Beneficial Effects of Opuntia humifusa (Korean Cheonnyuncho) on Human Health Based on Antioxidant Properties: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection and Data Extraction
2.2.1. Study Selection
2.2.2. Data Extraction
2.3. Meta-Analysis
3. Results
3.1. Characteristics of Included Studies
Description of Included Studies
3.2. Quality Assessment of Included Studies
3.3. Beneficial Effects of Opuntia Humifusa (OH) on Improving Human Health
3.3.1. Controlling Skin Aging
3.3.2. Inhibition of the Growth of Cancers
3.3.3. Downregulation of Diabetes
3.4. Subgroup Analysis
4. Analysis Bias
5. Discussion
6. Limitations of Study
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stintzing, F.C.; Carle, R. Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Mol. Nutr. Food Res. 2005, 49, 175–194. [Google Scholar] [CrossRef] [PubMed]
- del Socorro Santos Díaz, M.; de la Rosa, A.-P.B.; Héliès-Toussaint, C.; Guéraud, F.; Nègre-Salvayre, A. Opuntia spp.: Characterization and benefits in chronic diseases. Oxid. Med. Cell. Longev. 2017, 2017, 8634249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Ponce, H.A.; Martínez-Saldaña, M.C.; Rincón-Sánchez, A.R.; Sumaya-Martínez, M.T.; Buist-Homan, M.; Faber, K.N.; Moshage, H.; Jaramillo-Juárez, F. Hepatoprotective effect of Opuntia robusta and Opuntia streptacantha fruits against acetaminophen-induced acute liver damage. Nutrients 2016, 8, 607. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Hernández, A.I.; Chavarría-Hernández, N. Novel Pectins from Prickly Pear (Opuntia albicarpa) Fruits: Structural Features and Rheological Properties. In Opuntia spp.: Chemistry, Bioactivity and Industrial Applications; Springer: Cham, Switzerland, 2021; pp. 525–540. [Google Scholar]
- Moon, J.Y.; Ngoc, L.T.N.; Chae, M.; Van Tran, V.; Lee, Y.C. Effects of microwave-assisted Opuntia humifusa extract in inhibiting the impacts of particulate matter on human keratinocyte skin cell. Antioxidants 2020, 9, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.A.; Jung, B.G.; Kim, T.H.; Lee, S.G.; Park, Y.S.; Lee, B.J. Dietary feeding of Opuntia Humifusa inhibits UVB radiation-induced carcinogenesis by reducing inflammation and proliferation in hairless mouse model. Photochem. Photobiol. 2013, 89, 1208–1215. [Google Scholar] [CrossRef]
- Hahm, S.W.; Park, J.; Oh, S.Y.; Lee, C.W.; Park, K.Y.; Kim, H.; Son, Y.S. Anticancer properties of extracts from opuntia humifusa against human cervical carcinoma cells. J. Med. Food 2015, 18, 31–44. [Google Scholar] [CrossRef]
- Song, J.-H.; Park, J.-S.; No, Y.-J.; Choi, H.-J. A Study on the Quality Characteristics of Soybean Curd Prepared with the Addition of Opuntia humifusa Fruit. Korean J. Food Nutr. 2011, 24, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.I.; Lee, C.H.; Che, D.N.; Jang, S.I.; Kim, Y.S. Biological activities of water-soluble polysaccharides from Opuntia humifusa stem in high-fat-diet-fed mice. J. Food Biochem. 2019, 43, e12806. [Google Scholar] [CrossRef]
- Adanick, P.; Medley, M.E. Opuntia humifusa sensu stricto (cactaceae). J. Bot. Res. Inst. Texas 2020, 14, 141–146. [Google Scholar] [CrossRef]
- Hahm, S.W.; Park, J.; Son, Y.S. Opuntia humifusa stems lower blood glucose and cholesterol levels in streptozotocin-induced diabetic rats. Nutr. Res. 2011, 31, 479–487. [Google Scholar] [CrossRef]
- Yoon, J.-A.; Hahm, S.-W.; Son, Y.-S. Nutrients contents in different parts of pickly pear (Opuntia humifusa) and possible anti-breast cancer effect. Korean J. Food Nutr. 2009, 22, 485–491. [Google Scholar]
