Potential Therapeutic Strategies for Skeletal Muscle Atrophy
Abstract
:1. Introduction
2. Methods
3. Molecular Mechanisms of Skeletal Muscle Atrophy
4. Treatments
4.1. Drug Therapy
4.1.1. Active Substances of Traditional Chinese Medicine
4.1.2. Chemical Drugs
4.1.3. Antioxidants
4.1.4. Hormone Drugs
4.1.5. Enzyme Inhibitors and Activators
Cyclooxygenase-2 Inhibitors
Histone Deacetylase Inhibitors
Phosphodiesterase Inhibitors
m6A Demethylase ALKBH5
4.2. Gene Therapy
4.2.1. Gene Medicine
4.2.2. Gene Overexpression and Knockdown
4.2.3. Non-Coding RNAs (ncRNAs)
4.3. Stem Cell and Exosome Therapy
4.3.1. Muscle-Derived Stem Cells (MDSCs)
4.3.2. Non-Muscle-Derived Stem Cells
4.3.3. Exosomes
4.4. Cytokines
4.5. Physical Therapy
4.5.1. Electrical Stimulation and Optogenetic Technology
4.5.2. Electroacupuncture
4.5.3. Low-Level Laser Therapy (LLLT)
4.5.4. Heat Therapy (HT)
4.6. Nutrition Support
4.7. Others
5. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grgic, J.; Schoenfeld, B.J.; Mikulic, P. Effects of plyometric vs. Resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 2021, 10, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Fang, Q.; Xu, T.; Wu, C.; Xu, L.; Wang, L.; Yang, X.; Yu, S.; Zhang, Q.; Ding, F.; et al. Mechanistic role of reactive oxygen species and therapeutic potential of antioxidants in denervation- or fasting-induced skeletal muscle atrophy. Front. Physiol. 2018, 9, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Li, M.; Wang, K.; Qi, G.; Liu, H.; Wang, W.; Ji, Y.; Chang, M.; Deng, C.; Xu, F.; et al. Diabetic muscular atrophy: Molecular mechanisms and promising therapies. Front. Endocrinol. 2022, 13, 917113. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.M.; Ingles, M.; Salvador-Pascual, A.; Cominetti, M.R.; Gomez-Cabrera, M.C.; Viña, J. Sarcopenia, frailty and their prevention by exercise. Free Radic. Biol. Med. 2019, 132, 42–49. [Google Scholar] [CrossRef]
- Wang, W.; Shen, D.; Zhang, L.; Ji, Y.; Xu, L.; Chen, Z.; Shen, Y.; Gong, L.; Zhang, Q.; Shen, M.; et al. Skp-sc-evs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxidans 2021, 11, 66. [Google Scholar] [CrossRef]
- Choi, D.H.; Yang, J.; Kim, Y.S. Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the akt/mtor pathway. Biochem. Biophys. Rep. 2019, 17, 182–190. [Google Scholar] [CrossRef]
- Sun, H.; Sun, J.; Li, M.; Qian, L.; Zhang, L.; Huang, Z.; Shen, Y.; Law, B.Y.; Liu, L.; Gu, X. Transcriptome analysis of immune receptor activation and energy metabolism reduction as the underlying mechanisms in interleukin-6-induced skeletal muscle atrophy. Front. Immunol. 2021, 12, 730070. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Q.; Huang, Z.; Zhu, J.; Qiu, J.; Ma, W.; Yang, X.; Ding, F.; Sun, H. Isoquercitrin delays denervated soleus muscle atrophy by inhibiting oxidative stress and inflammation. Front. Physiol. 2020, 11, 988. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, R.; Xu, L.; Wan, Q.; Zhu, J.; Gu, J.; Huang, Z.; Ma, W.; Shen, M.; Ding, F.; et al. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front. Physiol. 2019, 10, 1298. [Google Scholar] [CrossRef]
- Verzola, D.; Barisione, C.; Picciotto, D.; Garibotto, G.; Koppe, L. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int. 2019, 95, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cho, J.; Song, E.J. Ubiquitin-proteasome system (ups) as a target for anticancer treatment. Arch. Pharmacal. Res. 2020, 43, 1144–1161. [Google Scholar] [CrossRef] [PubMed]
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 2019, 50, 1352–1364. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, H.W.; Powers, S.K. The role of calpains in skeletal muscle remodeling with exercise and inactivity-induced atrophy. Int. J. Sport. Med. 2020, 41, 994–1008. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeon, J.H.; Lee, M.J. Docosahexaenoic acid, a potential treatment for sarcopenia, modulates the ubiquitin-proteasome and the autophagy-lysosome systems. Nutrients 2020, 12, 2597. [Google Scholar] [CrossRef]
