Prunus lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of Prunus lusitanica L. Fruit Extracts
2.4. Determination of the Antioxidant Capacity
2.5. HPLC–PAD–ESI-MS/MS Analysis of the Quantitative (Poly)phenolic Profile of Prunus lusitanica L. Fruits
2.6. Statistical Analysis
3. Results and Discussion
3.1. Polyphenolic Profile
3.1.1. Hydroxycinnamic Acids
3.1.2. Secoiridoids
3.1.3. Flavan-3-ols
3.1.4. Flavonols
3.1.5. Anthocyanins
3.2. Polyphenol Quantification
3.2.1. Hydroxycinnamic Acids
3.2.2. Secoiridoids
3.2.3. Flavan-3-ols
3.2.4. Flavonols
3.2.5. Anthocyanins
3.3. Antioxidant Capacity of Prunus lusitanica Fruits
3.4. Correlation between the Phenolic Compounds and the Antioxidant Capacity
3.5. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, S. Reactive Oxygen Species and Cellular Defense System. In Free Radicals in Human Health and Disease; Springer: Berlin, Germany, 2015; pp. 17–29. [Google Scholar]
- Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Rugină, D.; Stanilă, A.; Dulf, F.; Bunea, A.; Socaci, S.A.; Socaciu, C.; Pintea, A. Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants 2019, 8, 540. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Oxidative Stress and Antioxidants: Distress or Eustress? Arch. Biochem. Biophys. 2016, 595, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Sarakatsianos, I.; Samanidou, V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering Tools in the Beverage Industry. Volume 3: The Science of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Duxford, UK, 2019; Volume 3, pp. 283–314. [Google Scholar]
- Da Silva, R.F.; Carneiro, C.N.; de Sousa, C.B.D.C.; Gomez, F.J.V.; Espino, M.; Boiteux, J.; Fernández, M.D.L.; Silva, M.F.; Dias, F.D.S. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- De Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2020, 338, 127535. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef]
- Ullah, H.; De Filippis, A.; Khan, H.; Xiao, J.; Daglia, M. An overview of the health benefits of Prunus species with special reference to metabolic syndrome risk factors. Food Chem. Toxicol. 2020, 144, 111574. [Google Scholar] [CrossRef]
- Komakech, R.; Kang, Y. Ethnopharmacological potential of African cherry [Prunus africana]. J. Herb. Med. 2019, 17–18, 100283. [Google Scholar] [CrossRef]
- Lee, S.; Wen, J. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am. J. Bot. 2001, 88, 150–160. [Google Scholar] [CrossRef]
- Moreira, O.C.B.; Martins, J.M.; Sardos, J.; Maciel, M.G.B.; Silva, L.; Moura, M.M.T. Population genetic structure and conservation of the Azorean tree Prunus azorica (Rosaceae). Oesterreichische Bot. Z. 2013, 299, 1737–1748. [Google Scholar] [CrossRef]
- Liu, W.; Nan, G.; Nisar, M.F.; Wan, C. Chemical Constituents and Health Benefits of Four Chinese Plum Species. J. Food Qual. 2020, 2020, 8842506. [Google Scholar] [CrossRef]
- Acero, N.; Gradillas, A.; Beltran, M.; García, A.; Mingarro, D.M. Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem. 2018, 279, 260–271. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Queiroz, M.J.R.; Santos-Buelga, C.; Ferreira, I.C. Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chem. 2013, 141, 3721–3730. [Google Scholar] [CrossRef]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2016, 25, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.Z.; Oszmiański, J. Anthocyanins in fruits of Prunus padus (bird cherry). J. Sci. Food Agric. 2002, 82, 1483–1486. [Google Scholar] [CrossRef]
- Martini, S.; Conte, C., Jr.; Tagliazucchi, D. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Res. Int. 2017, 97, 15–26. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Sircelj, H. Wild Prunus Fruit Species as a Rich Source of Bioactive Compounds. J. Food Sci. 2016, 81, C1928–C1937. [Google Scholar] [CrossRef] [PubMed]
- Blagojević, B.; Agić, D.; Serra, A.T.; Matić, S.; Matovina, M.; Bijelić, S.; Popović, B.M. An in vitro and in silico evaluation of bioactive potential of cornelian cherry (Cornus mas L.) extracts rich in polyphenols and iridoids. Food Chem. 2020, 335, 127619. [Google Scholar] [CrossRef]
- Costa, M.D.C.; Duarte, P.; Neng, N.R.; Nogueira, J.M.; Costa, F.; Rosado, C. Novel insights for permeant lead structures through in vitro skin diffusion assays of Prunus lusitanica L., the Portugal Laurel. J. Mol. Struct. 2015, 1079, 327–336. [Google Scholar] [CrossRef]
- Biessels, H.W.; Hoof, A.C.V.D.K.-V.; Bosch, J.J.K.-V.D.; Salemink, C.A. Triterpenes of Prunus serotina and P. lusitanica. Phytochemistry 1974, 13, 203–207. [Google Scholar] [CrossRef]
- González-De-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Álvarez, J.; Barbero, G.F.; Ayuso, J. Optimization of Analytical Ultrasound-Assisted Methods for the Extraction of Total Phenolic Compounds and Anthocyanins from Sloes (Prunus spinosa L.). Agronomy 2020, 10, 966. [Google Scholar] [CrossRef]
- Lemos, A.M.; Machado, N.; Egea-Cortines, M.; Barros, A.I. Assessment of quality parameters and phytochemical content of thirty ‘Tempranillo’ grape clones for varietal improvement in two distinct sub-regions of Douro. Sci. Hortic. 2019, 262, 109096. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Barros, A. Variation of the Polyphenolic Composition and Antioxidant Capacity of Freshly Prepared Pomegranate Leaf Infusions over One-Day Storage. Antioxidants 2021, 10, 1187. [Google Scholar] [CrossRef] [PubMed]
- Abellán, A.; Domínguez-Perles, R.; García-Viguera, C.; Moreno, D.A. In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts. Nutrients 2021, 13, 4140. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical Scheme for LC-MS n Identification of Chlorogenic Acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the Six Isomers of Dicaffeoylquinic Acid by LC-MS N. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Nan, X.; Jia, W.; Zhang, Y.; Hong, W.; Lin, Z.; Chen, S. An On-line Detection System for Screening Small Molecule Inhibitors of α-Amylase and α-Glucosidase in Prunus mume. J. Chromatogr. A 2021, 1663, 462754. [Google Scholar] [CrossRef]
- Herraiz, F.J.; Villaño, D.; Plazas, M.; Vilanova, S.; Ferreres, F.; Prohens, J.; Moreno, D.A. Phenolic Profile and Biological Activities of the Pepino (Solanum muricatum) Fruit and Its Wild Relative S. caripense. Int. J. Mol. Sci. 2016, 17, 394. [Google Scholar] [CrossRef]