- Kang, J.; Lee, J.; Kwon, D.; Song, Y. Effect of Opuntia humifusa supplementation and acute exercise on insulin sensitivity and associations with PPAR-γ and PGC-1α protein expression in skeletal muscle of rats. Int. J. Mol. Sci. 2013, 14, 7140–7154. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.-K.; Kang, J.-Y.; Park, J.-H.; Ryu, S.-P.; Song, Y.-J. Effects of Opuntia humifusa Supplementation on Lipid Peroxidation and SOD Protein Expression in the Liver, Kidney, and Skeletal Muscle of Rats Fed a High-fat Diet. J. Life Sci. 2012, 22, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Hahm, S.W.; Park, J.; Son, Y.S. Opuntia humifusa Partitioned Extracts Inhibit the Growth of U87MG Human Glioblastoma Cells. Plant Foods Hum. Nutr. 2010, 65, 247–252. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 1119536618. [Google Scholar]
- Ha, M.-J.; You, S.-H. Bioactive Characteristics of Extracts of Opuntia humifusa Fruit as Functional Cosmetic Ingredients. Asian J. Beauty Cosmetol. 2016, 14, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Han, A.R.; Lim, T.G.; Song, Y.R.; Jang, M.; Rhee, Y.K.; Do Hong, H.; Kim, M.H.; Kim, H.J.; Cho, C.W. Inhibitory effect of opuntia humifusa fruit water extract on solar ultraviolet-induced MMP-1 expression. Int. J. Mol. Sci. 2018, 19, 2503. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.; Jung, B.; Kim, M. ROS scavenging effect and cell viability of Opuntia humifusa extract on osteoblastic MC3T3-E1 cells. J. Life Sci. 2011, 21, 1752–1760. [Google Scholar] [CrossRef]
- Kim, J.; Jho, K.H.; Choi, Y.H.; Nam, S.Y. Chemopreventive effect of cactus (Opuntia humifusa) extracts: Radical scavenging activity, pro-apoptosis, and anti-inflammatory effect in human colon (SW480) and breast cancer (MCF7) cells. Food Funct. 2013, 4, 681–688. [Google Scholar] [CrossRef]
- Hahm, S.W.; Park, J.; Park, K.Y.; Son, Y.S.; Han, H. Extracts of opuntia humifusa fruits inhibit the growth of ags human gastric adenocarcinoma cells. Prev. Nutr. Food Sci. 2016, 21, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.Y.; Park, S.-C.; Kim, T.-W.; Kim, K.-S.; Song, J.-C.; Lee, H.-M.; Sung, H.-J.; Rhee, M.-H.; Kim, S.-K.; Park, H.-J.; et al. Radical scavenging and anti-inflammatory activity of extracts from Opuntia humifusa Raf. J. Pharm. Pharmacol. 2010, 58, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Shin, M.; Kim, H. The effects of antimicrobial, antioxidant, and anticancer properties of Opuntia humifusa stems. J. Korean Soc. Food Sci. Nutr. 2012, 41, 20–25. [Google Scholar] [CrossRef]
- Yoon, J.A.; Hahm, S.W.; Park, J.; Son, Y.S. Total polyphenol and flavonoid of fruit extract of opuntia humifusa and its inhibitory effect on the growth of mcf-7 human breast cancer cells. J. Korean Soc. Food Sci. Nutr. 2009, 38, 1679–1684. [Google Scholar] [CrossRef]
- Lee, J.A.; Jung, B.G.; Lee, B.J. Inhibitory effects of opuntia humifusa on 7, 12-Dimethyl-benz[a]anthracene and 12-o-tetradecanoylphorbol-13-acetate induced two-stage skin carcinogenesis. Asian Pac. J. Cancer Prev. 2012, 13, 4655–4660. [Google Scholar] [CrossRef] [Green Version]
- Rabe, J.H.; Mamelak, A.J.; McElgunn, P.J.S.; Morison, W.L.; Sauder, D.N. Photoaging: Mechanisms and repair. J. Am. Acad. Dermatol. 2006, 55, 19. [Google Scholar] [CrossRef]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Lechner, J.F.; Stoner, G.D. Red beetroot and betalains as cancer chemopreventative agents. Molecules 2019, 24, 1602. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Chang, Y.-C.; Chan, K.-C.; Lee, Y.-J.; Wang, C.-J. Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. Eur. J. Integr. Med. 2011, 3, e153–e163. [Google Scholar] [CrossRef]
- Sabu, M.C.; Kuttan, R. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J. Ethnopharmacol. 2002, 81, 155–160. [Google Scholar] [CrossRef]
- Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab. 2012, 16, S267. [Google Scholar] [CrossRef]
- Chan, C.-H.; Ngoh, G.-C.; Yusoff, R. A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms. Pharmacogn. Rev. 2012, 6, 22. [Google Scholar] [CrossRef]
References | Region | Raw OH | Extraction Methods | Physical Chemical Properties | Experimental Subjects | Main Outcomes | |
---|---|---|---|---|---|---|---|
Compounds | Mean ± SD | ||||||
Cho et al. 2005 [24] | Korea | Stem | Methanol, hexane, ethyl acetate, ethanol, and water extraction | — | — | In vitro experiments on RAW 264.7 cell line | Cell viability (%) |
Ha et al. 2016 [19] | Korea | Fruit | Methanol extraction | Polyphenolic (mg GAE/g) Flavonoids (mg/L) | 90 ± 3.5 51 ± 2.1 | In vitro experiments on B16F10 and HDF cell lines | Cell viability (%) Matrix metalloproteinase (MMP-1) protein expression (relative protein level) Phospho-extracellular signal-regulated kinase (p-ERK) protein expression (relative protein level) |
Halm et al. 2010 [15] | Korea | Fruit | Methanol extraction | — | — | In vitro experiments on U87MG cell line | Cell viability (%) Cell death on apoptosis (%) |
Halm et al. 2011 [11] | Korea | Stem | OHs were blended and freeze-dried into powder | Dry matter (%) Ash (%) Crude protein (%) Crude fate (%) Crude fiber (%) Nitrogen-free extract (%) | 98.34 ± 0.04 17.20 ± 0.06 10.75 ± 0.02 3.53 ± 0.07 10.04 ± 0.05 56.82 ± 0.05 | Oral administration on Sprague–Dawley rats | Body weight (g) Glucose (mg/dL) Total cholesterol (mg/dL) Triglyceride (mg/dL) High-density lipoprotein cholesterol (HDL-C) (mg/dL) Free fatty acid (μEq/L) |
Halm et al. 2015 [7] | Korea | Fruit and stem | Hexane and ethyl acetate extractions | Polyphenolic (mg GAE/g) Flavonoid (mg QE/g) | 5.05 ± 0.28 1.91 ± 0.29 | In vitro experiments on HeLa cell line Xenograft on mice | Cell viability (%) Tumor weight (g) |
Halm et al. 2016 [23] | Korea | Fruit | Methanol extraction | — | — | In vitro experiments on AGS cell line | Cell viability (%) Cell death on apoptosis (%) |
Han et al. 2018 [20] | Korea | Fruit | Water extraction | — | — | In vitro experiments on HDF cell line | Cell viability (%) Collagen synthesis (%) MMP-1 protein expression (relative protein level) p-ERK protein expression (relative protein level) |
Hwang et al. 2011 [21] | Korea | Stem and peel | Ethanol and water extraction | — | — | In vitro experiments on MC3T3-E1 cell line | Cell viability (%) Collagen synthesis (%) |
Jung et al. 2012 [25] | Korea | Stem | Methanol and hexane extraction | — | — | In vitro experiments on MCF-7 cell line | Cell viability (%) |
Kang et al. 2013 [13] | Korea | Stem | OHs were blended and freeze-dried into powder | Moisture (% w/w) Ash (% w/w) Carbohydrate (g/100g) Crude protein (g/100 g) Crude fat (g/100 g) Fiber (g/100 g) Fe2+ (mg/g) Ca2+ (mg/100 g) | 2.9 ± 1.2 13.8 ± 1.4 46.6 ± 5.2 4.9 ± 0.5 3.1 ± 0.7 28.9 ± 3.4 5.8 ± 1.3 2931.3 ± 10.2 | Oral administration on mice | Body weight (g) Glucose (mg/dL) Insulin (ng/dL) Total cholesterol (mg/dL) Triglyceride (mg/dL) Free fat acid (μEq/L) HDL-C (mg/dL) |
Kim et al. 2013 [22] | Korea | Stem | Methanol and acetone extraction | Methanol extraction Polyphenolic (mg GAE/g) Flavonoids (mg/L) Acetone extract Total phenolics (mg/g) Flavonoids (mg/L) | 3.4 ± 0.3 91.1 ± 0.6 3.1 ± 0.2 124.6 ± 0.0 | In vitro experiments on SW480 and MCF-7 cell lines | Cell viability (%) |
Lee et al. 2013 [6] | Korea | Fruits | OHs were blended and freeze-dried into powder | — | — | In-vivo experiments on HR-1 mice | Tumor weight (g) |