- Tipton, K.D.; Hamilton, D.L.; Gallagher, I.J. Assessing the role of muscle protein breakdown in response to nutrition and exercise in humans. Sport. Med. 2018, 48, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S. Role of calpains in promoting desmin filaments depolymerization and muscle atrophy. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118788. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of igf-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Ma, W.; Cai, Y.; Shen, Y.; Chen, X.; Zhang, L.; Ji, Y.; Chen, Z.; Zhu, J.; Yang, X.; Sun, H. Hdac4 knockdown alleviates denervation-induced muscle atrophy by inhibiting myogenin-dependent atrogene activation. Front. Cell. Neurosci. 2021, 15, 663384. [Google Scholar] [CrossRef]
- Cheng, T.L.; Lin, Z.Y.; Liao, K.Y.; Huang, W.C.; Jhuo, C.F.; Pan, P.H.; Chen, C.J.; Kuan, Y.H.; Chen, W.Y. Magnesium lithospermate b attenuates high-fat diet-induced muscle atrophy in c57bl/6j mice. Nutrients 2021, 14, 104. [Google Scholar] [CrossRef]
- Yin, L.; Chen, X.; Li, N.; Jia, W.; Wang, N.; Hou, B.; Yang, H.; Zhang, L.; Qiang, G.; Yang, X.; et al. Puerarin ameliorates skeletal muscle wasting and fiber type transformation in stz-induced type 1 diabetic rats. Biomed. Pharmacother. Biomed. Pharmacother. 2021, 133, 110977. [Google Scholar] [CrossRef] [PubMed]
- Vilchinskaya, N.A.; Krivoi, I.I.; Shenkman, B.S. Amp-activated protein kinase as a key trigger for the disuse-induced skeletal muscle remodeling. Int. J. Mol. Sci. 2018, 19, 3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, N.F.; Chang, H.; Du, B.; Zhang, Q.W.; Arfat, Y.; Dang, K.; Gao, Y.F. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of ca(2+)/ros-mediated apoptosis. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2017, 42, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Qi, X.; Fu, Y.; Chen, Q.; Cheng, P.; Yu, X.; Sun, X.; Wu, J.; Li, W.; Zhang, Q.; et al. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating ampk in type 2 diabetes. J. Ethnopharmacol. 2020, 248, 112326. [Google Scholar] [CrossRef]
- Wang, M.; Chen, X.; Jin, W.; Xu, X.; Li, X.; Sun, L. Ginsenoside rb3 exerts protective properties against cigarette smoke extract-induced cell injury by inhibiting the p38 mapk/nf-κb and tgf-β1/vegf pathways in fibroblasts and epithelial cells. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 108, 1751–1758. [Google Scholar] [CrossRef]
- Song, W.; Liu, M.; Wu, J.; Zhai, H.; Chen, Y.; Peng, Z. Preclinical pharmacokinetics of triptolide: A potential antitumor drug. Curr. Drug Metab. 2019, 20, 147–154. [Google Scholar] [CrossRef]
- Fang, W.Y.; Tseng, Y.T.; Lee, T.Y.; Fu, Y.C.; Chang, W.H.; Lo, W.W.; Lin, C.L.; Lo, Y.C. Triptolide prevents lps-induced skeletal muscle atrophy via inhibiting nf-kappab/tnf-alpha and regulating protein synthesis/degradation pathway. Br. J. Pharm. 2021, 178, 2998–3016. [Google Scholar] [CrossRef]
- Huang, Z.; Fang, Q.; Ma, W.; Zhang, Q.; Qiu, J.; Gu, X.; Yang, H.; Sun, H. Skeletal muscle atrophy was alleviated by salidroside through suppressing oxidative stress and inflammation during denervation. Front. Pharmacol. 2019, 10, 997. [Google Scholar] [CrossRef]
- Wu, C.; Tang, L.; Ni, X.; Xu, T.; Fang, Q.; Xu, L.; Ma, W.; Yang, X.; Sun, H. Salidroside attenuates denervation-induced skeletal muscle atrophy through negative regulation of pro-inflammatory cytokine. Front. Physiol. 2019, 10, 665. [Google Scholar] [CrossRef] [Green Version]
- Deheng, C.; Kailiang, Z.; Weidong, W.; Haiming, J.; Daoliang, X.; Ningyu, C.; Huazi, X. Salidroside promotes random skin flap survival in rats by enhancing angiogenesis and inhibiting apoptosis. J. Reconstr. Microsurg. 2016, 32, 580–586. [Google Scholar] [CrossRef]