- Schütz, K.; Kammerer, D.R.; Carle, R.; Schieber, A. Characterization of Phenolic Acids and Flavonoids in Dandelion (Taraxacum Officinale WEB. Ex WIGG.) Root and Herb by High-performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. An Int. J. 2005, 19, 179–186. [Google Scholar]
- Gonçalves, A.C.; Campos, G.; Alves, G.; Garcia-Viguera, C.; Moreno, D.A.; Silva, L.R. Physical and phytochemical composition of 23 Portuguese sweet cherries as conditioned by variety (or genotype). Food Chem. 2020, 335, 127637. [Google Scholar] [CrossRef]
- Clifford, M.N.; Kirkpatrick, J.; Kuhnert, N.; Roozendaal, H.; Salgado, P.R. LC–MSn analysis of the cis isomers of chlorogenic acids. Food Chem. 2008, 106, 379–385. [Google Scholar] [CrossRef]
- Jaiswal, R.; Karaköse, H.; Rühmann, S.; Goldner, K.; Neumüller, M.; Treutter, D.; Kuhnert, N. Identification of Phenolic Compounds in Plum Fruits (Prunus salicina L. and Prunus domestica L.) by High-Performance Liquid Chromatography/Tandem Mass Spectrometry and Characterization of Varieties by Quantitative Phenolic Fingerprints. J. Agric. Food Chem. 2013, 61, 12020–12031. [Google Scholar] [CrossRef]
- Crupi, P.; Bleve, G.; Tufariello, M.; Corbo, F.; Clodoveo, M.L.; Tarricone, L. Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques. J. Food Compos. Anal. 2018, 73, 103–111. [Google Scholar] [CrossRef]
- Lage, N.N.; Layosa, M.A.; Arbizu, S.; Chew, B.P.; Pedrosa, M.L.; Mertens-Talcott, S.; Talcott, S.; Noratto, G.D. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells. J. Funct. Foods 2019, 64, 103710. [Google Scholar] [CrossRef]
- Manyelo, T.G.; Sebola, N.A.; Hassan, Z.M.; Mabelebele, M. Characterization of the Phenolic Compounds in Different Plant Parts of Amaranthus cruentus Grown under Cultivated Conditions. Molecules 2020, 25, 4273. [Google Scholar] [CrossRef] [PubMed]
- Steingass, C.B.; Glock, M.P.; Lieb, V.M.; Carle, R. Light-induced alterations of pineapple (Ananas comosus [L.] Merr.) juice volatiles during accelerated ageing and mass spectrometric studies into their precursors. Food Res. Int. 2017, 100, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Castilho, P.C. Hypoglycemic, anti-glycation and antioxidant in vitro properties of two Vaccinium species from Macaronesia: A relation to their phenolic composition. J. Funct. Foods 2018, 40, 595–605. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Castilho, P.C. Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications. Food Res. Int. 2018, 116, 1229–1238. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, Y.; Ma, P.; Fan, L.; Zhao, L.; Wang, M.; Li, X. An integrated strategy for anti-inflammatory quality markers screening of traditional Chinese herbal medicine Mume Fructus based on phytochemical analysis and anti-colitis activity. Phytomedicine 2022, 99, 154002. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Z.; Fang, J.; Liu, M.; Niu, Y.; Chen, S.; Wang, H. An on-line high-performance liquid chromatography–diode-array detector–electrospray ionization–ion-trap–time-of-flight–mass spectrometry–total antioxidant capacity detection system applying two antioxidant methods for activity evaluation of the edible flowers from Prunus mume. J. Chromatogr. A 2015, 1414, 88–102. [Google Scholar] [CrossRef]
- Lv, X.; Sun, J.-Z.; Xu, S.-Z.; Cai, Q.; Liu, Y.-Q. Rapid Characterization and Identification of Chemical Constituents in Gentiana radix before and after Wine-Processed by UHPLC-LTQ-Orbitrap MSn. Molecules 2018, 23, 3222. [Google Scholar] [CrossRef] [Green Version]
- Mutungi, M.; Muema, F.; Kimutai, F.; Xu, Y.-B.; Zhang, H.; Chen, G.-L.; Guo, M.-Q. Antioxidant and Antiproliferative Potentials of Ficus glumosa and Its Bioactive Polyphenol Metabolites. Pharmaceuticals 2021, 14, 266. [Google Scholar] [CrossRef]
- Horinishi, A.; Osaki, S.; Masuda, T.; Nomura, E.; Tanaka, Y.; Nakamura, Y.-I.; Horiuchi, M.; Negi, M.; Shoji, T.; Ozaki, Y. Proanthocyanidin in the fruit of Japanese apricot (Prunus mume Sieb. et Zucc.) and their structural estimation by HPLC-ESI-MS/MS. J. Food Compos. Anal. 2021, 103, 104039. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K. Profiling of polyphenols by LC-QTOF/ESI-MS, characteristics of nutritional compounds and in vitro effect on pancreatic lipase, α-glucosidase, α-amylase, cholinesterase and cyclooxygenase activities of sweet (Prunus avium) and sour (P. cerasus) cherries leaves and fruits. Ind. Crop. Prod. 2021, 174, 114214. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Teleszko, M. Degradation Kinetics of Anthocyanins in Sour Cherry Cloudy Juices at Different Storage Temperature. Processes 2019, 7, 367. [Google Scholar] [CrossRef]
- Colombo, R.C.; Roberto, S.R.; da Cruz, M.A.; de Carvalho, D.U.; Yamamoto, L.Y.; Nixdorf, S.L.; Pérez-Navarro, J.; Gómez-Alonso, S.; Shahab, M.; Ahmed, S.; et al. Characterization of the phenolic ripening development of ‘BRS Vitoria’ seedless table grapes using HPLC–DAD–ESI-MS/MS. J. Food Compos. Anal. 2020, 95, 103693. [Google Scholar] [CrossRef]
- Sendri, N.; Bhandari, P. Polyphenolic composition and antioxidant potential of underutilized Himalayan wild edible berries by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2021, 44, 4237–4254. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Laskowski, P.; Oszmiański, J. Evaluation of Sour Cherry (Prunus cerasus L.) Fruits for Their Polyphenol Content, Antioxidant Properties, and Nutritional Components. J. Agric. Food Chem. 2014, 62, 12332–12345. [Google Scholar] [CrossRef]
- Popović, B.M.; Blagojević, B.; Kucharska, A.Z.; Agić, D.; Magazin, N.; Milović, M.; Serra, A.T. Exploring fruits from genus Prunus as a source of potential pharmaceutical agents—In vitro and in silico study. Food Chem. 2021, 358, 129812. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, B.M.; de Ancos, B.; Sánchez-Moreno, C.; Fernández-Ruiz, V.; de Cortes Sánchez-Mata, M.; Cámara, M.; Tardío, J. Wild Blackthorn (Prunus Spinosa L.) and Hawthorn (Crataegus Monogyna Jacq.) Fruits as Valuable Sources of Antioxidants. Fruits 2014, 69, 61–73. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Ponder, A.; Hallmann, E.; Głowacka, A.; Rozpara, E. The Profile and Content of Polyphenols and Carotenoids in Local and Commercial Sweet Cherry Fruits (Prunus avium L.) and Their Antioxidant Activity In Vitro. Antioxidants 2019, 8, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brozdowski, J.; Waliszewska, B.; Loffler, J.; Hudina, M.; Veberic, R.; Mikulic-Petkovsek, M. Composition of Phenolic Compounds, Cyanogenic Glycosides, Organic Acids and Sugars in Fruits of Black Cherry (Prunus serotina Ehrh.). Forests 2021, 12, 762. [Google Scholar] [CrossRef]