Moon et al. 2020 [5] | Korea | Stem | Microwave-assisted extraction | Polyphenolic (mg GAE/g) Flavonoids (mg/L) | 33.1 ± 2.7 4.06 ± 0.6 | In vitro experiments on HaCaT cell line | Cell viability (%) MMP-1 protein expression (relative protein level) p-ERK protein expression (relative protein level) |
Yang et al. 2018 [9] | Korea | Stem | Water extraction | Arabinose (%) Galactose (%) Xylose (%) Neutral sugar (mg/g) Uronic acid (mg/g) Protein (mg/g) | 40.3 ± 0.0 41.3 ± 0.1 13.6 ± 0.0 528.2 ± 3.5 351.6 ± 4.3 23.9 ± 1.4 | Oral administration on mice fed with a high-fat diet | Body weight (g) Total cholesterol (mg/dL) Triglyceride (mg/dL) Insulin (ng/mL) |
Yoon et al. 2009 [26] | Korea | Fruit | Water extraction | Polyphenolic (mg GAE/g) Flavonoids (mg/L) | 4.49 ± 0.13 1.31 ± 0.0 | In vitro experiments on MCF-7 cell line | Cell viability (%) Cell death on apoptosis (%) |
Study | Random Sequence Generation | Allocation Concealment | Selective Reporting | Blinding of Participants | Blinding of Outcome Assessment | Incomplete Outcome Data |
---|---|---|---|---|---|---|
Cho et al. 2005 [24] | ||||||
Ha et al. 2016 [19] | ||||||
Halm et al. 2010 [15] | ||||||
Halm et al. 2011 [11] | ||||||
Halm et al. 2015 [7] | ||||||
Halm et al. 2016 [23] | ||||||
Han et al. 2018 [20] | ||||||
Hwang et al. 2011 [21] | ||||||
Jung et al. 2012 [25] | ||||||
Kang et al. 2013 [13] | ||||||
Kim et al. 2013 [22] | ||||||
Lee et al. 2013 [6] | ||||||
Moon et al. 2020 [5] | ||||||
Yang et al. 2018 [9] | ||||||
Yoon et al. 2009 [26] | ||||||
Risk of bias rating | Low risk of bias | High risk of bias | Uncertain |
Medical Applications | No. of Studies | Comparison Perspectives | n | SMD (95% CI) | I2 | Total Effect (SMD and I2) |
---|---|---|---|---|---|---|
Controlling skin aging | 4 | Cell viability (%) | 10 | −0.97 [−1.97, 0.04] | 0% | 0.29 [−0.55, 1.13] I2 = 54% |
MMP expression | 10 | 0.88 [−2.07, 3.84] | 74% | |||
p-ERK expression | 10 | 0.51 [−0.97, 1.98] | 41% | |||
Collagen synthesis (%) | 9 | 1.18 [0.11, 2.26] | 0% | |||
Inhibition of cancer growth | 9 | Cell viability (%) | 43 | −2.05 [−2.73, −1.37] | 6% | −1.17 [−1.72, −0.62] I2 = 69% |
Cell death on apoptosis (%) | 14 | 2.17 [1.01, 3.34] | 0% | |||
Tumor weight (g) | 8 | −2.63 [−4.25, −1.02] | 0% | |||
Inhibition of diabetes | 3 | Body weight (g) | 34 | 3.33 [0.16, 6.50] | 96% | −0.96 [−2.09, 0.16] I2 = 95% |
Total cholesterol (mg/dL) | 34 | –0.88 [−13.02, −0.44] | 86% | |||
Triglyceride (mg/dL) | 34 | –6.73 [−13.02, −0.44] | 93% | |||
Glucose (mg/dL) | 28 | –11.89 [−16.49, −7.28] | 69% | |||
Insulin (ng/mL) | 34 | −0.03 [−3.36, 3.30] | 96% | |||
Free fatty acids (FFA) (μEq/L) | 28 | −0.44 [−2.25, 1.38] | 89% | |||
HDL-C (mg/dL) | 28 | 0.82 [0.04, 1.60] | 39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Beneficial Effects of Opuntia humifusa (Korean Cheonnyuncho) on Human Health Based on Antioxidant Properties: Systematic Review and Meta-Analysis. Antioxidants 2023, 12, 174. https://doi.org/10.3390/antiox12010174
Ngoc LTN, Moon J-Y, Lee Y-C. Beneficial Effects of Opuntia humifusa (Korean Cheonnyuncho) on Human Health Based on Antioxidant Properties: Systematic Review and Meta-Analysis. Antioxidants. 2023; 12(1):174. https://doi.org/10.3390/antiox12010174
Chicago/Turabian StyleNgoc, Le Thi Nhu, Ju-Young Moon, and Young-Chul Lee. 2023. "Beneficial Effects of Opuntia humifusa (Korean Cheonnyuncho) on Human Health Based on Antioxidant Properties: Systematic Review and Meta-Analysis" Antioxidants 12, no. 1: 174. https://doi.org/10.3390/antiox12010174
APA StyleNgoc, L. T. N., Moon, J. -Y., & Lee, Y. -C. (2023). Beneficial Effects of Opuntia humifusa (Korean Cheonnyuncho) on Human Health Based on Antioxidant Properties: Systematic Review and Meta-Analysis. Antioxidants, 12(1), 174. https://doi.org/10.3390/antiox12010174