- Pan, Y.; Song, D.; Zhou, W.; Lu, X.; Wang, H.; Li, Z. Baicalin inhibits c2c12 myoblast apoptosis and prevents against skeletal muscle injury. Mol. Med. Rep. 2019, 20, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lee, H.; Li, H.; Ryu, J.H. Corylifol a from psoralea corylifolia l. Enhances myogenesis and alleviates muscle atrophy. Int. J. Mol. Sci. 2020, 21, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Zhong, L.; Zhu, J.; Xu, H.; Ma, W.; Zhang, L.; Shen, Y.; Law, B.Y.; Ding, F.; Gu, X.; et al. Inhibition of il-6/jak/stat3 pathway rescues denervation-induced skeletal muscle atrophy. Ann. Transl. Med. 2020, 8, 1681. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liao, Z.; Xiao, Q. Metformin ameliorates skeletal muscle atrophy in grx1 ko mice by regulating intramuscular lipid accumulation and glucose utilization. Biochem. Biophys. Res. Commun. 2020, 533, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Kurgan, N.; Whitley, K.C.; Maddalena, L.A.; Moradi, F.; Stoikos, J.; Hamstra, S.I.; Rubie, E.A.; Kumar, M.; Roy, B.D.; Woodgett, J.R.; et al. A low-therapeutic dose of lithium inhibits gsk3 and enhances myoblast fusion in c2c12 cells. Cells 2019, 8, 1340. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, S.W.; Kim, J.H.; Kim, H.J.; Um, J.; Jung, D.W.; Williams, D.R. Lithium chloride protects against sepsis-induced skeletal muscle atrophy and cancer cachexia. Cells 2021, 10, 1017. [Google Scholar] [CrossRef]
- Eo, H.; Reed, C.H.; Valentine, R.J. Imoxin prevents dexamethasone-induced promotion of muscle-specific e3 ubiquitin ligases and stimulates anabolic signaling in c2c12 myotubes. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 128, 110238. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; et al. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the pka/lkb1/ampk pathway. Aging 2019, 11, 2217–2240. [Google Scholar] [CrossRef]
- Lu, S.; Li, Y.; Shen, Q.; Zhang, W.; Gu, X.; Ma, M.; Li, Y.; Zhang, L.; Liu, X.; Zhang, X. Carnosol and its analogues attenuate muscle atrophy and fat lipolysis induced by cancer cachexia. J. Cachexia Sarcopenia Muscle 2021, 12, 779–795. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, R.; Huang, Z.; Zhang, Q.; Xie, X.; Yang, X.; Zhang, Q.; Liu, H.; Ding, F.; Zhu, J.; et al. Pqq ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Ann. Transl. Med. 2019, 7, 440. [Google Scholar] [CrossRef]
- Pronsato, L.; Milanesi, L.; Vasconsuelo, A.; La Colla, A. Testosterone modulates foxo3a and p53-related genes to protect c2c12 skeletal muscle cells against apoptosis. Steroids 2017, 124, 35–45. [Google Scholar] [CrossRef]
- Mendler, L.; Baka, Z.; Kovács-Simon, A.; Dux, L. Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochem. Biophys. Res. Commun. 2007, 361, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Zhang, L.; Huang, Z.; Zhang, H.; Gu, J.; Xu, H.; Yang, X.; Shen, Y.; Law, B.Y.; Zhu, J.; et al. Aspirin alleviates denervation-induced muscle atrophy via regulating the sirt1/pgc-1α axis and stat3 signaling. Ann. Transl. Med. 2020, 8, 1524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, M.; Wang, W.; Yu, W.; Liu, H.; Wang, K.; Chang, M.; Deng, C.; Ji, Y.; Shen, Y.; et al. Celecoxib alleviates denervation-induced muscle atrophy by suppressing inflammation and oxidative stress and improving microcirculation. Biochem Pharm. 2022, 203, 115186. [Google Scholar] [CrossRef]
- Ding, J.; Li, F.; Cong, Y.; Miao, J.; Wu, D.; Liu, B.; Wang, L. Trichostatin a inhibits skeletal muscle atrophy induced by cigarette smoke exposure in mice. Life Sci. 2019, 235, 116800. [Google Scholar] [CrossRef] [PubMed]
- Neyroud, D.; Nosacka, R.L.; Callaway, C.S.; Trevino, J.G.; Hu, H.; Judge, S.M.; Judge, A.R. Foxp1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. J. Cachexia Sarcopenia Muscle 2021, 12, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Avila, A.M.; Burnett, B.G.; Taye, A.A.; Gabanella, F.; Knight, M.A.; Hartenstein, P.; Cizman, Z.; Di Prospero, N.A.; Pellizzoni, L.; Fischbeck, K.H.; et al. Trichostatin a increases smn expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Investig. 2007, 117, 659–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupre-Aucouturier, S.; Castells, J.; Freyssenet, D.; Desplanches, D. Trichostatin a, a histone deacetylase inhibitor, modulates unloaded-induced skeletal muscle atrophy. J. Appl. Physiol. 2015, 119, 342–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcaro, C.A.; Assis, R.P.; Oliveira, J.O.; Zanon, N.M.; Paula-Gomes, S.; Navegantes, L.C.C.; Kettelhut, I.C.; Brunetti, I.L.; Baviera, A.M. Phosphodiesterase 4 inhibition restrains muscle proteolysis in diabetic rats by activating pka and epac/akt effectors and inhibiting foxo factors. Life Sci. 2021, 278, 119563. [Google Scholar] [CrossRef]
