Soluble Transferrin Receptor, Antioxidant Status and Cardiometabolic Risk in Apparently Healthy Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Measurements
2.2. Biochemical Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moczulski, D.K.; Grzeszczak, W.; Gawlik, B. Role of hemochromatosis C282Y and H63D mutations in HFE gene in development of type 2 diabetes and diabetic nephropathy. Diabetes Care 2001, 24, 1187–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chern, J.P.; Lin, K.H.; Lu, M.Y.; Lin, D.T.; Lin, K.S.; Chen, J.D.; Fu, C.C. Abnormal glucose tolerance in transfusion-dependent beta-thalassemic patients. Diabetes Care 2001, 24, 850–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suárez-Ortegón, M.F.; Arbeláez, A.; Mosquera, M.; Méndez, F.; Aguilar-de Plata, C. Body iron stores as predictors of insulin resistance in apparently healthy urban Colombian men. Biol. Trace Elem. Res. 2012, 145, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Kim, Y.; Kim, Y.I. Association of serum ferritin with metabolic syndrome and diabetes mellitus in the South Korean general population according to the Korean National Health and Nutrition Examination Survey 2008. Metabolism 2011, 60, 1416–1424. [Google Scholar] [CrossRef]
- Suárez-Ortegón, M.F.; McLachlan, S.; Fernandez-Real, J.M.; Tuomainen, T.P.; Aregbesola, A.; Wild, S.H. Serum ferritin and incident cardiometabolic diseases in Scottish adults. Cardiovasc. Diabetol. 2022, 21, 26. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; López-Bermejo, A.; Ricart, W. Cross-talk between iron metabolism and diabetes. Diabetes 2002, 51, 2348–2354. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T.; Nemeth, E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G199–G203. [Google Scholar] [CrossRef] [Green Version]
- Orban, E.; Schwab, S.; Thorand, B.; Huth, C. Association of iron indices and type 2 diabetes: A meta-analysis of observational studies. Diabetes Metab. Res. Rev. 2014, 30, 372–394. [Google Scholar] [CrossRef]
- Montonen, J.; Boeing, H.; Steffen, A.; Lehmann, R.; Fritsche, A.; Joost, H.G.; Schulze, M.B.; Pischon, T. Body iron stores and risk of T2D: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 2012, 55, 2613–2621. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Ortegón, M.F.; McLachlan, S.; Wild, S.H.; Fernández-Real, J.M.; Hayward, C.; Polašek, O. Soluble transferrin receptor levels are positively associated with insulin resistance but not with the metabolic syndrome or its individual components. Br. J. Nutr. 2016, 116, 1165–1174. [Google Scholar] [CrossRef]
- Souto, J.C.; Remacha, A.; Buil, A.; Almasy, L.; Blangero, J.; Fontcuberta, J. Genetic determinants of iron metabolism plasma phenotypes and their relationship with risk of thrombosis. Haematologica 2003, 88, 1436–1438. [Google Scholar] [PubMed]