- Sokół-Łętowska, A.; Kucharska, A.Z.; Hodun, G.; Gołba, M. Chemical Composition of 21 Cultivars of Sour Cherry (Prunus cerasus) Fruit Cultivated in Poland. Molecules 2020, 25, 4587. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Bento, C.; Jesus, F.; Alves, G.; Silva, L.R. Sweet Cherry Phenolic Compounds: Identification, Characterization, and Health Benefits. In Studies in Natural Products Chemistry; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 59, pp. 31–78. [Google Scholar]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Caleja, C.; Ribeiro, A.; Barreiro, M.F.; Ferreira, I.C. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr. Pharm. Des. 2017, 23, 2787–2806. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Calhelha, R.C.; Carvalho, A.M.; Queiroz, M.J.; Ferreira, I.C.F.R. Bioactivity of Different Enriched Phenolic Extracts of Wild Fruits from Northeastern Portugal: A Comparative Study. Mater. Veg. 2013, 69, 37–42. [Google Scholar] [CrossRef]
- Popović, B.; Blagojević, B.; Pavlović, R.; Mićić, N.; Bijelić, S.; Bogdanović, B.; Mišan, A.; Duarte, C.M.; Serra, A.T. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis. Food Chem. 2019, 302, 125373. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds: Health Benefits and Potential Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 33–50. ISBN 9780128147757. [Google Scholar]
- Głowacka, A.; Rozpara, E.; Hallmann, E. The Dynamic of Polyphenols Concentrations in Organic and Conventional Sour Cherry Fruits: Results of a 4-Year Field Study. Molecules 2020, 25, 3729. [Google Scholar] [CrossRef]
- Alasalvar, C.; Al-Farsi, M.; Shahidi, F.; Ar, A.R.; Ohamed, M.O.; Ohamed, O.; Arsi, F.F.F. Compositional Characteristics and Antioxidant Components of Cherry Laurel Varieties and Pekmez. J. Food Sci. 2005, 70, S47–S52. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Desseva, I.; Petkova, N.; Stoyanova, M.; Vrancheva, R.; Slavov, A.; Slavchev, A.; Lante, A. Comparative Study of Early-and Mid-Ripening Peach (Prunus Persica L.) Varieties: Biological Activity, Macro-, and Micro-Nutrient Profile. Foods 2021, 10, 164. [Google Scholar] [CrossRef]
- Fujimoto, K.; Nakamura, S.; Matsumoto, T.; Ohta, T.; Ogawa, K.; Tamura, H.; Matsuda, H.; Yoshikawa, M. Medicinal Flowers. XXXVIII. 1) Structures of Acylated Sucroses and Inhibitory Effects of Constituents on Aldose Reducatase from the Flower Buds of Prunus Mume. Chem. Pharm. Bull. 2013, 61, 445–451. [Google Scholar] [CrossRef]
- Fujimoto, K.; Nakamura, S.; Matsumoto, T.; Ohta, T.; Yoshikawa, M.; Ogawa, K.; Kashiwazaki, E.; Matsuda, H. Structures of acylated sucroses from the flower buds of Prunus mume. J. Nat. Med. 2014, 68, 481–487. [Google Scholar] [CrossRef]
- Mitani, T.; Horinishi, A.; Kishida, K.; Kawabata, T.; Yano, F.; Mimura, H.; Inaba, N.; Yamanishi, H.; Oe, T.; Negoro, K.; et al. Phenolics Profile of Mume, Japanese Apricot (Prunus mume Sieb. et Zucc.) Fruit. Biosci. Biotechnol. Biochem. 2013, 77, 1623–1627. [Google Scholar] [CrossRef]
- Nakamura, S.; Fujimoto, K.; Matsumoto, T.; Nakashima, S.; Ohta, T.; Ogawa, K.; Matsuda, H.; Yoshikawa, M. Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effect on melanogenesis. Phytochemistry 2013, 92, 128–136. [Google Scholar] [CrossRef]
- Patel, D.; Kumar, R.; Sairam, K.; Hemalatha, S. Pharmacologically tested aldose reductase inhibitors isolated from plant sources—A concise report. Chin. J. Nat. Med. 2012, 10, 388–400. [Google Scholar] [CrossRef]
- Yang, C.; Li, F.; Du, B.; Chen, B.; Wang, F.; Wang, M. Isolation and Characterization of New Phenolic Compounds with Estrogen Biosynthesis-Inhibiting and Antioxidation Activities from Broussonetia papyrifera Leaves. PLoS ONE 2014, 9, e94198. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Murakami, T.; Ishiwada, T.; Morikawa, T.; Kagawa, M.; Higashi, Y.; Matsuda, H. New Flavonol Oligoglycosides and Polyacylated Sucroses with Inhibitory Effects on Aldose Reductase and Platelet Aggregation from the Flowers of Prunus mume. J. Nat. Prod. 2002, 65, 1151–1155. [Google Scholar] [CrossRef]
- Bastos, C.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Queiroz, M.J.; Santos-Buelga, C.; Ferreira, I.C. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015, 173, 1045–1053. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.; Jiang, N.; Wang, Y.; Feng, X. Use of ultra-performance liquid chromatography–tandem mass spectrometry on sweet cherries to determine phenolic compounds in peel and flesh. J. Sci. Food Agric. 2019, 99, 3555–3562. [Google Scholar] [CrossRef]
- Göttingerová, M.; Kumšta, M.; Rampáčková, E.; Kiss, T.; Nečas, T. Analysis of Phenolic Compounds and Some Important Analytical Properties in Selected Apricot Genotypes. HortScience 2021, 56, 1446–1452. [Google Scholar] [CrossRef]
- Castejón, M.L.; Montoya, T.; Alarcón-De-La-Lastra, C.; Sánchez-Hidalgo, M. Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants 2020, 9, 149. [Google Scholar] [CrossRef]
- Lee, J.-H.; Austin, J.R.; Burdette, J.E.; Murphy, B.T. Secoiridoids from Dogwood (Cornus officinalis) Potentiate Progesterone Signaling. J. Nat. Prod. 2021, 84, 2612–2616. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.-C.; He, J.; Pan, X.-G.; Zhang, J.; Wang, Y.-M.; Ye, X.-S.; Xia, C.-Y.; Lian, W.-W.; Yan, Y.; He, X.-L.; et al. Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes. Bioorganic Chem. 2021, 117, 105399. [Google Scholar] [CrossRef]
- Whitehead, S.R.; Bowers, M.D. Iridoid and secoiridoid glycosides in a hybrid complex of bush honeysuckles (Lonicera spp., Caprifolicaceae): Implications for evolutionary ecology and invasion biology. Phytochemistry 2013, 86, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ngo, Q.-M.T.; Lee, H.-S.; Nguyen, V.T.; Kim, J.A.; Woo, M.H.; Min, B.S. Chemical constituents from the fruits of Ligustrum japonicum and their inhibitory effects on T cell activation. Phytochemistry 2017, 141, 147–155. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, J.-Y.; Yu, H.-Y.; Yu, L.-Y.; Wang, T.; Zhang, Y.; Gao, X.-M.; Han, L.-F. Secoiridoid analogues from the fruits of Ligustrum lucidum and their inhibitory activities against influenza A virus. Bioorganic Med. Chem. Lett. 2018, 28, 1516–1519. [Google Scholar] [CrossRef]