- Barreiro, E.; Puig-Vilanova, E.; Salazar-Degracia, A.; Pascual-Guardia, S.; Casadevall, C.; Gea, J. The phosphodiesterase-4 inhibitor roflumilast reverts proteolysis in skeletal muscle cells of patients with copd cachexia. J. Appl. Physiol. 2018, 125, 287–303. [Google Scholar] [CrossRef]
- Joshi, R.; Kadeer, N.; Sheriff, S.; Friend, L.A.; James, J.H.; Balasubramaniam, A. Phosphodiesterase (pde) inhibitor torbafylline (hwa 448) attenuates burn-induced rat skeletal muscle proteolysis through the pde4/camp/epac/pi3k/akt pathway. Mol. Cell. Endocrinol. 2014, 393, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Arcaro, C.A.; Assis, R.P.; Zanon, N.M.; Paula-Gomes, S.; Navegantes, L.C.C.; Kettelhut, I.C.; Brunetti, I.L.; Baviera, A.M. Involvement of camp/epac/akt signaling in the antiproteolytic effects of pentoxifylline on skeletal muscles of diabetic rats. J. Appl. Physiol. 2018, 124, 704–716. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, J.; Gu, Q.; Ma, Y.; Yang, Y.; Zhu, J.; Zhang, Q. The biological function of m6a demethylase alkbh5 and its role in human disease. Cancer Cell Int. 2020, 20, 347. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, X.; Ji, Y.; Zhang, L.; Wang, W.; Shen, Y.; Sun, H. A narrative review of the role of m6a in oxidative stress and inflammation. Biotarget 2021, 5, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, T.; Wang, Q.; Fu, R.; Zhang, Z.; Chen, N.; Li, Z.; Gao, G.; Peng, S.; Yang, D. M(6) a demethylase alkbh5 drives denervation-induced muscle atrophy by targeting hdac4 to activate foxo3 signalling. J. Cachexia Sarcopenia Muscle 2022, 13, 1210–1223. [Google Scholar] [CrossRef]
- Chen, Y.M.; Lian, C.F.; Sun, Q.W.; Wang, T.T.; Liu, Y.Y.; Ye, J.; Gao, L.L.; Yang, Y.F.; Liu, S.N.; Shen, Z.F.; et al. Ramulus mori (sangzhi) alkaloids alleviate high-fat diet-induced obesity and nonalcoholic fatty liver disease in mice. Antioxidants 2022, 11, 905. [Google Scholar] [CrossRef]
- Wang, H.; Wu, W.; Wang, G.; Xu, W.; Zhang, F.; Wu, B.; Tian, Y. Protective effect of ginsenoside rg3 on lung injury in diabetic rats. J. Cell. Biochem. 2019, 120, 3323–3330. [Google Scholar] [CrossRef]
- Go, G.Y.; Lee, S.J.; Jo, A.; Lee, J.; Seo, D.W.; Kang, J.S.; Kim, S.K.; Kim, S.N.; Kim, Y.K.; Bae, G.U. Ginsenoside rg1 from panax ginseng enhances myoblast differentiation and myotube growth. J. Ginseng Res. 2017, 41, 608–614. [Google Scholar] [CrossRef]
- Wang, M.; Ren, J.; Chen, X.; Liu, J.; Xu, X.; Li, X.; Zhao, D.; Sun, L. 20(s)-ginsenoside rg3 promotes myoblast differentiation and protects against myotube atrophy via regulation of the akt/mtor/foxo3 pathway. Biochem Pharm. 2020, 180, 114145. [Google Scholar] [CrossRef]
- Fan, M.; Gu, X.; Zhang, W.; Shen, Q.; Zhang, R.; Fang, Q.; Wang, Y.; Guo, X.; Zhang, X.; Liu, X. Atractylenolide i ameliorates cancer cachexia through inhibiting biogenesis of il-6 and tumour-derived extracellular vesicles. J. Cachexia Sarcopenia Muscle 2022, 13, 2724–2739. [Google Scholar] [CrossRef]
- Lee, S.J.; Yoo, M.; Go, G.Y.; Kim, D.H.; Choi, H.; Leem, Y.E.; Kim, Y.K.; Seo, D.W.; Ryu, J.H.; Kang, J.S.; et al. Bakuchiol augments myod activation leading to enhanced myoblast differentiation. Chem.-Biol. Interact. 2016, 248, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Xu, T.; Wang, Y.; Wu, C.; Wang, L.; Yang, X.; Sun, H. The role of inflammatory factors in skeletal muscle injury. Biotarget 2018, 2, 7. [Google Scholar] [CrossRef]