- Suárez-Ortegón, M.F.; Arbeláez, A.; Mosquera, M.; Moreno-Navarrete, J.M.; Aguilar-Plata, C.; Fernández-Real, J.M. Circulating hepcidin is independently associated with systolic blood pressure in apparently healthy individuals. Arch. Med. Res. 2015, 46, 507–513. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malorni, W.; Testa, U.; Rainaldi, G.; Tritarelli, E.; Peschle, C. Oxidative stress leads to a rapid alteration of transferrin receptor intravesicular trafficking. Exp. Cell Res. 1998, 241, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Van Raaij, S.E.; Masereeuw, R.; Swinkels, D.W.; van Swelm, R.P. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells. Toxicol. Lett. 2018, 295, 179–186. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ikeda, T.; Yamamoto, K.; Ogawa, H.; Kamisako, T. Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice. J. Gastroenterol. Hepatol. 2012, 27, 1711–1717. [Google Scholar] [CrossRef]
- Savu, O.; Ionescu-Tirgoviste, C.; Atanasiu, V.; Gaman, L.; Papacocea, R.; Stoian, I. Increase in total antioxidant capacity of plasma despite high levels of oxidative stress in uncomplicated type 2 diabetes mellitus. J. Int. Med. Res. 2012, 40, 709–716. [Google Scholar] [CrossRef]
- Gao, X.; Gào, X.; Zhang, Y.; Holleczek, B.; Schöttker, B.; Brenner, H. Oxidative stress and epigenetic mortality risk score: Associations with all-cause mortality among elderly people. Eur. J. Epidemiol. 2019, 34, 451–462. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, C.; Zhao, C.; Chen, G.; Meng, S.; Hong, M.; Xiang, M.; Xie, Y. Increased Serum Soluble Transferrin Receptor Levels Were Associated With High Prevalence of Cardiovascular Diseases: Insights From the National Health and Nutrition Examination Survey 2017–2018. Front. Cell Dev. Biol. 2022, 10, 874846. [Google Scholar] [CrossRef]
- Kang, M.; Kwon, S.; Lee, W.; Kim, Y.; Bae, E.; Lee, J.; Park, J.Y.; Kim, Y.C.; Kim, E.Y.; Kim, D.K.; et al. Soluble transferrin receptor can predict all-cause mortality regardless of anaemia and iron storage status. Sci. Rep. 2022, 12, 11911. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Nachane, H. Oxidative stress in iron deficiency anemia-a gender-based analy-sis-a pilot study. J. Evol. Med. Dent. Sci. 2020, 9, 3739–3742. [Google Scholar] [CrossRef]
- Nuhu, F.; Bhandari, S. Oxidative stress and cardiovascular complications in chronic kidney disease, the impact of anaemia. Pharmaceuticals 2018, 11, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Real, J.M.; Moreno, J.M.; Chico, B.; López-Bermejo, A.; Ricart, W. Circulating visfatin is associated with parameters of iron metabolism in subjects with altered glucose tolerance. Diabetes Care 2007, 30, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Freixenet, N.; Remacha, A.; Berlanga, E.; Caixàs, A.; Giménez-Palop, O.; Blanco-Vaca, F.; Bach, V.; Baiget, M.; Sánchez, Y.; Félez, J.; et al. Serum soluble transferrin receptor concentrations are increased in central obesity. Results from a screening programme for hereditary hemochromatosis in men with hyperferritinemia. Clin. Chim. Acta 2009, 400, 111–116. [Google Scholar] [CrossRef]
- Tanner, L.I.; Lienhard, G.E. Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain intracellular glucose transporters. J. Cell Biol. 1989, 108, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Spasojevic-Kalimanovska, V.; Bogavac-Stanojevic, N.; Kalimanovska-Ostric, D.; Memon, L.; Spasic, S.; Kotur-Stevuljevic, J.; Jelic-Ivanovic, Z. Factor analysis of risk variables associated with iron status in patients with coronary artery disease. Clin. Biochem. 2014, 47, 564–569. [Google Scholar] [CrossRef]