- Luo, Y.; Jian, Y.; Liu, Y.; Jiang, S.; Muhammad, D.; Wang, W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules 2022, 27, 719. [Google Scholar] [CrossRef]
- Nie, Y.; Stürzenbaum, S.R. Proanthocyanidins of Natural Origin: Molecular Mechanisms and Implications for Lipid Disorder and Aging-Associated Diseases. Adv. Nutr. Int. Rev. J. 2019, 10, 464–478. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- Bayrambaş, K.; Cakır, B.; Gülseren, I. Influence of phenolic profile on the RP-HPLC detection and anti-carcinogenic potential of cherry laurel extracts from Black Sea Region-Turkey. Microchem. J. 2019, 149, 103963. [Google Scholar] [CrossRef]
- Nunes, C.; Guyot, S.; Marnet, N.; Barros, A.S.; Saraiva, J.A.; Renard, C.M.G.C.; Coimbra, M.A. Characterization of Plum Procyanidins by Thiolytic Depolymerization. J. Agric. Food Chem. 2008, 56, 5188–5196. [Google Scholar] [CrossRef]
- Fu, H.; Mu, X.; Wang, P.; Zhang, J.; Fu, B.; Du, J. Fruit quality and antioxidant potential of Prunus humilis Bunge accessions. PLoS ONE 2020, 15, e0244445. [Google Scholar] [CrossRef]
- Guo, C.; Bi, J.; Li, X.; Lyu, J.; Zhou, M.; Wu, X. Antioxidant profile of thinned young and ripe fruits of Chinese peach and nectarine varieties. Int. J. Food Prop. 2020, 23, 1272–1286. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; De Biaggi, M.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. New Findings in Prunus padus L. Fruits as a Source of Natural Compounds: Characterization of Metabolite Profiles and Preliminary Evaluation of Antioxidant Activity. Molecules 2018, 23, 725. [Google Scholar] [CrossRef]
- Radovanović, B.; Anđelković, S. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from Wild Berry Fruits Grown in Southeast Serbia. Trop. J. Pharm. Res. 2013, 12, 813–819. [Google Scholar] [CrossRef]
- Ayour, J.; Audergon, J.-M.; Renard, C.M.; Benichou, M.; Le Bourvellec, C. Phenolic profiling in ten apricot clones using an efficient method (Thioacidolysis-UFLC) and determination of their antioxidant potential. Food Biosci. 2022, 49, 101880. [Google Scholar] [CrossRef]
- Mannino, G.; Di Stefano, V.; Lauria, A.; Pitonzo, R.; Gentile, C. Vaccinium macrocarpon (Cranberry)-Based Dietary Supplements: Variation in Mass Uniformity, Proanthocyanidin Dosage and Anthocyanin Profile Demonstrates Quality Control Standard Needed. Nutrients 2020, 12, 992. [Google Scholar] [CrossRef]
- Tomić, J.; Glišić, I.; Milošević, N.; Štampar, F.; Mikulič-Petkovšek, M.; Jakopič, J. Determination of fruit chemical contents of two plum cultivars grafted on four rootstocks. J. Food Compos. Anal. 2021, 105, 103944. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Bladé, C.; Arola-Arnal, A.; Muguerza, B. Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca). Food Funct. 2019, 10, 6492–6502. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Gil, M.I.; Cremin, P.; Waterhouse, A.L.; Hess-Pierce, B.; Kader, A.A. HPLC−DAD−ESIMS Analysis of Phenolic Compounds in Nectarines, Peaches, and Plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [CrossRef] [PubMed]
- Liaudanskas, M.; Okulevičiūtė, R.; Lanauskas, J.; Kviklys, D.; Zymonė, K.; Rendyuk, T.; Žvikas, V.; Uselis, N.; Janulis, V. Variability in the Content of Phenolic Compounds in Plum Fruit. Plants 2020, 9, 1611. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Szőllősi, E.; Stündl, L.; Biró, A.; Homoki, J.R.; Szarvas, M.M.; Balogh, P.; Cziáky, Z.; Remenyik, J. Determination of Flavonoid and Proanthocyanidin Profile of Hungarian Sour Cherry. Molecules 2018, 23, 3278. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Trombetta, D.; Smeriglio, A.; Mandalari, G.; Romeo, O.; Felice, M.R.; Gattuso, G.; Nabavi, S.M. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends Food Sci. Technol. 2021, 117, 194–204. [Google Scholar] [CrossRef]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84. [Google Scholar] [CrossRef]
- Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech. 2013, 3, 439–459. [Google Scholar] [CrossRef]
- Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr. Rev. 2012, 70, 491–508. [Google Scholar] [CrossRef]
- Serban, M.C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P.; et al. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2016, 5, e002713. [Google Scholar] [CrossRef]
- Su, C.; Haskins, A.H.; Omata, C.; Aizawa, Y.; Kato, T.A. PARP Inhibition by Flavonoids Induced Selective Cell Killing to BRCA2-Deficient Cells. Pharmaceuticals 2017, 10, 80. [Google Scholar] [CrossRef]
- Blando, F.; Albano, C.; Liu, Y.; Nicoletti, I.; Corradini, D.; Tommasi, N.; Gerardi, C.; Mita, G.; Kitts, D.D. Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit. J. Sci. Food Agric. 2015, 96, 2641–2649. [Google Scholar] [CrossRef]
- Usenik, V. The influence of the production system on the composition of phytochemicals in Prunus domestica L. fruit. J. Food Compos. Anal. 2020, 95, 103701. [Google Scholar] [CrossRef]
- Picariello, G.; De Vito, V.; Ferranti, P.; Paolucci, M.; Volpe, M.G. Species- and cultivar-dependent traits of Prunus avium and Prunus cerasus polyphenols. J. Food Compos. Anal. 2016, 45, 50–57. [Google Scholar] [CrossRef]
- Gómez-Martínez, H.; Bermejo, A.; Zuriaga, E.; Badenes, M. Polyphenol content in apricot fruits. Sci. Hortic. 2020, 277, 109828. [Google Scholar] [CrossRef]
- Celik, F.; Gundogdu, M.; Alp, S.; Muradoglu, F.; Ercişli, S.; Gecer, M.K.; Canan, I. Determination of phenolic compounds, antioxidant capacity and organic acids contents of Prunus domestica L., Prunus cerasifera Ehrh. and Prunus spinosa L. fruits by HPLC. Acta Chromatogr. 2017, 29, 507–510. [Google Scholar] [CrossRef]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Walker, A.; Barril, C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. J. Exp. Bot. 2018, 70, 397–423. [Google Scholar] [CrossRef]
- Pour, P.M.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front. Pharmacol. 2019, 10, 1207. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Guo, Z.; Zhang, X.; Chang, X. Polyphenol Content, Physicochemical Properties, Enzymatic Activity, Anthocyanin Profiles, and Antioxidant Capacity of Cerasus humilis (Bge.) Sok. Genotypes. J. Food Qual. 2018, 2018, 5479565. [Google Scholar] [CrossRef]