- Madaro, L.; Passafaro, M.; Sala, D.; Etxaniz, U.; Lugarini, F.; Proietti, D.; Alfonsi, M.V.; Nicoletti, C.; Gatto, S.; De Bardi, M.; et al. Denervation-activated stat3-il-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat. Cell Biol. 2018, 20, 917–927. [Google Scholar] [CrossRef]
- Apostolova, N.; Iannantuoni, F.; Gruevska, A.; Muntane, J.; Rocha, M.; Victor, V.M. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol. 2020, 34, 101517. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.W.; Lee, S.H.; Jung, D.W.; Williams, D.R. Inhibiting 5-lipoxygenase prevents skeletal muscle atrophy by targeting organogenesis signalling and insulin-like growth factor-1. J. Cachexia Sarcopenia Muscle 2022, 13, 3062–3077. [Google Scholar] [CrossRef] [PubMed]
- Valentine, R.J.; Jefferson, M.A.; Kohut, M.L.; Eo, H. Imoxin attenuates lps-induced inflammation and murf1 expression in mouse skeletal muscle. Physiol. Rep. 2018, 6, e13941. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Xu, T.; Wu, C.; Zhou, S.; Sun, H. Biotargets in neural regeneration. Biotarget 2017, 1, 6. [Google Scholar] [CrossRef]
- Watanabe, H.; Enoki, Y.; Maruyama, T. Sarcopenia in chronic kidney disease: Factors, mechanisms, and therapeutic interventions. Biol. Pharm. Bull. 2019, 42, 1437–1445. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.H.; Chang, P.S.; Chang, Y.H.; Lin, P.T. Identification of coenzyme q10 and skeletal muscle protein biomarkers as potential factors to assist in the diagnosis of sarcopenia. Antioxidants 2022, 11, 725. [Google Scholar] [CrossRef]
- Crescioli, C. Vitamin d restores skeletal muscle cell remodeling and myogenic program: Potential impact on human health. Int. J. Mol. Sci. 2021, 22, 1760. [Google Scholar] [CrossRef]
- Salucci, S.; Falcieri, E. Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr. Res. 2020, 74, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.I.; Priego, T.; López-Calderón, A. Hormones and muscle atrophy. Adv. Exp. Med. Biol. 2018, 1088, 207–233. [Google Scholar] [PubMed]
- MacKrell, J.G.; Yaden, B.C.; Bullock, H.; Chen, K.; Shetler, P.; Bryant, H.U.; Krishnan, V. Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration. Nucl. Recept. Signal. 2015, 13, e005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, W.J.; Ratamess, N.A.; Hymer, W.C.; Nindl, B.C.; Fragala, M.S. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: Roles and integration for cellular development and growth with exercise. Front. Endocrinol. 2020, 11, 33. [Google Scholar] [CrossRef]
- Solomon, Z.J.; Mirabal, J.R.; Mazur, D.J.; Kohn, T.P.; Lipshultz, L.I.; Pastuszak, A.W. Selective androgen receptor modulators: Current knowledge and clinical applications. Sex. Med. Rev. 2019, 7, 84–94. [Google Scholar] [CrossRef]
- Rybalko, V.Y.; Pham, C.B.; Hsieh, P.L.; Hammers, D.W.; Merscham-Banda, M.; Suggs, L.J.; Farrar, R.P. Controlled delivery of sdf-1α and igf-1: Cxcr4(+) cell recruitment and functional skeletal muscle recovery. Biomater. Sci. 2015, 3, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.S.; Wei, Q.; Wang, H.; Kim, D.M.; Balderas, M.; Wu, G.; Lawler, J.; Safe, S.; Guo, S.; Devaraj, S.; et al. Protective effects of ghrelin on fasting-induced muscle atrophy in aging mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 621–630. [Google Scholar] [CrossRef]
- Prommer, E. Oncology update: Anamorelin. Palliat. Care 2017, 10, 1178224217726336. [Google Scholar] [CrossRef] [Green Version]
- Sidaway, P. Palliative care: Anamorelin provides benefit to patients with cachexia. Nat. Rev. Clin. Oncol. 2018, 15, 68. [Google Scholar]
- Richter, K.; Konzack, A.; Pihlajaniemi, T.; Heljasvaara, R.; Kietzmann, T. Redox-fibrosis: Impact of tgfβ1 on ros generators, mediators and functional consequences. Redox Biol. 2015, 6, 344–352. [Google Scholar] [CrossRef]
