Identification and Antioxidant Capacity of Free and Bound Phenolics in Six Varieties of Mulberry Seeds Using UPLC-ESI-QTOF-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standards and Standard Solutions
2.3. Samples
2.4. Extraction of Free Phenolics (FPs)
2.5. Extraction of Bound Phenolics (BPs)
2.6. Instrumentation and Chromatographic Conditions
2.7. Phenolic Content Measurement
2.8. Antioxidant Capacity Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Identification of FPs from Mulberry Seeds
3.1.1. Flavonoids
3.1.2. Phenolic Acids and Their Derivatives
3.1.3. 2-Arybenzofuran Derivatives
3.1.4. Xanthone Derivatives
3.1.5. Stilbenes
3.1.6. Coumarin Derivatives
3.1.7. Other Phenolics
3.2. Identification of BPs in Mulberry Seeds
3.2.1. Phenolic Acids and Their Derivatives
3.2.2. Other Phenolics
3.3. Phenolic Content of FPs and BPs from Extracts
3.4. Antioxidant Capacity of Extracts
3.4.1. DPPH Radical Scavenging Activity and FRAP
3.4.2. Relationship between Antioxidant Capacity and TPC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khurana, P.; Checker, V.G. The Advent of Genomics in Mulberry and Perspectives for Productivity Enhancement. Plant Cell Rep. 2011, 30, 825. [Google Scholar] [CrossRef]
- Liu, L.; Cao, J.; Huang, J.; Cai, Y.; Yao, J. Extraction of Pectins with Different Degrees of Esterification from Mulberry Branch Bark. Bioresour. Technol. 2010, 101, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Jianquan, K.; Junni, T.; Zijian, C.; Ji, L. The Profile in Polyphenols and Volatile Compounds in Alcoholic Beverages from Different Cultivars of Mulberry. J. Food Sci. 2012, 77, C430–C436. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fang, J.; Ruan, Y.; Wang, X.; Sun, Y.; Wu, N.; Zhao, Z.; Chang, Y.; Ning, N.; Guo, H.; et al. Structures, Bioactivities and Future Prospective of Polysaccharides from Morus Alba (White Mulberry): A Review. Food Chem. 2018, 245, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Natić, M.M.; Dabić, D.Č.; Papetti, A.; Akšić, M.M.F.; Ognjanov, V.; Ljubojević, M.; Tešić, Ž.L. Analysis and Characterisation of Phytochemicals in Mulberry (Morus alba L.) Fruits Grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Wang, J.; Ma, J.; Zhang, Y.-Q. Interference Effect of Oral Administration of Mulberry Branch Bark Powder on the Incidence of Type II Diabetes in Mice Induced by Streptozotocin. Food Nutr. Res. 2016, 60, 31606. [Google Scholar] [CrossRef]
- Huang, L.; Wu, D.; Jin, H.; Zhang, J.; He, Y.; Lou, C. Internal Quality Determination of Fruit with Bumpy Surface Using Visible and near Infrared Spectroscopy and Chemometrics: A Case Study with Mulberry Fruit. Biosyst. Eng. 2011, 109, 377–384. [Google Scholar] [CrossRef]
- Li, W.-J.; Liu, X.; Wang, J.-Z.; Wu, J.-X.; Sheng, S.; Wu, F.-A.; Wang, J. Synthesis and Characterization of Structural Lipids with a Balanced Ratio of N-6/n-3 from Mulberry Seed Oil and α-Linolenic Acid Using a Microfluidic Enzyme Reactor. Food Bioprod. Process. 2020, 120, 21–32. [Google Scholar] [CrossRef]
- Gecgel, U.; Velioglu, S.D.; Velioglu, H.M. Investigating Some Physicochemical Properties and Fatty Acid Composition of Native Black Mulberry (Morus nigra L.) Seed Oil. J. Am. Oil Chem. Soc. 2011, 88, 1179–1187. [Google Scholar] [CrossRef]
