with gestational diabetes mellitus. Stem Cell Rev. Rep. 2019, 15, 415–426. [Google Scholar] [CrossRef]
- Ferguson, K.K.; McElrath, T.F.; Chen, Y.H.; Loch-Caruso, R.; Mukherjee, B.; Meeker, J.D. Repeated measures of urinary oxidative stress biomarkers during pregnancy and preterm birth. Am. J. Obstet. Gynecol. 2015, 212, 208.e1–208.e8. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.A.; Samson, K.; Ahmad, I.M.; Case, A.J.; Zimmerman, M.C. Oxidative Stress in Pregnant Women Between 12 and 20 Weeks of Gestation and Preterm Birth. Nurs. Res. 2020, 69, 244–248. [Google Scholar] [CrossRef]
- Eick, S.M.; Ferguson, K.K.; Milne, G.L.; Rios-McConnell, R.; Vélez-Vega, C.; Rosario, Z.; Alshawabkeh, A.; Cordero, J.F.; Meeker, J.D. Repeated measures of urinary oxidative stress biomarkers and preterm birth in Puerto Rico. Free. Radic. Biol. Med. 2020, 146, 299–305. [Google Scholar] [CrossRef]
- Abiaka, C.; Machado, L. Nitric oxide and antioxidant enzymes in venous and cord blood of late preterm and term omani mothers. Sultan Qaboos Univ. Med. J. 2012, 12, 300–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, T.S.T.A.; Chen, S.F.; Lo, L.M.; Li, M.J.; Yeh, Y.L.; Hung, T.H. The association between maternal oxidative stress at mid-gestation and subsequent pregnancy complications. Reprod. Sci. 2012, 19, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Gerszi, D.; Penyige, Á.; Mezei, Z.; Sárai-Szabó, B.; Benkő, R.; Bányai, B.; Demendi, C.; Ujvári, E.; Várbíró, S.; Horvath, E.M. Evaluation of oxidative/nitrative stress and uterine artery pulsatility index in early pregnancy. Physiol. Int. 2021, 107, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Arogbokun, O.; Rosen, E.; Keil, A.P.; Milne, G.L.; Barrett, E.; Nguyen, R.; Bush, N.R.; Swan, S.H.; Sathyanarayana, S.; Ferguson, K.K. Maternal oxidative stress biomarkers in pregnancy and child growth from birth to age 6. J. Clin. Endocrinol. Metab. 2021, 106, 1427–1436. [Google Scholar] [CrossRef]
- Lindström, E.; Persson, L.Å.; Raqib, R.; Arifeen, S.E.; Basu, S.; Ekström, E.C. Associations between oxidative parameters in pregnancy and birth anthropometry in a cohort of women and children in rural Bangladesh: The MINIMat-cohort. Free Radic. Res. 2012, 46, 253–264. [Google Scholar] [CrossRef]
- Sanhal, C.Y.; Daglar, K.; Kara, O.; Yılmaz, Z.V.; Turkmen, G.G.; Erel, O.; Uygur, D.; Yucel, A. An alternative method for measuring oxidative stress in intrahepatic cholestasis of pregnancy: Thiol/disulphide homeostasis. J. Matern.-Fetal Neonatal Med. 2018, 31, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Ozgu-Erdinc, A.S.; Demirtas, C.; Ozturk, G.; Erkaya, S.; Uygur, D. The oxidative stress index increases among patients with hyperemesis gravidarum but not in normal pregnancies. Redox Rep. 2015, 20, 97–102. [Google Scholar] [CrossRef]
- Jiang, X.; Bar, H.Y.; Yan, J.; West, A.A.; Perry, C.A.; Malysheva, O.V.; Devapatla, S.; Pressman, E.; Vermeylen, F.M.; Wells, M.T.; et al. Pregnancy induces transcriptional activation of the peripheral innate immune system and increases oxidative DNA damage among healthy third trimester pregnant women. PLoS ONE 2012, 7, e46736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motamed, S.; Nikooyeh, B.; Kashanian, M.; Chamani, M.; Hollis, B.W.; Neyestani, T.R. Evaluation of the efficacy of two doses of vitamin D supplementation on glycemic, lipidemic and oxidative stress biomarkers during pregnancy: A randomized clinical trial. BMC Pregnancy Childbirth 2020, 20, 619. [Google Scholar] [CrossRef]