- Khasabova, I.A.; Uhelski, M.; Khasabov, S.G.; Gupta, K.; Seybold, V.S.; Simone, D.A. Sensitization of nociceptors by prostaglandin e(2)-glycerol contributes to hyperalgesia in mice with sickle cell disease. Blood 2019, 133, 1989–1998. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.I.; Nieto-Bona, M.P.; Castillero, E.; Fernandez-Galaz, C.; Lopez-Menduina, M.; Gomez-Sanmiguel, A.B.; Gomez-Moreira, C.; Villanua, M.A.; Lopez-Calderon, A. Effect of cyclooxygenase-2 inhibition by meloxicam, on atrogin-1 and myogenic regulatory factors in skeletal muscle of rats injected with endotoxin. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2012, 63, 649–659. [Google Scholar]
- Chen, H.; Qian, Z.; Zhang, S.; Tang, J.; Fang, L.; Jiang, F.; Ge, D.; Chang, J.; Cao, J.; Yang, L.; et al. Silencing cox-2 blocks pdk1/traf4-induced akt activation to inhibit fibrogenesis during skeletal muscle atrophy. Redox Biol. 2021, 38, 101774. [Google Scholar] [CrossRef] [PubMed]
- Farooq, F.; Abadia-Molina, F.; MacKenzie, D.; Hadwen, J.; Shamim, F.; O’Reilly, S.; Holcik, M.; MacKenzie, A. Celecoxib increases smn and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum. Mol. Genet. 2013, 22, 3415–3424. [Google Scholar] [CrossRef] [Green Version]
- Kaneguchi, A.; Umehara, T.; Yamaoka, K.; Ozawa, J. Bilateral muscle atrophy after anterior cruciate ligament reconstruction in rats: Protective effects of anti-inflammatory drug celecoxib. Knee 2022, 35, 201–212. [Google Scholar] [CrossRef]
- Beharry, A.W.; Sandesara, P.B.; Roberts, B.M.; Ferreira, L.F.; Senf, S.M.; Judge, A.R. Hdac1 activates foxo and is both sufficient and required for skeletal muscle atrophy. J. Cell Sci. 2014, 127, 1441–1453. [Google Scholar] [CrossRef] [Green Version]
- Somers, E.; Riessland, M.; Schreml, J.; Wirth, B.; Gillingwater, T.H.; Parson, S.H. Increasing smn levels using the histone deacetylase inhibitor saha ameliorates defects in skeletal muscle microvasculature in a mouse model of severe spinal muscular atrophy. Neurosci. Lett. 2013, 544, 100–104. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kee, H.J.; Jin, L.; Ryu, Y.; Sun, S.; Kim, G.R.; Jeong, M.H. Inhibition of class iia histone deacetylase activity by gallic acid, sulforaphane, tmp269, and panobinostat. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 101, 145–154. [Google Scholar] [CrossRef]
- Ulanova, A.D.; Gritsyna, Y.V.; Bobylev, A.G.; Yakupova, E.I.; Zhalimov, V.K.; Belova, S.P.; Mochalova, E.P.; Nemirovskaya, T.L.; Shenkman, B.S.; Vikhlyantsev, I.M. Inhibition of histone deacetylase 1 prevents the decrease in titin (connectin) content and development of atrophy in rat m. Soleus after 3-day hindlimb unloading. Bull. Exp. Biol. Med. 2020, 169, 450–457. [Google Scholar] [CrossRef]
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Prim. 2021, 7, 13. [Google Scholar] [CrossRef]
- Iftikhar, M.; Frey, J.; Shohan, M.J.; Malek, S.; Mousa, S.A. Current and emerging therapies for duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol. Ther. 2021, 220, 107719. [Google Scholar] [CrossRef] [PubMed]
- Korinthenberg, R. A new era in the management of duchenne muscular dystrophy. Dev. Med. Child Neurol. 2019, 61, 292–297. [Google Scholar] [CrossRef]
- Syed, Y.Y. Eteplirsen: First global approval. Drugs 2016, 76, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.A. Golodirsen: First approval. Drugs 2020, 80, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Viltolarsen: First approval. Drugs 2020, 80, 1027–1031. [Google Scholar] [CrossRef]
- Roshmi, R.R.; Yokota, T. Viltolarsen for the treatment of duchenne muscular dystrophy. Drugs Today (Barc) 2019, 55, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Kny, M.; Riediger, F.; Busch, K.; Schmidt, S.; Luft, F.C.; Slevogt, H.; Fielitz, J. Deletion of nlrp3 protects from inflammation-induced skeletal muscle atrophy. Intensive Care Med. Exp. 2017, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Zhu, J.; Zhang, R.; Liang, W.; Ma, W.; Zhang, Q.; Huang, Z.; Ding, F.; Sun, H. Mir-125b-5p targeting traf6 relieves skeletal muscle atrophy induced by fasting or denervation. Ann. Transl. Med. 2019, 7, 456. [Google Scholar] [CrossRef] [PubMed]