- Milinović, B.; Dragović-Uzelac, V.; Kazija, D.H.; Jelačić, T.; Vujević, P.; Čiček, D.; Biško, A.; Čmelik, Z. Influence of four different dwarfing rootstocks on phenolic acids and anthocyanin composition of sweet cherry (Prunus avium L.) cvs ‘Kordia’ and ‘Regina’. J. Appl. Bot. Food Qual. 2016, 89, 29–37. [Google Scholar] [CrossRef]
- Feng, C.; Wang, W.-W.; Ye, J.-F.; Li, S.-S.; Wu, Q.; Yin, D.-D.; Li, B.; Xu, Y.-J.; Wang, L.-S. Polyphenol profile and antioxidant activity of the fruit and leaf of Vaccinium glaucoalbum from the Tibetan Himalayas. Food Chem. 2017, 219, 490–495. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Genetic Differentiation in Anthocyanin Content among Berry Fruits. Curr. Issues Mol. Biol. 2021, 43, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Peña-Sanhueza, D.; Inostroza-Blancheteau, C.; Ribera-Fonseca, A.; Reyes-Díaz, M. Anthocyanins in Berries and Their Potential Use in Human Health. In Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine; InTechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Toshima, S.; Hirano, T.; Kunitake, H. Comparison of anthocyanins, polyphenols, and antioxidant capacities among raspberry, blackberry, and Japanese wild Rubus species. Sci. Hortic. 2021, 285, 110204. [Google Scholar] [CrossRef]
- Navarro, J.P.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón, J.L.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chem. 2019, 295, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Capek, P.; Košťálová, Z. Isolation, chemical characterization and antioxidant activity of Prunus spinosa L. fruit phenolic polysaccharide-proteins. Carbohydr. Res. 2022, 515, 108547. [Google Scholar] [CrossRef] [PubMed]
- Marchi, R.C.; Campos, I.A.; Santana, V.T.; Carlos, R.M. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Co-ord. Chem. Rev. 2021, 451, 214275. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Zhang, Y.; Chen, X. Antioxidant Activities and Major Anthocyanins of Myrobalan Plum (Prunus cerasifera Ehrh.). J. Food Sci. 2012, 77, C388–C393. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, J.I.; Yahia, E.M.; Rivera-Pastrana, D.M.; Rojas-Molina, A.; Zavala-Sánchez, M. Nutraceutical Value of Black Cherry Prunus serotina Ehrh. Fruits: Antioxidant and Antihypertensive Properties. Molecules 2013, 18, 14597–14612. [Google Scholar] [CrossRef]
- Ozturk, B.; Celik, S.M.; Karakaya, M.; Islam, A.; Yarilgac, T. Storage Temperature Affects Phenolic Content, Antioxidant Activity and Fruit Quality Parameters of Cherry Laurel (Prunus laurocerasus L.). J. Food Process. Preserv. 2016, 41, e12774. [Google Scholar] [CrossRef]
- Altuntas, E.; Ozturk, B.; Kalyoncu, H.I. Bioactive compounds and physico-mechanical attributes of fruit and stone of cherry laurel (Prunus laurocerasus) Hazrvested at different maturity stages. Acta Sci. Pol. Hortorum Cultus 2018, 17, 75–84. [Google Scholar] [CrossRef]
- Mitić, V.; Ilić, M.; Dimitrijević, M.; Cvetković, J.; Cirić, S.; Jovanović, V.S. Chemometric characterization of peach, nectarine and plum cultivars according to fruit phenolic content and antioxidant activity. Fruits 2015, 71, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Mokrani, A.; Krisa, S.; Cluzet, S.; Da Costa, G.; Temsamani, H.; Renouf, E.; Mérillon, J.-M.; Madani, K.; Mesnil, M.; Monvoisin, A.; et al. Phenolic contents and bioactive potential of peach fruit extracts. Food Chem. 2016, 202, 212–220. [Google Scholar] [CrossRef]
- Vakula, A.; Horecki, A.T.; Pavlić, B.; Jokanović, M.; Ognjanov, V.; Milović, M.; Teslić, N.; Parpinello, G.; Decleer, M.; Šumić, Z. Application of different techniques on stone fruit (Prunus spp.) drying and assessment of physical, chemical and biological properties: Characterization of dried fruit properties. J. Food Process. Preserv. 2020, 45, 15158. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, Z.; Barrow, C.; Dunshea, F.; Suleria, H. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants 2021, 10, 234. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, W.; Cao, J.; Ma, L. Evaluation of antioxidant properties of extractable and nonextractable polyphenols in peel and flesh tissue of different peach varieties. J. Food Process. Preserv. 2018, 42, e13624. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Ding, T.; Cao, K.; Fang, W.; Zhu, G.; Chen, C.; Wang, X.; Wang, L. Evaluation of phenolic components (anthocyanins, flavanols, phenolic acids, and flavonols) and their antioxidant properties of peach fruits. Sci. Hortic. 2020, 268, 109365. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Bento, C.; Silva, B.M.; Silva, L.R. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 2017, 95, 91–100. [Google Scholar] [CrossRef]
- Gonçalves, B.; Landbo, A.-K.; Let, M.; Silva, A.P.; Rosa, E.; Meyer, A.S. Storage affects the phenolic profiles and antioxidant activities of cherries (Prunus avium L) on human low-density lipoproteins. J. Sci. Food Agric. 2004, 84, 1013–1020. [Google Scholar] [CrossRef]
- Nunes, A.; Gonçalves, A.; Alves, G.; Falcão, A.; Garcia-Viguera, C.; Moreno, D.A.; Silva, L. Valorisation of Prunus avium L. By-Products: Phenolic Composition and Effect on Caco-2 Cells Viability. Foods 2021, 10, 1185. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-T.; Lee, S.-H.; Li, W.; Sun, Y.-N.; Yang, S.-Y.; Jang, H.-D.; Kim, Y.-H. Evaluation of the antioxidant and anti-osteoporosis activities of chemical constituents of the fruits of Prunus mume. Food Chem. 2014, 156, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xia, M. Anthocyanins and Diabetes Regulation. In Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 83–93. ISBN 9780123984562. [Google Scholar]
- Yang, H.; Tuo, X.; Wang, L.; Tundis, R.; Portillo, M.P.; Simal-Gandara, J.; Yu, Y.; Zou, L.; Xiao, J.; Deng, J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci. Technol. 2021, 111, 114–127. [Google Scholar] [CrossRef]
- E Arteel, G.; Sies, H. Protection against peroxynitrite by cocoa polyphenol oligomers. FEBS Lett. 1999, 462, 167–170. [Google Scholar] [CrossRef]
- Vennat, B.; BOS, M.; Pourrat, A.; Bastide, P. Procyanidins from Tormentil: Fractionation and Study of the Anti-radical Activity towards Superoxide Anion. Biol. Pharm. Bull. 1994, 17, 1613–1615. [Google Scholar] [CrossRef]