- Greig, F.H.; Kennedy, S.; Spickett, C.M. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic. Biol. Med. 2012, 52, 266–280. [Google Scholar] [CrossRef]
- Gugliucci, A.; Caccavello, R.; Kotani, K.; Kimura, S. Evidence for the presence of active paraoxonase 1 in small-dense low-density lipoprotein. Redox. Rep. 2014, 19, 154–160. [Google Scholar] [CrossRef]
- Niki, E.; Traber, M.G. A history of vitamin E. Ann. Nutr. Metab. 2012, 61, 207–212. [Google Scholar] [CrossRef]
- Kwak, H.K.; Yoon, S. Relation of serum total antioxidant status with metabolic risk factors in Korean adults. Nutr. Res. Pract. 2007, 1, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simão, A.N.C.; Dichi, J.B.; Barbosa, D.S.; Cecchini, R.; Dichi, I. Influence of uric acid and gamma-glutamyltransferase on total antioxidant capacity and oxidative stress in patients with metabolic syndrome. Nutrition 2008, 24, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Orino, K.; Lehman, L.; Tsuji, Y.; Ayaki, H.; Torti, S.V.; Torti, F.M. Ferritin and the response to oxidative stress. Biochem. J. 2001, 357 Pt 1, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Millonig, G.; Ganzleben, I.; Peccerella, T.; Casanovas, G.; Brodziak-Jarosz, L.; Breitkopf-Heinlein, K.; Dick, T.P.; Seitz, H.-K.; Muckenthaler, M.U.; Mueller, S.; et al. Sustained submicromolar H2O2 levels induce hepcidin via signal transducer and activator of transcription 3 (STAT3). J. Biol. Chem. 2012, 287, 37472–37482. [Google Scholar] [CrossRef] [Green Version]
- De Domenico, I.; McVey-Ward, D.; Kaplan, J. Serum ferritin regulates blood vessel formation: A role beyond iron storage. Proc. Natl. Acad. Sci. USA 2009, 106, 1683–1684. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, H.; West, C.E.; Ndeto, P.; Burema, J.; Beguin, Y.; Kok, F.J. Serum transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with asymptomatic malaria. Am. J. Clin. Nutr. 2001, 74, 767–775. [Google Scholar] [CrossRef]
Men | Women | p Value | |
---|---|---|---|
n | 122 | 117 | |
Age (years) | 44.9 ± 7.7 | 46.1 ± 7.7 | 0.226 |
Menopause (n) | 48 | ||
BMI (kg/mts2) | 26.2 ± 3.4 | 25.9 ± 3.7 | 0.501 |
sTfR (µg/mL) | 0.42 (0.12–0.63) | 0.54 (0.17–0.78) | 0.014 |
Total antioxidant capacity (mM) | 2.67 ± 0.78 | 2.50 ± 0.75 | 0.092 |
Waist circumference (cm) | 85.1 ± 10.3 | 75.5 ± 8.0 | <0.001 |
Systolic blood pressure (mmHg) | 120 (118.8–129.1) | 109.5 (101.5–120.8) | <0.001 |
Diastolic blood pressure (mmHg) | 75.2 ± 8.8 | 72.1 ± 11.2 | 0.017 |
Triglycerides (mg/dL) | 163 (117.7–228) | 105.5 (80.2–154.2) | <0.001 |
Glucose (mg/dL) | 91.4 ± 10.4 | 86.1 ± 8.3 | <0.001 |
HDL-C (mg/dL) | 44.0 ± 8.8 | 53.4 ± 11.5 | <0.001 |
LDL-C (mg/dL) | 113.1 ± 29.3 | 117.4 ± 28.9 | 0.251 |
hs-CRP (mg/L) | 1.4 (1.1–1.9) | 1.6 (1.1–3.0) | 0.009 |
Ferritin (µg/L) | 181 (128–269) | 69.5 (23.5–120.7) | <0.001 |
Insulin (mU/mL) | 9.46 (5.99–13.97) | 7.47 (5.69–11.42) | 0.043 |
Hepcidin (ng/mL) | 1.23 (0.81–1.89) | 0.65 (0.43–1.23) | <0.001 |
HOMA-IR | 2.02 (1.26–2.99) | 1.47 (1.05–2.43) | 0.009 |
log-sTfR (µg/mL) | ||
---|---|---|
Non-Adjusted | Adjusted * | |