- Son, B.K.; Eto, M.; Oura, M.; Ishida, Y.; Taniguchi, S.; Ito, K.; Umeda-Kameyama, Y.; Kojima, T.; Akishita, M. Low-intensity exercise suppresses ccaat/enhancer-binding protein δ/myostatin pathway through androgen receptor in muscle cells. Gerontology 2019, 65, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.J.; Shepherd, D.L.; Durr, A.J.; Stanton, D.S.; Mohamed, J.S.; Hollander, J.M.; Alway, S.E. The role of sirt1 in skeletal muscle function and repair of older mice. J. Cachexia Sarcopenia Muscle 2019, 10, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Goldberg, A.L. Sirt1 protein, by blocking the activities of transcription factors foxo1 and foxo3, inhibits muscle atrophy and promotes muscle growth. J. Biol. Chem. 2013, 288, 30515–30526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffaello, A.; Milan, G.; Masiero, E.; Carnio, S.; Lee, D.; Lanfranchi, G.; Goldberg, A.L.; Sandri, M. Junb transcription factor maintains skeletal muscle mass and promotes hypertrophy. J. Cell Biol. 2010, 191, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Theilen, N.T.; Jeremic, N.; Weber, G.J.; Tyagi, S.C. Tfam overexpression diminishes skeletal muscle atrophy after hindlimb suspension in mice. Arch. Biochem. Biophys. 2019, 666, 138–147. [Google Scholar] [CrossRef]
- Theilen, N.T.; Kunkel, G.H.; Tyagi, S.C. The role of exercise and tfam in preventing skeletal muscle atrophy. J. Cell. Physiol. 2017, 232, 2348–2358. [Google Scholar] [CrossRef]
- Yeo, D.; Kang, C.; Gomez-Cabrera, M.C.; Vina, J.; Ji, L.L. Intensified mitophagy in skeletal muscle with aging is downregulated by pgc-1alpha overexpression in vivo. Free Radic. Biol. Med. 2019, 130, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Petrocelli, J.J.; Drummond, M.J. Pgc-1alpha-targeted therapeutic approaches to enhance muscle recovery in aging. Int. J. Environ. Res. Public Health 2020, 17, 8650. [Google Scholar] [CrossRef]
- Ross, J.A.; Pearson, A.; Levy, Y.; Cardel, B.; Handschin, C.; Ochala, J. Exploring the role of pgc-1α in defining nuclear organisation in skeletal muscle fibres. J. Cell. Physiol. 2017, 232, 1270–1274. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.; Hu, R.; Runtsch, M.C.; Kagele, D.A.; Mosbruger, T.L.; Tolmachova, T.; Seabra, M.C.; Round, J.L.; Ward, D.M.; O’Connell, R.M. Exosome-delivered micrornas modulate the inflammatory response to endotoxin. Nat. Commun. 2015, 6, 7321. [Google Scholar] [CrossRef] [Green Version]
- Freire, P.P.; Cury, S.S.; Lopes, L.O.; Fernandez, G.J.; Liu, J.; de Moraes, L.N.; de Oliveira, G.; Oliveira, J.S.; de Moraes, D.; Cabral-Marques, O.; et al. Decreased mir-497-5p suppresses il-6 induced atrophy in muscle cells. Cells 2021, 10, 3527. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, C.; Li, Y.; Gao, S.; Han, Y.C.; Wang, X.; Du, J.; Zhang, C. Microrna-223-3p promotes skeletal muscle regeneration by regulating inflammation in mice. J. Biol. Chem. 2020, 295, 10212–10223. [Google Scholar] [CrossRef]
- Liu, L.; Li, T.M.; Liu, X.R.; Bai, Y.P.; Li, J.; Tang, N.; Wang, X.B. Microrna-140 inhibits skeletal muscle glycolysis and atrophy in endotoxin-induced sepsis in mice via the wnt signaling pathway. Am. J. Physiol. Cell Physiol. 2019, 317, C189–C199. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, G.; Wu, H.; Kang, L.; Xiang, J.; Zheng, P.; Qiu, S.; Liang, Z.; Lu, Y.; Jia, L. Microrna-193b impairs muscle growth in mouse models of type 2 diabetes by targeting the pdk1/akt signalling pathway. Diabetologia 2022, 65, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. Tgf-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, A.; Wang, H.; Klein, J.D.; Tan, L.; Wang, Z.M.; Du, J.; Naqvi, N.; Liu, B.C.; Wang, X.H. Mir-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microrna transfer in chronic kidney disease. Theranostics 2019, 9, 1864–1877. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, L.; Wang, Y.; Zhang, Q.; Ma, W.; Fang, Q.; Sun, H.; Ding, F. Microrna351 targeting traf6 alleviates dexamethasone-induced myotube atrophy. J. Thorac. Dis. 2018, 10, 6238–6246. [Google Scholar] [CrossRef]