- Lymperaki, E.; Tsikopoulos, A.; Makedou, K.; Paliogianni, E.; Kiriazi, L.; Charisi, C.; Vagdatli, E. Impact of iron and folic acid supplementation on oxidative stress during pregnancy. J. Obstet. Gynaecol. 2015, 35, 803–806. [Google Scholar] [CrossRef]
- Kajarabille, N.; Hurtado, J.A.; Peña-Quintana, L.; Peña, M.; Ruiz, J.; Diaz-Castro, J.; Rodríguez-Santana, Y.; Martin-Alvarez, E.; López-Frias, M.; Soldado, O.; et al. Omega-3 LCPUFA supplement: A nutritional strategy to prevent maternal and neonatal oxidative stress. Matern. Child Nutr. 2017, 13, e12300. [Google Scholar] [CrossRef]
- Korkmaz, V.; Ozkaya, E.; Seven, B.Y.; Duzguner, S.; Karsli, M.F.; Kucukozkan, T. Comparison of oxidative stress in pregnancies with and without first trimester iron supplement: A randomized double-blind controlled trial. J. Matern.-Fetal Neonatal Med. 2014, 27, 1535–1538. [Google Scholar] [CrossRef] [PubMed]
- Aalami-Harandi, R.; Karamali, M.; Asemi, Z. The favorable effects of garlic intake on metabolic profiles, hs-CRP, biomarkers of oxidative stress and pregnancy outcomes in pregnant women at risk for pre-eclampsia: Randomized, double-blind, placebo-controlled trial. J. Matern.-Fetal Neonatal Med. 2015, 28, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Malti, N.; Merzouk, H.; Merzouk, S.A.; Loukidi, B.; Karaouzene, N.; Malti, A.; Narce, M. Oxidative stress and maternal obesity: Feto-placental unit interaction. Placenta 2014, 35, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Guzmán, A.K.; Carrasco-Legleu, C.E.; Levario-Carrillo, M.; Chávez-Corral, D.V.; Sanchez-Ramirez, B.; Mariñelarena-Carrillo, E.O.; Guerrero-Salgado, F.; Reza-López, S.A. Prepregnancy obesity, maternal dietary intake, and oxidative stress biomarkers in the fetomaternal unit. BioMed Res. Int. 2019, 2019, 5070453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zygula, A.; Kosinski, P.; Wroczynski, P.; Makarewicz-Wujec, M.; Pietrzak, B.; Wielgos, M.; Giebultowicz, J. Oxidative stress markers differ in two placental dysfunction pathologies: Pregnancy-induced hypertension and intrauterine growth restriction. Oxid. Med. Cell. Longev. 2020, 2020, 1323891. [Google Scholar] [CrossRef]
- Odame Anto, E.; Owiredu, W.K.; Sakyi, S.A.; Turpin, C.A.; Ephraim, R.K.; Fondjo, L.A.; Obirikorang, C.; Adua, E.; Acheampong, E. Adverse pregnancy outcomes and imbalance in angiogenic growth mediators and oxidative stress biomarkers is associated with advanced maternal age births: A prospective cohort study in Ghana. PLoS ONE 2018, 13, e0200581. [Google Scholar] [CrossRef]
- Panti, A.A.; Shehu, C.E.; Saidu, Y.; Tunau, K.A.; Nwobodo, E.I.; Jimoh, A.; Bilbis, L.S.; Umar, A.B.; Hassan, M. Oxidative stress and outcome of antioxidant supplementation in patients with polycystic ovarian syndrome (PCOS). Int. J. Reprod. Contracept. Obs. Gynecol. 2018, 7, 1667. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, Z.; Zhao, S.; Cheng, L.; Man, Y.; Gao, X.; Zhao, H. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J. Assist. Reprod. Genet. 2021, 38, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Özer, A.; Bakacak, M.; Kıran, H.; Ercan, Ö.; Köstü, B.; Kanat-Pektaş, M.; Kılınç, M.; Aslan, F. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome. Ginekol. Pol. 2016, 87, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ruan, X.; Li, Y.; Cheng, J.; Mueck, A.O. Oxidative stress indicators in Chinese women with PCOS and correlation with features of metabolic syndrome and dependency on lipid patterns. Arch. Gynecol. Obstet. 2019, 300, 1413–1421. [Google Scholar] [CrossRef]