- Yao, X.-H.; Shen, Y.-S.; Hu, R.-Z.; Xu, M.; Huang, J.-X.; He, C.-X.; Cao, F.-L.; Fu, Y.-J.; Zhang, D.-Y.; Zhao, W.-G. The Antioxidant Activity and Composition of the Seed Oil of Mulberry Cultivars. Food Biosci. 2020, 37, 100709. [Google Scholar] [CrossRef]
- Yılmaz, M.A.; Durmaz, G. Mulberry Seed Oil: A Rich Source of δ-Tocopherol. J. Am. Oil Chem. Soc. 2015, 92, 553–559. [Google Scholar] [CrossRef]
- Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Monks, J.L.F.; Elias, M.C.; Vanier, N.L.; de Oliveira, M. The Revisited Levels of Free and Bound Phenolics in Rice: Effects of the Extraction Procedure. Food Chem. 2016, 208, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Mejía, E.; Roriz, C.L.; Heleno, S.A.; Calhelha, R.; Dias, M.I.; Pinela, J.; Rosales-Conrado, N.; León-González, M.E.; Ferreira, I.C.; Barros, L. Valorisation of Black Mulberry and Grape Seeds: Chemical Characterization and Bioactive Potential. Food Chem. 2021, 337, 127998. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Bae, S.Y.; Chung, M.S. Mulberry (Morus alba) Seed Extract and Its Polyphenol Compounds for Control of Foodborne Viral Surrogates. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 655–660. [Google Scholar] [CrossRef]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
- Wang, X.; del Mar Contreras, M.; Xu, D.; Jia, W.; Wang, L.; Yang, D. New Insights into Free and Bound Phenolic Compounds as Antioxidant Cluster in Tea Seed Oil: Distribution and Contribution. LWT 2021, 136, 110315. [Google Scholar] [CrossRef]
- Singh, R.G.; Negi, P.S.; Radha, C. Phenolic Composition, Antioxidant and Antimicrobial Activities of Free and Bound Phenolic Extracts of Moringa Oleifera Seed Flour. J. Funct. Foods 2013, 5, 1883–1891. [Google Scholar] [CrossRef]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of Grape (Vitis vinifera L.) Seed Oil Production as a Valuable Source of Phenolic Antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
- Aelenei, P.; Luca, S.V.; Horhogea, C.E.; Rimbu, C.M.; Dimitriu, G.; Macovei, I.; Silion, M.; Aprotosoaie, A.C.; Miron, A. Morus Alba Leaf Extract: Metabolite Profiling and Interactions with Antibiotics against Staphylococcus spp. Including MRSA. Phytochem. Lett. 2019, 31, 217–224. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Oleszek, W.; Braca, A. Quali-Quantitative Analyses of Flavonoids of Morus nigra L. and Morus alba L. (Moraceae) Fruits. J. Agric. Food Chem. 2008, 56, 3377–3380. [Google Scholar] [CrossRef]
- Lee, S.M.; Song, Y.H.; Uddin, Z.; Ban, Y.J.; Park, K.H. Prenylated Flavonoids from Epimedium Koreanum Nakai and Their Human Neutrophil Elastase Inhibitory Effects. Rec. Nat. Prod. 2017, 11, 514–520. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Choi, C.W.; Kim, Y.H. Phenolic Compounds from Desmodium Caudatum. Nat. Prod. Sci. 2013, 19, 215–220. [Google Scholar]
- Yang, Y.; Zhang, T.; Xiao, L.; Chen, R.-Y. Two Novel Flavanes from the Leaves of Morus alba L. J. Asian Nat. Prod. Res. 2010, 12, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, J.; An, Y.; Dai, H.; Duan, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Du, H. Mulberry Leaf Activates Brown Adipose Tissue and Induces Browning of Inguinal White Adipose Tissue in Type 2 Diabetic Rats through Regulating AMPK Signaling Pathway. Br. J. Nutr. 2022, 127, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Hano, Y.; Okamoto, T.; Nomura, T.; Momose, Y. Components of the Root Bark of Morus Insignis Bur. I, Structures of Four New Isoprenylated Xanthones, Morusignins A, B, C, and D. Heterocycles 1990, 31, 1345–1350. [Google Scholar]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Tamia, G.M.; He, X.; Sun, J.; Chen, P.; Lee, S.