Men | ||
WC (cm) | −2.48 (−4.64 to −0.32) | −1.12 (−2.30 to −0.22) |
Glucose (mg/dL) | −3.07 (−5.24 to −0.90) | −2.7 (−4.82 to −0.57) |
HDL-C (mg/dL) | −1.02 (−2.89 to 0.84) | −1.70 (−3.48 to 0.07) |
Log-Triglycerides (mg/dL) | −0.02 (−0.13 to 0.09) | 0.02 (−0.07 to 0.13) |
DBP (mmHg) | −0.04 (−1.92 to 1.83) | 0.40 (−1.52 to 2.33) |
log-SBP (mmHg) | −0.007 (−0.04 to 0.03) | −0.004 (−0.04 to 0.03) |
LDL-C (mg/dL) | 13.41 (7.54 to 19.28) | 12.41 (6.08 to 18.57) |
Women | ||
WC (cm) | −1.64 (−3.28 to 0.003) | −1.03 (−1.88 to −0.18) |
Glucose (mg/dL) | −1.44 (−3.15 to 0.26) | −1.36 (−2.97 to 0.23) |
HDL-C (mg/dL) | −0.35 (−2.76 to 2.04) | −0.58 (−2.95 to 1.78) |
Log-Triglycerides (mg/dL) | −0.08 (−0.19 to 0.01) | −0.05 (−0.15 to 0.03) |
DBP (mmHg) | 0.71 (−1.62 to 3.05) | 0.23 (−1.78 to 2.24) |
log-SBP (mmHg) | −0.01 (−0.04 to 0.01) | −0.008 (−0.03 to 0.01) |
LDL-C (mg/dL) | 0.83 (−5.24 to 6.91) | 2.94 (−3.26 to 9.15) |
TAC (mM) | ||
---|---|---|
Non-Adjusted | Adjusted * | |
Men | ||
WC (cm) | −1.31 (−3.71 to 1.08) | −0.88 (−1.83 to 0.06) |
Glucose (mg/dL) | −1.09 (−3.53 to 1.34) | −0.67 (−2.94 to 1.59) |
HDL-C (mg/dL) | 0.97 (−1.07 to 3.02) | 0.47 (−1.41 to 2.36) |
Log-Triglycerides (mg/dL) | −0.07 (−0.19 to 0.05) | −0.06 (−0.16 to 0.04) |
DBP (mmHg) | −0.23 (−2.26 to 1.78) | 0.28 (−170 to 2.26) |
log-SBP (mmHg) | 0.01 (−0.02 to 0.06) | 0.02 (−0.02 to 0.06) |
LDL-C (mg/dL) | 8.93 (2.13 to 15.73) | 9.13 (2.30 to 15.97) |
Women | ||
WC (cm) | −0.25 (−2.32 to 1.81) | −0.91 (−1.93 to 0.10) |
Glucose (mg/dL) | 0.07 (−2.02 to 2.18) | −1.49 (−3.34 to 0.35) |
HDL-C (mg/dL) | −0.65 (−3.55 to 2.24) | 0.07 (−2.80 to 2.95) |
Log-Triglycerides (mg/dL) | 0.02 (−0.10 to 0.14) | −0.03 (−0.15 to 0.08) |
DBP (mmHg) | 0.16 (−2.61 to 2.93) | −1.70 (−4.02 to 0.61) |
log-SBP (mmHg) | −0.007 (−0.04 to 0.02) | −0.02 (−0.05 to 0.005) |
LDL-C (mg/dL) | 1.34 (−5.78 to 8.47) | 0.10 (−7.37 to 7.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Ortegón, M.F.; Arbeláez, A.; Moreno-Navarrete, J.M.; Ortega-Ávila, J.G.; Mosquera, M.; Fernández-Real, J.M. Soluble Transferrin Receptor, Antioxidant Status and Cardiometabolic Risk in Apparently Healthy Individuals. Antioxidants 2023, 12, 19. https://doi.org/10.3390/antiox12010019
Suárez-Ortegón MF, Arbeláez A, Moreno-Navarrete JM, Ortega-Ávila JG, Mosquera M, Fernández-Real JM. Soluble Transferrin Receptor, Antioxidant Status and Cardiometabolic Risk in Apparently Healthy Individuals. Antioxidants. 2023; 12(1):19. https://doi.org/10.3390/antiox12010019
Chicago/Turabian StyleSuárez-Ortegón, Milton Fabian, Alejandra Arbeláez, José María Moreno-Navarrete, José Guillermo Ortega-Ávila, Mildrey Mosquera, and José Manuel Fernández-Real. 2023. "Soluble Transferrin Receptor, Antioxidant Status and Cardiometabolic Risk in Apparently Healthy Individuals" Antioxidants 12, no. 1: 19. https://doi.org/10.3390/antiox12010019
APA StyleSuárez-Ortegón, M. F., Arbeláez, A., Moreno-Navarrete, J. M., Ortega-Ávila, J. G., Mosquera, M., & Fernández-Real, J. M. (2023). Soluble Transferrin Receptor, Antioxidant Status and Cardiometabolic Risk in Apparently Healthy Individuals. Antioxidants, 12(1), 19. https://doi.org/10.3390/antiox12010019