- Heshmati, J.; Golab, F.; Morvaridzadeh, M.; Potter, E.; Akbari-Fakhrabadi, M.; Farsi, F.; Tanbakooei, S.; Shidfar, F. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor γ coactivator 1α gene expression in polycystic ovarian syndrome (PCOS) patients: A randomized placebo-controlled clinical trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Desai, V.; Prasad, N.R.; Manohar, S.M.; Sachan, A.; Narasimha, S.R.P.V.L.; Bitla, A.R.R. Oxidative stress in non-obese women with polycystic ovarian syndrome. J. Clin. Diagn. Res. 2014, 8, CC01–CC03. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Lalooha, F.; Nooshabadi, M.R.; Dashti, F.; Kavianpour, M.; Haghighian, H.K. Randomized double blind clinical trial evaluating the Ellagic acid effects on insulin resistance, oxidative stress and sex hormones levels in women with polycystic ovarian syndrome. J. Ovarian Res. 2021, 14, 100. [Google Scholar] [CrossRef]
- Turan, V.; Sezer, E.D.; Zeybek, B.; Sendag, F. Infertility and the presence of insulin resistance are associated with increased oxidative stress in young, non-obese Turkish women with polycystic ovary syndrome. J. Pediatric Adolesc. Gynecol. 2015, 28, 119–123. [Google Scholar] [CrossRef]
- Sulaiman, M.A.; Al-Farsi, Y.M.; Al-Khaduri, M.M.; Saleh, J.; Waly, M.I. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int. J. Women’s Health 2018, 10, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Lai, Q.; Xiang, W.; Li, Q.; Zhang, H.; Li, Y.; Zhu, G.; Xiong, C.; Jin, L. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front. Med. 2018, 12, 518–524. [Google Scholar] [CrossRef]
- Yilmaz, N.; Inal, H.A.; Gorkem, U.; Sargin Oruc, A.; Yilmaz, S.; Turkkani, A. Follicular fluid total antioxidant capacity levels in PCOS. J. Obstet. Gynaecol. 2016, 36, 654–657. [Google Scholar] [CrossRef]
- Fatemi, F.; Mohammadzadeh, A.; Sadeghi, M.R.; Akhondi, M.M.; Mohammadmoradi, S.; Kamali, K.; Lackpour, N.; Jouhari, S.; Zafadoust, S.; Mokhtar, S.; et al. Role of vitamin E and D3 supplementation in Intra-Cytoplasmic Sperm Injection outcomes of women with polycystic ovarian syndrome: A double blinded randomized placebo-controlled trial. Clin. Nutr. ESPEN 2017, 18, 23–30. [Google Scholar] [CrossRef]
- Gongadashetti, K.; Gupta, P.; Dada, R.; Malhotra, N. Follicular fluid oxidative stress biomarkers and ART outcomes in PCOS women undergoing in vitro fertilization: A cross-sectional study. Int. J. Reprod. Biomed. 2021, 19, 449–456. [Google Scholar] [CrossRef]
- Nishihara, T.; Matsumoto, K.; Hosoi, Y.; Morimoto, Y. Evaluation of antioxidant status and oxidative stress markers in follicular fluid for human in vitro fertilization outcome. Reprod. Med. Biol. 2018, 17, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Alam, F.; Khan, T.A.; Amjad, S.; Rehman, R. Association of oxidative stress with female infertility-A case control study. J. Pak. Med. Assoc. 2019, 69, 627. [Google Scholar] [PubMed]