-H.; Wang, T.T.Y.; Gao, B.; Xie, Z.; et al. Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolics in Tomato Seeds and Their Radical Scavenging and Antiproliferative Activities. J. Agric. Food Chem. 2022, 70, 9039–9047. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Rahman, M.J.; de Camargo, A.C.; Shahidi, F. Phenolic and Polyphenolic Profiles of Chia Seeds and Their In Vitro Biological Activities. J. Funct. Foods 2017, 35, 622–634. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly)Phenolic Compounds and Antioxidant Activity of White (Morus alba) and Black (Morus nigra) Mulberry Leaves: Their Potential for New Products Rich in Phytochemicals. J. Funct. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Samappito, S. Phenolic Composition and Antioxidant Activity of White Mulberry (Morus alba L.) Fruits. Int. J. Food Sci. Technol. 2013, 48, 934–940. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-O.; Yu, M.-H.; Lee, Y.-J.; Leem, H.-H.; Kim, S.-A.; Kang, D.-H.; Choi, S.-W. Comparison of Functional Constituents and Biological Activity of the Seed Extracts from Two Mulberry Fruits. JFN 2010, 15, 98–104. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J.J.; Hernández, F. Phytochemical Evaluation of White (Morus alba L.) and Black (Morus nigra L.) Mulberry Fruits, a Starting Point for the Assessment of Their Beneficial Properties. J. Funct. Foods 2015, 12, 399–408. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, S.; Shen, W.; Liu, F.; Tang, C.; Chen, C.-Y.O.; Sun, Y. Phenolics and Antioxidant Activity of Mulberry Leaves Depend on Cultivar and Harvest Month in Southern China. Int. J. Mol. Sci. 2012, 13, 16544–16553. [Google Scholar] [CrossRef] [PubMed]
- Wojdylo, A.; Oszmianski, J.; Czemerys, R. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, L.; You, P.; Wang, L.; Mu, R.; Pang, J. Preparation of PH-Sensitive Food Packaging Film Based on Konjac Glucomannan and Hydroxypropyl Methyl Cellulose Incorporated with Mulberry Extract. Int. J. Biol. Macromol. 2021, 172, 515–523. [Google Scholar] [CrossRef]
- Romero-Díez, R.; Rodríguez-Rojo, S.; Cocero, M.J.; Duarte, C.M.; Matias, A.A.; Bronze, M.R. Phenolic Characterization of Aging Wine Lees: Correlation with Antioxidant Activities. Food Chem. 2018, 259, 188–195. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total Phenolic Content and Antioxidant Capacity of Extracts Obtained from Six Important Fruit Residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Karamać, M.; Orak, H.H.; Amarowicz, R.; Orak, A.; Piekoszewski, W. Phenolic Contents and Antioxidant Capacities of Wild and Cultivated White Lupin (Lupinus albus L.) Seeds. Food Chem. 2018, 258, 1–7. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of Free, Esterified, Glycosylated and Insoluble-Bound Phenolics Composition in the Edible Part of Araticum Fruit (Annona Crassiflora Mart.) and Its by-Products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-J.; Hu, M.-L. Antioxidant Capacities of Fruit Extracts of Five Mulberry Genotypes with Different Assays and Principle Components Analysis. Int. J. Food Prop. 2011, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