- Li, S.; Xiao, J.; Chen, L.; Hu, C.; Chen, P.; Xie, B.; Sun, Z. Identification of A-series oligomeric procyanidins from pericarp of Litchi chinensis by FT-ICR-MS and LC-MS. Food Chem. 2012, 135, 31–38. [Google Scholar] [CrossRef]
- Plumb, G.W.; de Pascual-Teresa, S.; Santos-Buelga, C.; Cheynier, V.; Williamson, G. Antioxidant properties of catechins and proanthocyanidins: Effect of polymerisation, galloylation and glycosylation. Free Radic. Res. 1998, 29, 351–358. [Google Scholar] [CrossRef]
- Shahat, A.A.; Cos, P.; De Bruyne, T.; Apers, S.; Hammouda, F.M.; Ismail, S.I.; Azzam, S.; Claeys, M.; Goovaerts, E.; Pieters, L.; et al. Antiviral and Antioxidant Activity of Flavonoids and Proanthocyanidins from Crataegus sinaica. Planta Medica 2002, 68, 539–541. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Qiao, J.; Ni, Y.; Liu, P.; Huang, D.; Huo, J. Structure, degree of polymerization, and starch hydrolase inhibition activities of bird cherry (Prunus padus) proanthocyanidins. Food Chem. 2022, 385, 132588. [Google Scholar] [CrossRef]
- Szymanowska, U.; Baraniak, B. Antioxidant and Potentially Anti-Inflammatory Activity of Anthocyanin Fractions from Pomace Obtained from Enzymatically Treated Raspberries. Antioxidants 2019, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Rigolon, T.C.B.; De Barros, F.A.R.; Vieira, N.R.; Stringheta, P.C. Prediction of total phenolics, anthocyanins and antioxidant capacity of blackberry (Rubus sp.), blueberry (Vaccinium sp.) and jaboticaba (Plinia cauliflora (Mart.) Kausel) skin using colorimetric parameters. Food Sci. Technol. 2020, 40, 620–625. [Google Scholar] [CrossRef]
- Fu, H.; Qiao, Y.; Wang, P.; Mu, X.; Zhang, J.; Fu, B.; Du, J. Changes of bioactive components and antioxidant potential during fruit development of Prunus humilis Bunge. PLoS ONE 2021, 16, e0251300. [Google Scholar] [CrossRef] [PubMed]
- Saeed, I.; Guo, X.; Azeem, M.; Elshikh, M.S.; Zainab, B.; Ayaz, Z.; You, L.; Alwahibi, M.S.; Abbasi, A.M. Comparative assessment of polyphenolics’ content, free radicals’ scavenging and cellular antioxidant potential in apricot fruit. J. King Saud Univ. Sci. 2021, 33, 101459. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, W.; Wang, X.; Cao, J.; Jiang, W. Polyphenol composition and antioxidant capacity in pulp and peel of apricot fruits of various varieties and maturity stages at harvest. Int. J. Food Sci. Technol. 2017, 53, 327–336. [Google Scholar] [CrossRef]
- Dong, W.; Chen, D.; Chen, Z.; Sun, H.; Xu, Z. Antioxidant capacity differences between the major flavonoids in cherry (Prunus pseudocerasus) in vitro and in vivo models. LWT 2021, 141, 110938. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Q.; Wang, T.; Liu, J.; Chen, D. Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group. Molecules 2016, 21, 1246. [Google Scholar] [CrossRef]
- Razavi, S.M.; Zahri, S.; Zarrini, G.; Nazemiyeh, H.; Mohammadi, S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Russ. J. Bioorganic Chem. 2009, 35, 376–378. [Google Scholar] [CrossRef]
- Wu, D.-T.; Nie, X.-R.; Shen, D.-D.; Li, H.-Y.; Zhao, L.; Zhang, Q.; Lin, D.-R.; Qin, W. Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus). Molecules 2020, 25, 1276. [Google Scholar] [CrossRef] [Green Version]
- Abdelghafar, A.; Reighard, G.; Gasic, K. Antioxidant Capacity and Bioactive Compounds Accumulation in Peach Breeding Germplasm Fruit Quality View Project NC-140 Apple Rootstock Trials View Project. Am. Pomol. Soc. 2018, 72, 40–69. [Google Scholar]
Season | Month | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | |||||||||||||
Tm Z | TM Y | RR X | Tm | TM | RR | Tm | TM | RR | Tm | TM | RR | Tm | TM | RR | Tm | TM | RR | |
2016 | 4.1 | 10.3 | 239.1 | 2.4 | 10.2 | 130.6 | 1.6 | 11.8 | 87.2 | 4.2 | 14.7 | 49.9 | 6.8 | 16.8 | 88.5 | 10.3 | 24.8 | 4.7 |
2017 | 0.0 | 9.6 | 41.0 | 3.4 | 11.6 | 126.7 | 3.4 | 14.1 | 41.0 | 5.1 | 19.6 | 12.1 | 8.6 | 21.7 | 78.4 | 12.1 | 27.7 | 15.5 |
2018 | 3.1 | 19.8 | 16.7 | 1.2 | 9.0 | 17.2 | 2.7 | 9.5 | 51.6 | 6.1 | 14.9 | 21.9 | 8.9 | 19.1 | 24.7 | 12.9 | 22.5 | 42.8 |
2019 | 3.7 | 10.5 | 40.7 | 5.3 | 14.2 | 14.9 | 6.2 | 16.7 | 48.2 | 7.1 | 16.0 | 61.7 | 11.1 | 22.8 | 12.5 | 12.9 | 23.0 | 18.1 |
July | August | September | October | November | December | |||||||||||||
Tm | TM | RR | Tm | TM | RR | Tm | TM | RR | Tm | TM | RR | Tm | TM | RR | Tm | TM | RR | |
2016 | 13.5 | 29.7 | 14.8 | 12.8 | 30.6 | 13.5 | 10.7 | 26.1 | 11.0 | 8.1 | 18.3 | 60.7 | 3.9 | 12.3 | 116.9 | 2.4 | 11.3 | 49.5 |
2017 | 13.0 | 28.3 | 30.5 | 14.0 | 28.9 | 34.5 | 11.4 | 24.5 | 2.2 | 11.6 | 22.7 | 15.3 | 5.6 | 14.1 | 31.9 | 3.4 | 10.0 | 122.7 |
2018 | 14.1 | 25.0 | 15.0 | 15.9 | 30.4 | 1.9 | 15.5 | 27.7 | 19.4 | 9.0 | 18.4 | 13.7 | 6.2 | 11.5 | 44.6 | 5.3 | 11.2 | 17.9 |
2019 | 17.9 | 29.8 | 23.7 | 16.7 | 28.7 | 23.2 | 15.1 | 26.3 | 40.0 | 11.7 | 19.6 | 88.6 | 6.5 | 11.2 | 90.5 | 5.7 | 11.0 | 320.4 |
Representative HPLC-DAD-ESI-MS/MS Chromatograms Showing the (poly)phenolic Profile Recorded at 280 and 520 nm | |||||
---|---|---|---|---|---|
Peak | Rt (min) | λ max (nm) | [M−H]−/[M+H]+ (m/z) | MSn [M−H]−/[M+H]+ (%) (m/z) | Identification |
Hydroxicynamic acids | |||||
1 | 14.4 | 324 | 353/- | MS2: 191 (100.0), 179 (66.4)/- | 3-O-Caffeoylquinic acid |
MS3: No fragments detected/- | |||||
2 | 15.2 | 328 | 503/- | MS2: 161 (100.0), 341 (7.2), 323 (49.5), 179 (3.9)/- | Caffeoyl di-hexoside |
MS3: 143 (100.0), 135 (20.3)/- | |||||
3 | 17.3 | 306 | 487/- | MS2: 145 (100.0), 341 (22.7), 307 (86.0), 173 (10.4), 163 (25.7)/- | p-coumaroyl-3-O-sucrose |
MS3: No fragments detected/- | |||||
4 | 18.0 | 310 | 337/- | MS2: 163 (100.0), 191 (6.3)/- | 3-p-coumaroylquinic acid |
MS3: 119 (100.0)/- | |||||
5 | 18.9 | 312 | 487/- | MS2: 145 (100.0), 341 (6.9), 307 (89.8), 179 (1.6), 163 (22.6)/- | Caffeic acid-O-(coumaroyl)hexoside |
MS3: No fragments detected/- | |||||
7 | 21.9 | 326 | 353/- | MS2: 173 (100.0), 191 (16.7), 179 (58.4), 135 (19.7)/- | Caffeoyl-isocitrate |
MS3: 111 (100.0), 155 (59.2), 127 (17.9)/- | |||||
10 | 26.4 | 312 | 337/- | MS2: 173 (100.0), 163 (7.4)/- | 4-p-coumaroylquinic acid |
MS3: 137 (100.0), 155 (14.2), 127 (8.3)/- | |||||
11 | 27.0 | 312 | 529/- | MS2: 487 (100.0), 349 (13.4), 307 (75.9), 162 (29.0), 173 (2.4)/- | mono-O-acetyl-3-O-p-coumaroylsucrose isomer |
MS3: 145 (100.0), 307 (43.7)/- | |||||