- Gong, Y.; Zhang, K.; Xiong, D.; Wei, J.; Tan, H.; Qin, S. Growth hormone alleviates oxidative stress and improves the IVF outcomes of poor ovarian responders: A randomized controlled trial. Reprod. Biol. Endocrinol. 2020, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Clower, C.; Nelsen, D.; Butler, W.; Carvalho, A.; Hok, E.; Garelnabi, M. The relationship between pregnancy and oxidative stress markers on patients undergoing ovarian stimulations. J. Assist. Reprod. Genet. 2012, 29, 1083–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013, 42, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Prieto, L.; Quesada, J.F.; Cambero, O.; Pacheco, A.; Pellicer, A.; Codoceo, R.; Garcia-Velasco, J.A. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil. Steril. 2012, 98, 126–130. [Google Scholar] [CrossRef]
- Liu, F.; He, L.; Liu, Y.; Shi, Y.; Du, H. The expression and role of oxidative stress markers in the serum and follicular fluid of patients with endometriosis. Clin. Exp. Obstet. Gynecol. 2013, 40, 372–376. [Google Scholar]
- Santulli, P.; Chouzenoux, S.; Fiorese, M.; Marcellin, L.; Lemarechal, H.; Millischer, A.E.; Batteux, F.; Borderie, D.; Chapron, C. Protein oxidative stress markers in peritoneal fluids of women with deep infiltrating endometriosis are increased. Hum. Reprod. 2015, 30, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Polak, G.; Wertel, I.; Barczyński, B.; Kwaśniewski, W.; Bednarek, W.; Kotarski, J. Increased levels of oxidative stress markers in the peritoneal fluid of women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 168, 187–190. [Google Scholar] [CrossRef]
- Amini, L.; Chekini, R.; Nateghi, M.R.; Haghani, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. The Effect of Combined Vitamin C and Vitamin E Supplementation on Oxidative Stress Markers in Women with Endometriosis: A Randomized, Triple-Blind Placebo-Controlled Clinical Trial. Pain Res. Manag. 2021, 2021, 5529741. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drejza, M.A.; Rylewicz, K.; Majcherek, E.; Gross-Tyrkin, K.; Mizgier, M.; Plagens-Rotman, K.; Wójcik, M.; Panecka-Mysza, K.; Pisarska-Krawczyk, M.; Kędzia, W.; et al. Markers of Oxidative Stress in Obstetrics and Gynaecology—A Systematic Literature Review. Antioxidants 2022, 11, 1477. https://doi.org/10.3390/antiox11081477
Drejza MA, Rylewicz K, Majcherek E, Gross-Tyrkin K, Mizgier M, Plagens-Rotman K, Wójcik M, Panecka-Mysza K, Pisarska-Krawczyk M, Kędzia W, et al. Markers of Oxidative Stress in Obstetrics and Gynaecology—A Systematic Literature Review. Antioxidants. 2022; 11(8):1477. https://doi.org/10.3390/antiox11081477
Chicago/Turabian StyleDrejza, Michalina Anna, Katarzyna Rylewicz, Ewa Majcherek, Katarzyna Gross-Tyrkin, Małgorzata Mizgier, Katarzyna Plagens-Rotman, Małgorzata Wójcik, Katarzyna Panecka-Mysza, Magdalena Pisarska-Krawczyk, Witold Kędzia, and et al. 2022. "Markers of Oxidative Stress in Obstetrics and Gynaecology—A Systematic Literature Review" Antioxidants 11, no. 8: 1477. https://doi.org/10.3390/antiox11081477
APA StyleDrejza, M. A., Rylewicz, K., Majcherek, E., Gross-Tyrkin, K., Mizgier, M., Plagens-Rotman, K., Wójcik, M., Panecka-Mysza, K., Pisarska-Krawczyk, M., Kędzia, W., & Jarząbek-Bielecka, G. (2022). Markers of Oxidative Stress in Obstetrics and Gynaecology—A Systematic Literature Review. Antioxidants, 11(8), 1477. https://doi.org/10.3390/antiox11081477