Free Phenolics | |||||||||||
No | Retention Time (tR)/min | [M-H]− or [M+H]+ | Fragment Ions | Formula | Identification | Varieties | |||||
Shisheng | Yu 711 | Guiyou 12 | Guiyou 62 | Teyou 2 | Yue 69851 | ||||||
1 | 8.11 | 327.10 | 147.04 | C15H20O8 | (E)-Caffeol 4-O-β-glucopyranoside | + | + | + | + | + | + |
2 | 8.86 | 241.09 | 226.06 | C14H10O4 | Moracin M | + | + | + | + | + | + |
3 | 9.63 | 239.05 | 209.04, 150.03 | C11H12O6 | 2-formyl-4-hydroxy-3-hydroxymethyl-6-methoxy-5-methyl-benzoic acid | + | + | + | + | + | + |
4 | 10.08 | 253.07 | 179.03, 161.02 | C12H14O6 | Caffeoylglycerol | + | + | + | + | + | + |
5 | 10.60 | 551.17 | 341.10, 193.05 | C26H32O13 | Neolignan 2-O-(β-apiofuranosyl)-β-glucopyranoside | + | + | + | + | + | + |
6 | 10.71 | 325.12 | 307.13, 191.08 | C19H16O5 | Moracin L | + | + | + | + | + | + |
7 | 11.75 | 337.15 | 191.05 | C16H18O8 | P-coumaroylquinic acid | + | + | + | + | + | + |
8 | 12.07 | 477.18 | 462.15, 315.12 | C24H30O10 | (2S)-7-hydroxy-8-hydroxyethyl-4′-methoxyflavane-2′-O-β-d-glucopyranoside | + | + | + | + | + | + |
9 | 12.24 | 405.11 | 211.06, 163.03 | C20H22O9 | Oxyresveratrol 3′-O-β-glucopyranoside | + | + | + | + | + | + |
10 | 13.04 | 609.14 | 301.03 | C27H30O16 | Rutin * | + | + | + | + | + | + |
11 | 13.22 | 341.10 | 326.08, 267.06 | C19H18O6 | Morusignin D | + | + | + | + | + | + |
12 | 13.40 | 195.07 | 165.06, 150.03 | C10H12O4 | 3-(4-hydroxy-3-methoxyphenyl) propionic acid | + | + | + | + | + | + |
13 | 13.70 | 221.04 | 162.03, 134.04 | C11H10O5 | Isofraxidin * | + | + | + | + | + | + |
14 | 13.90 | 353.10 | 338.08, 279.06 | C20H18O6 | Albanin A | + | + | + | + | + | + |
15 | 13.98 | 341.14 | 309.11, 137.06 | C20H20O5 | Moracin T | + | + | + | + | + | + |
16 | 14.34 | 593.15 | 285.04, 255.03 | C27H30O15 | Kaempferol-3-O-rutinoside * | + | + | + | + | + | + |
17 | 15.22 | 177.06 | 162.03, 134.04 | C10H10O3 | Coniferaldehyde * | + | + | + | + | + | + |
18 | 15.54 | 515.12 | 353.08, 179.03 | C25H24O10 | Isochlorogenic acid * | + | + | + | + | + | + |
19 | 15.64 | 609.18 | 301.07 | C28H34O15 | Hesperidin * | + | + | + | + | + | + |
20 | 17.63 | 281.08 | 266.06, 237.05 | C17H14O4 | 5-hydroxy-6-methyl-7-methoxyflavone | + | + | + | + | + | + |
21 | 17.80 | 397.16 | 273.11, 137.06 | C23H24O6 | Gartanin | + | + | + | + | + | + |
22 | 18.34 | 311.09 | 296.07, 253.05 | C18H16O5 | Rubraxanthone | + | + | + | + | + | + |
23 | 19.10 | 357.13 | 325.10, 253.09 | C20H20O6 | Neophellamuretin | + | + | + | + | + | + |
24 | 19.86 | 325.10 | 310.08, 241.05 | C19H18O5 | Moracin O | + | + | + | + | + | + |
25 | 20.21 | 355.11 | 307.09, 247.07 | C20H20O6 | Leachianone G | + | + | + | + | + | + |
26 | 20.90 | 327.09 | 312.05, 296.06 | C18H16O6 | Morusignin B | + | + | + | + | + | + |
27 | 25.07 | 359.15 | 327.12, 240.08 | C20H22O6 | (2S)-2′,4′-dihydroxyl-7-methoxy-8-butyricflavane | + | + | + | + | + | + |
28 | 25.80 | 311.13 | 241.04 | C19H20O4 | Trans-4-isopentenyl-3,5,2′,4′-tetrahydroxystilbene | + | + | + | + | + | + |
Bound Phenolics | |||||||||||
No | Retention Time (tR)/min | [M-H]− or [M+H]+ | Fragment Ions | Formula | Identification | Varieties | |||||