12 | 27.4 | 314 | 529/- | MS2: 487 (100.0), 349 (13.4), 307 (69.0), 173 (2.4), 162 (29.0)/- | mono-O-acetyl-3-O-p-coumaroylsucrose isomer |
MS3: 145 (100.0), 307 (43.7)/- | |||||
13 | 32.4 | 314 | 571/- | MS2: 529 (100.0), 511 (51.7), 393 (10.2), 383 (10.1), 341 (7.8)/- | di-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 349 (100.0), 487 (49.6), 469 (20.1), 341 (17.6), 307 (89.6)/- | |||||
14 | 32.7 | 308 | 571/- | MS2: 529 (100.0), 511 (56.3), 469 (4.3), 425 (7.1), 383 (14.7), 349 (26.5), 307 (77.1), 217 (14.1), 173 (3.4)/- | di-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 487 (100.0), 469 (10.9), 367 (33.3), 341 (8.1), 307 (62.3), 217 (5.7), 171 (11.9), 163 (14.7)/- | |||||
15 | 33.2 | 314 | 571/- | MS2: 529 (100.0), 511 (26.6), 425 (6.2), 383 (8.0), 341 (4.6), 307 (63.1)/- | di-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 487 (100.0), 469 (20.2), 383 (18.2), 367 (4.5), 341 (25.8), 307 (9.7), 290 (13.1)/- | |||||
16 | 33.8 | 314 | 613/- | MS2: 571 (100.0), 553 (18.0), 449 (4.0), 425 (5.7), 349 (2.6)/- | tri-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 425 (100.0), 559 (10.8), 451 (12.5), 407 (68.1), 289 (13.6), 273 (8.1)/- | |||||
17 | 34.9 | 308 | 613/- | MS2: 571 (100.0), 553 (34.5), 425 (2.4), 349 (16.9), 217 (4.2)/- | tri-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 529 (100.0), 511 (58.7), 425 (23.7), 383 (38.2), 349 (92.1), 289 (11.1), 217 (13.3), 163 (26.2)/- | |||||
18 | 35.9 | 306 | 571/- | MS2: 511 (100.0), 529 (22.2), 487 (2.3), 469 (4.7), 451 (9.8), 349 (7.3), 307 (11.5), 289 (4.3), 259 (3.4), 214 (3.9)/- | di-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 451 (100.0), 469 (80.2), 422 (8.7), 349 (4.0), 331 (24.9), 289 (31.4), 271 (22.5), 260 (22.5), 231 (11.1), 214 (68.3), 173 (33.9), 145 (66.5)/- | |||||
19 | 36.2 | 310 | 613/- | MS2: 571 (100.0), 553 (40.9), 529 (5.9), 467 (4.1), 425 (12.8), 383 (6.0), 349 (23.1), 228 (3.9), 201 (8.4)/- | tri-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 349 (100.0), 529 (82.5), 511 (46.5), 487 (4.1), 469 (5.3), 425 (16.8), 407 (6.6), 383 (26.9), 307 (13.5), 277 (11.0), 219 (9.6), 163 (10,6)/- | |||||
22 | 37.6 | 316 | 613,5/- | MS2: 553 (100.0), 571 (31.3), 511 (6.7), 425 (4.3), 349 (28.9), 289 (4.5)/- | tri-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 493 (100.0), 511 (64.6), 469 (9.8), 365 (6.9), 349 (27.9), 331 (10.2), 307 (4.5), 271 (5.9), 269 (32.8), 245 (10.1), 214 (49.4), 187 (10.2), 163 (9.8)/- | |||||
23 | 38.1 | 316 | 613/- | MS2: 553 (100.0), 571 (34.3), 511 (5.9), 493 (10.3), 425 (7.2), 407 (7.1), 391 (6.9), 331 (5.9)/- | tri-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 493 (100.0), 511 (68.9), 469 (4.4), 451 (15.0), 391 (6.6), 303 (6.7), 287 (30.5), 271 (4.7), 214 (20.7), 197 (12.2)/- | |||||
24 | 38.2 | 318 | 613/- | MS2: 553 (100.0), 571 (39.7), 511 (4.2), 494 (18.1), 407 (3.7), 391 (11.7), 349 (4.1), 318 (5.6)/- | tri-O-acetyl-3-O-p-coumaroyl sucrose isomer |
MS3: 493 (100.0), 511 (86.1), 451 (5.7), 389 (3.3), 349 (4.6), 331 (22.4), 245 (22.5), 163 (19.2)/- | |||||
25 | 38.6 | 316 | 655/- | MS2: 595 (100.0), 613 (44.9), 553 (16.7), 535 (14.1), 494 (7.5), 391 (23.2), 349 (18.4), 330 (11.5), 313 (10.0), 270 (4.5)/- | tetra-O-acetyl-3-O-p-coumaroylsucrose isomer |
MS3: 535 (100.0), 553 (44.9), 493 (41.3), 331 (19.5), 287 (17.1)/- | |||||
26 | 39.3 | 398, sh 334 | 655/- | MS2: 595 (100.0), 613 (20.1), 553 (4.5), 535 (26.7), 393 (14.7), 331 (5.0)/- | tetra-O-acetyl-3-O-p-coumaroylsucrose isomer |
MS3: 553 (100.0), 535 (77.7), 511 (5.5), 493 (19.5)/- | |||||
Secoiridoids | |||||
6 | 21.6 | 328 | 581/- | MS2: 545 (100.0), 503 (1.8)/- | 6’-O-β-D-glucosyl swertiamarin (tentative) |
MS3: 503 (42.6), 341 (28.8), 323 (52.2), 235 (39.1), 161 (100.0)/- | |||||
Flavan-3-ols | |||||
8 | 25.3 | 278 | 289/- | MS2: 245 (100.0), 205 (38.1), 179 (11.6), 165 (2.9)/- | Catechin |
MS3: 203 (100.0)/- | |||||
9 | 25.9 | 280 | 865/- | MS2: 695 (100.0), 739 (44.3), 713 (32.1), 577 (53.3), 575 (26.5), 451 (6.9), 407 (23.4), 363 (5.9), 289 (16.9), 287 (8.7)/- | B-type proanthocyanidin trimer |
MS3: 173 (100.0), 163 (6.4)/- | |||||
Flavonols | |||||
20 | 36.9 | 340 | 463/- | MS2: 301 (100.0), 271 (4.7), 179 (6.8)/- | Quercetin-3-O-glucoside |
MS3: 179 (100.0), 271 (31.4), 255 (31.8), 229 (5.9), 213 (13.2), 193 (7.9), 151 (86.4), 121 (7.9)/- | |||||
21 | 37.1 | 356 | 609/- | MS2: 301 (100.0), 179 (4.5)/- | Quercetin-3-O-rutinoside |
MS3: 179 (100.0), 271 (57.7), 255 (21.4), 229 (11.1), 211 (3.7), 193 (3.5), 151 (75.1), 121 (2.9), 107 (5.2)/- | |||||
Anthocyanins | |||||
27 | 28.6 | 518 | -/449 | MS2: -/287 (100.0), 366 (1.0), 307 (0.7) | Cyanidin-3-O-glucoside |
MS3: -/227 (44.0), 213 (25.3), 203 (10.9), 187 (100.0), 160 (41.2) | |||||
28 | 30.4 | 520 | -/595 | MS2: -/287 (100.0), 467 (5.5), 329 (7.8) | Cyanidin-3-(6-trans-p-coumaroyl)glucoside |
MS3: -/259 (100.0), 269 (14.2), 219 (54.7), 127 (56.5) |
Peak | Location and Year | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location 1 | Location 2 | Location 3 | |||||||||||||||||
2016 | 2017 | 2018 | 2019 | LSD | 2016 | 2017 | 2018 | 2019 | LSD | 2016 | 2017 | 2018 | 2019 | LSD | LSD (p < 0.05) for Location Comparison | ||||
(p < 0.05) | (p < 0.05) | (p < 0.05) | 2016 | 2017 | 2018 | 2019 | |||||||||||||
Phenolic acids | |||||||||||||||||||
1 | 2.34 B c | 1.48 A a | 1.65 A a | 2.18 B ab | 0.25 | 1.84 A b | 2.68 B b | 4.05 C b | 2.92 B b | 0.52 | 1.35 A a | 3.02 C b | 1.90 B a | 1.74 AB a | 0.31 | 0.23 | 0.44 | 0.47 | 0.42 |
2 | 20.26 B b | 28.96 C a | 17.18 B b | 3.96 A b | 2.33 | 22.30 B b | 24.91 B a | 22.80 B b | 5.55 A c | 2.84 | 14.94 B a | 28.01 C a | 4.41 A a | 2.68 A a | 2.28 | 2.47 | 2.93 | 3.57 | 0.76 |
3 | 21.64 C b | 19.27 B a | 23.10 D a | 11.60 A b | 0.90 | 15.90 B a | 19.45 C a | 22.74 D a | 11.83 A b | 0.92 | 13.02 B a | 18.10 C a | 21.27 D a | 8.21 A a | 1.89 | 0.79 | 1.03 | 1.45 | 0.93 |
4 | 0.11 C c | 0.11 C c | 0.05 B a | 0.03 A c | 0.01 | 0.08 C b | 0.08 C b | 0.06 B a | 0.02 A b | 0.01 | 0.04 B a | 0.05 C a | 0.04 B a | 0.01 A a | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
5 | 0.73 C c | 0.99 D a | 0.50 B a | 0.33 A b | 0.06 | 0.62 B b | 0.97 D a | 0.79 C b | 0.46 A c | 0.04 | 0.47 B a | 1.09 C b | 0.51 B a | 0.16 A a | 0.03 | 0.07 | 0.03 | 0.05 | 0.03 |