Shisheng | Yu 711 | Guiyou 12 | Guiyou 62 | Teyou 2 | Yue 69851 | ||||||
1 | 2.66 | 167.04 | 123.04 | C8H8O4 | 2,5-dihydroxyphenylacetic acid | + | + | + | + | + | + |
2 | 2.86 | 153.02 | 109.03, 91.01 | C7H6O4 | 3,4-dihydroxybenzoic acid * | + | + | + | + | + | + |
3 | 3.74 | 137.03 | 108.02 | C7H6O3 | 2,4-dihydroxybenzaldehyde | + | + | + | + | + | + |
4 | 4.26 | 137.03 | 93.03 | C7H6O3 | P-hydroxybenzoic acid * | + | + | + | + | + | + |
5 | 5.37 | 121.03 | 92.03 | C7H6O2 | P-hydroxy benzaldehyde | + | + | + | + | + | + |
6 | 5.60 | 167.04 | 152.01, 108.02 | C8H8O4 | Vanillic acid * | + | + | + | + | + | + |
7 | 6.18 | 179.03 | 135.04 | C9H8O4 | Caffeic acid * | + | + | + | + | + | + |
8 | 7.36 | 151.04 | 123.01, 107.01 | C8H8O3 | Vanillin * | + | + | + | + | + | + |
9 | 8.70 | 163.04 | 119.05, 93.05 | C9H8O3 | P-coumaric acid * | + | + | + | + | + | + |
10 | 10.45 | 193.05 | 178.02, 134.03 | C10H10O4 | Ferulic acid * | + | + | + | + | + | + |
11 | 14.63 | 137.06 | 93.07, 77.04 | C8H8O2 | 4-hydroxyacetophenone | + | + | + | + | + | + |
Varieties | FPs (mg GAE/100 g DW) | BPs (mg GAE/100 g DW) |
---|---|---|
Shisheng | 76.10 ± 2.21 c | 38.04 ± 0.67 b |
Yu 711 | 81.23 ± 4.86 c | 43.53 ± 3.33 a |
Guiyou 12 | 109.11 ± 3.96 a | 44.97 ± 2.34 a |
Guiyou 62 | 105.07 ± 11.71 ab | 46.28 ± 0.32 a |
Teyou 2 | 96.94 ± 5.76 b | 44.81 ± 0.84 a |
Yue 69851 | 76.56 ± 3.32 c | 44.31 ± 1.14 a |
Varieties | DPPH Radical Scavenging Activity (mg Trolox/100 g DW) | |
FPs | BPs | |
Shisheng | 78.85 ± 6.10 c | 41.84 ± 0.33 d |
Yu 711 | 84.88 ± 3.57 bc | 48.28 ± 1.73 bc |
Guiyou 12 | 94.64 ±2.36 ab | 55.08 ± 3.72 a |
Guiyou 62 | 103.83 ± 7.27 a | 50.93 ± 1.32 b |
Teyou 2 | 105.46 ± 4.98 a | 45.73 ± 0.89 c |
Yue 69851 | 101.02 ± 9.46 a | 47.46 ± 1.19 c |
Varieties | Ferric Reducing Antioxidant Power (mg Trolox/100 g DW) | |
FPs | BPs | |
Shisheng | 60.31 ± 1.27 c | 39.45 ± 0.99 d |
Yu 711 | 68.47 ± 1.19 a | 43.46 ± 1.07 bc |
Guiyou 12 | 75.87 ± 2.62 b | 44.22 ± 2.17 bc |
Guiyou 62 | 72.76 ± 2.62 b | 44.35 ± 1.31 b |
Teyou 2 | 70.73 ± 0.72 b | 41.79 ± 1.30 cd |
Yue 69851 | 68.99 ± 2.46 b | 47.38 ± 1.09 a |
Correlation | r2 |
---|---|
FPs-DPPH | 0.40 ns |
FPs-FRAP | 0.76 ** |
BPs-DPPH | 0.70 ** |
BPs-FRAP | 0.58 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Guo, M.; Wang, L.; Sun, C.; Huang, L. Identification and Antioxidant Capacity of Free and Bound Phenolics in Six Varieties of Mulberry Seeds Using UPLC-ESI-QTOF-MS/MS. Antioxidants 2022, 11, 1764. https://doi.org/10.3390/antiox11091764
Gao H, Guo M, Wang L, Sun C, Huang L. Identification and Antioxidant Capacity of Free and Bound Phenolics in Six Varieties of Mulberry Seeds Using UPLC-ESI-QTOF-MS/MS. Antioxidants. 2022; 11(9):1764. https://doi.org/10.3390/antiox11091764
Chicago/Turabian StyleGao, Huaqi, Meimei Guo, Liqin Wang, Cui Sun, and Lingxia Huang. 2022. "Identification and Antioxidant Capacity of Free and Bound Phenolics in Six Varieties of Mulberry Seeds Using UPLC-ESI-QTOF-MS/MS" Antioxidants 11, no. 9: 1764. https://doi.org/10.3390/antiox11091764
APA StyleGao, H., Guo, M., Wang, L., Sun, C., & Huang, L. (2022). Identification and Antioxidant Capacity of Free and Bound Phenolics in Six Varieties of Mulberry Seeds Using UPLC-ESI-QTOF-MS/MS. Antioxidants, 11(9), 1764. https://doi.org/10.3390/antiox11091764