7 | 16.49 B b | 13.64 A a | 14.27 A a | 12.75 A c | 1.46 | 16.14 B b | 16.68 B b | 11.88 A a | 10.84 A b | 1.26 | 7.11 A a | 16.14 B b | 15.37 B a | 7.81 A a | 2.66 | 1.85 | 1.80 | 2.85 | 1.17 |
10 | 103.26 A b | 96.47 A a | 169.42 C a | 122.38 B ab | 5.98 | 104.75 A b | 109.69 A a | 161.80 C a | 124.62 B b | 6.57 | 72.31 A a | 111.77 C a | 177.24 D a | 95.64 B a | 9.68 | 5.37 | 6.43 | 8.40 | 10.88 |
11 | 28.11 BC b | 32.63 C a | 23.86 B b | 18.39 A b | 3.69 | 30.99 C b | 31.21 C a | 24.93 B b | 19.82 A b | 2.75 | 17.27 B a | 32.14 D a | 19.69 C a | 9.61 A a | 0.52 | 5.23 | 0.45 | 0.72 | 1.58 |
12 | 14.49 BC b | 15.07 C a | 14.10 B b | 6.91 A b | 0.69 | 10.72 B a | 14.20 C a | 14.07 C b | 5.12 A a | 1.48 | 9.27 B a | 14.30 C a | 6.46 A a | 5.40 A a | 0.90 | 1.66 | 0.39 | 0.71 | 0.61 |
13 | 257.14 BC cb | 263.34 C a | 238.79 B b | 155.65 A b | 56.04 | 181.51 A a | 271.56 B a | 284.75 B c | 190.54 A c | 15.24 | 160.10 B a | 300.28 D a | 204.93 C a | 109.72 A a | 12.85 | 13.11 | 120.75 | 12.60 | 9.05 |
14 | 12.19 B ab | 13.75 C ab | 12.49 B b | 9.52 A b | 1.28 | 12.32 B b | 13.76 C b | 12.07 B b | 8.63 A ab | 0.85 | 4.48 A a | 7.88 C a | 9.26 D a | 5.57 B a | 0.62 | 0.53 | 0.06 | 0.82 | 1.71 |
15 | 16.47 B b | 23.05 C ba | 17.19 B a | 13.18 A b | 0.92 | 13.71 A a | 22.56 C a | 21.19 C b | 15.93 B b | 1.04 | 10.33 A a | 21.28 B a | 22.74 B b | 8.23 A a | 1.66 | 1.74 | 0.29 | 1.51 | 0.74 |
16 | 12.55 D b | 10.74 C a | 8.11 B b | 5.34 A b | 1.11 | 15.72 D c | 10.20 C a | 6.84 B b | 4.83 A ab | 1.19 | 4.39 A a | 8.59 B a | 5.64 A a | 3.92 A a | 1.58 | 0.66 | 1.40 | 1.11 | 0.70 |
17 | 28.30 A a | 37.78 A a | 87.94 C b | 70.12 B b | 10.00 | 33.68 B a | 60.46 C b | 95.38 D b | 15.15 A a | 7.10 | 35.84 C a | 56.05 D ab | 14.40 B a | 6.53 A a | 4.06 | 6.02 | 17.15 | 10.80 | 5.41 |
18 | 17.74 D b | 13.70 C b | 5.47 B c | 3.04 A a | 0.58 | 5.95 B a | 17.00 C c | 3.51 A b | 5.47 B b | 1.03 | 4.73 B a | 11.54 C a | N.d. | 2.41 A a | 1.01 | 1.34 | 0.31 | 0.42 | 0.63 |
19 | 352.54 C b | 234.09 A a | 482.67 D b | 275.78 B b | 10.38 | 364.38 B b | 309.66 A a | 461.57 C b | 296.34 A b | 32.49 | 163.69 A a | 312.07 C a | 366.67 D a | 189.65 B a | 9.49 | 36.35 | 76.83 | 13.39 | 8.63 |
22 | 87.37 C b | 74.79 B a | 97.76 D a | 43.14 A b | 5.23 | 83.22 B b | 78.52 B a | 107.10 C b | 22.41 A a | 3.40 | 44.76 A a | 80.13 B a | 108.56 C b | 44.62 A b | 1.27 | 3.88 | 6.37 | 4.03 | 2.03 |
23 | 43.30 B b | 36.83 A a | 52.98 C a | 38.68 AB b | 4.55 | 40.16 A b | 39.54 A a | 49.43 B a | 41.59 A b | 4.91 | 19.02 A a | 35.87 C a | 64.19 D b | 27.02 B a | 3.46 | 5.86 | 8.93 | 3.59 | 1.56 |
24 | 71.58 B b | 71.91 B a | 74.26 B a | 46.21 A b | 6.56 | 59.96 B ab | 73.10 C a | 84.70 D b | 49.09 A b | 7.79 | 42.92 B a | 66.63 C a | 68.96 C a | 32.60 A a | 4.15 | 9.87 | 16.43 | 3.40 | 2.60 |
25 | 43.45 A b | 48.56 A a | 66.55 B a | 51.30 A b | 10.54 | 52.62 B b | 37.18 A a | 60.45 C a | 42.36 A a | 5.54 | 27.50 A a | 41.44 B a | 65.15 C a | 39.60 B a | 4.96 | 6.40 | 11.01 | 8.50 | 3.94 |
26 | 1008.55 B a | 598.98 A a | 1313.44 C a | 712.29 A a | 100.40 | 1025.47 B a | 750.80 A b | 1225.35 C a | 810.41 A a | 123.11 | 421.65 A a | 774.57 B b | 1462.26 C a | 662.15 B a | 138.66 | 144.34 | 81.59 | 173.37 | 95.95 |
Secoiridoids | |||||||||||||||||||
6 | 9.89 B b | 10.99 B a | 8.26 A b | 7.38 A b | 0.85 | 9.29 C ab | 11.23 D b | 4.99 A a | 8.04 B b | 0.61 | 7.11 B a | 14.98 C c | 6.29 B ab | 4.23 A a | 0.80 | 0.95 | 0.03 | 1.16 | 0.49 |
Flavan-3-ols | |||||||||||||||||||
8 | 15.76 A a | 19.78 B a | 19.78 B c | 20.95 B a | 1.82 | 14.46 AB a | 20.08 C a | 11.53 A b | 17.90 BC a | 3.16 | 14.34 A a | 30.57 B b | N.d. | 14.59 A a | 1.97 | 0.93 | 3.64 | 1.44 | 2.78 |
9 | 1157.98 B c | 902.07 A a | 830.41 A b | 784.92 A b | 85.31 | 965.50 B b | 1096.20 B b | 1302.16 C c | 675.23 A b | 94.19 | 743.17 B a | 1159.16 C b | 669.99 B a | 338.88 A a | 86.78 | 71.13 | 89.18 | 117.69 | 93.21 |
Flavonols | |||||||||||||||||||
20 | 2.84 A b | 5.10 B b | 2.45 A a | 2.83 A b | 0.44 | 2.78 A b | 5.14 B b | 6.31 B b | 2.14 A b | 0.95 | 1.42 B a | 3.16 D a | 2.64 C a | 0.75 A a | 0.29 | 0.17 | 1.13 | 0.65 | 0.18 |
21 | 30.27 B b | 41.70 C a | 25.36 A a | 29.99 B b | 2.96 | 14.96 A a | 37.46 D a | 33.89 C b | 22.30 B b | 1.83 | 34.20 C b | 36.68 C a | 29.72 B ab | 13.40 A a | 3.13 | 2.74 | 3.93 | 2.36 | 2.11 |
Anthocyanins | |||||||||||||||||||
27 | 141.29 B a | 41.03 A a | 214.93 C b | 450.54 D b | 17.21 | 133.45 B a | 57.44 A b | 153.98 C a | 268.65 D a | 10.42 | 224.93 B b | 44.14 A a | 225.52 B b | 284.24 C a | 25.03 | 13.26 | 5.46 | 32.08 | 17.73 |
28 | 107.17 B a | 31.35 A a | 166.41 C b | 369.70 D c | 9.55 | 119.74 B b | 34.71 A a | 134.40 C a | 248.87 D b | 6.68 | 191.41 B c | 35.64 A a | 194.69 B b | 200.85 B a | 10.24 | 6.75 | 3.39 | 7.71 | 15.65 |
Peak | Location and Year | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location 1 | Location 2 | Location 3 | LSD (p < 0.05) for Location Comparison | ||||||||||||||||
2016 | 2017 | 2018 | 2019 | LSD (p < 0.05) | 2016 | 2017 | 2018 | 2019 | LSD (p < 0.05) | 2016 | 2017 | 2018 | 2019 | LSD (p < 0.05) | 2016 | 2017 | 2018 | 2019 | |
ABTS•+ | 9.20 A b | 10.49 C ab | 10.45 C b | 9.94 B b | 0.28 | 9.46 A b | 10.69 C b | 9.61 AB a | 9.91 B b | 0.26 | 8.23 A a | 10.32 C a | 9.80 B a | 7.88 A a | 0.28 | 0.32 | 0.24 | 0.28 | 0.32 |
DPPH• | 7.19 B b | 7.69 C a | 7.35 B a | 6.78 A b | 0.20 | 7.255 B b | 8.17 C b | 7.49 B a | 6.67 A b | 0.17 | 6.18 B a | 8.04 D b | 7.56 C a | 5.18 A a | 0.10 | 0.20 | 0.20 | 0.22 | 0.10 |
FRAP | 9.22 A a | 9.99 B a | 11.76 C b | 8.99 A a | 0.49 | 9.209 A a | 9.98 B a | 10.26 B a | 9.04 A a | 0.44 | 8.76 A a | 10.25 B a | 11.26 C b | 9.26 A a | 0.47 | 0.49 | 0.47 | 0.49 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abraão, A.S.; Fernandes, N.; Silva, A.M.; Domínguez-Perles, R.; Barros, A. Prunus lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown. Antioxidants 2022, 11, 1738. https://doi.org/10.3390/antiox11091738
Abraão AS, Fernandes N, Silva AM, Domínguez-Perles R, Barros A. Prunus lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown. Antioxidants. 2022; 11(9):1738. https://doi.org/10.3390/antiox11091738
Chicago/Turabian StyleAbraão, Ana Santos, Nelson Fernandes, Amélia M. Silva, Raúl Domínguez-Perles, and Ana Barros. 2022. "Prunus lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown" Antioxidants 11, no. 9: 1738. https://doi.org/10.3390/antiox11091738