- He, Q.; Qiu, J.; Dai, M.; Fang, Q.; Sun, X.; Gong, Y.; Ding, F.; Sun, H. Microrna-351 inhibits denervation-induced muscle atrophy by targeting traf6. Exp. Med. 2016, 12, 4029–4034. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhao, X.; Shen, X.; Zhang, Y.; Zhang, Y.; Ye, L.; Li, D.; Zhu, Q.; Yin, H. Circccdc91 regulates chicken skeletal muscle development by sponging mir-15 family via activating igf1-pi3k/akt signaling pathway. Poult. Sci. 2022, 101, 101803. [Google Scholar] [CrossRef]
- Ohtsuka, M.; Tanemura, M.; Akamatsu, H. Long noncoding rnas regulate malignant phenotypes in colorectal cancer. Biotarget 2018, 2, 4. [Google Scholar] [CrossRef]
- Li, Z.; Cai, B.; Abdalla, B.A.; Zhu, X.; Zheng, M.; Han, P.; Nie, Q.; Zhang, X. Lncirs1 controls muscle atrophy via sponging mir-15 family to activate igf1-pi3k/akt pathway. J. Cachexia Sarcopenia Muscle 2019, 10, 391–410. [Google Scholar] [CrossRef] [Green Version]
- Webster, M.T.; Manor, U.; Lippincott-Schwartz, J.; Fan, C.M. Intravital imaging reveals ghost fibers as architectural units guiding myogenic progenitors during regeneration. Cell Stem Cell 2016, 18, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Mukund, K.; Subramaniam, S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Chun, S.; Asfahani, R.; Lochmüller, H.; Muntoni, F.; Morgan, J. Human skeletal muscle-derived cd133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Muntoni, F.; Morgan, J. Cd133+ cells derived from skeletal muscles of duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability. Stem Cell Res. 2018, 30, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Dellavalle, A.; Sampaolesi, M.; Tonlorenzi, R.; Tagliafico, E.; Sacchetti, B.; Perani, L.; Innocenzi, A.; Galvez, B.G.; Messina, G.; Morosetti, R.; et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 2007, 9, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Mosich, G.M.; Husman, R.; Shah, P.; Sharma, A.; Rezzadeh, K.; Aderibigbe, T.; Hu, V.J.; McClintick, D.J.; Wu, G.; Gatto, J.D.; et al. Non-fibro-adipogenic pericytes from human embryonic stem cells attenuate degeneration of the chronically injured mouse muscle. JCI Insight 2019, 4, e125334. [Google Scholar] [CrossRef] [Green Version]
- Salcedo, L.; Mayorga, M.; Damaser, M.; Balog, B.; Butler, R.; Penn, M.; Zutshi, M. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res. 2013, 10, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.H.; Seo, T.B. Effect of treadmill exercise combined with bone marrow stromal cell transplantation on atrophy-related signaling pathway in the denervated soleus muscle. J. Exerc. Rehabil. 2021, 17, 395–402. [Google Scholar] [CrossRef]
- Bier, A.; Berenstein, P.; Kronfeld, N.; Morgoulis, D.; Ziv-Av, A.; Goldstein, H.; Kazimirsky, G.; Cazacu, S.; Meir, R.; Popovtzer, R.; et al. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in duchenne muscular dystrophy. Biomaterials 2018, 174, 67–78. [Google Scholar] [CrossRef]
- Park, C.M.; Kim, M.J.; Kim, S.M.; Park, J.H.; Kim, Z.H.; Choi, Y.S. Umbilical cord mesenchymal stem cell-conditioned media prevent muscle atrophy by suppressing muscle atrophy-related proteins and ros generation. Vitr. Cell. Dev. Biol. Anim. 2016, 52, 68–76. [Google Scholar] [CrossRef]
- Piao, L.; Huang, Z.; Inoue, A.; Kuzuya, M.; Cheng, X.W. Human umbilical cord-derived mesenchymal stromal cells ameliorate aging-associated skeletal muscle atrophy and dysfunction by modulating apoptosis and mitochondrial damage in samp10 mice. Stem Cell Res. Ther. 2022, 13, 226. [Google Scholar] [CrossRef]
- Darabi, R.; Gehlbach, K.; Bachoo, R.M.; Kamath, S.; Osawa, M.; Kamm, K.E.; Kyba, M.; Perlingeiro, R.C. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med. 2008, 14, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Takizawa, H.; Nakamura, A.; Turner, B.J.; Shabanpoor, F.; Aoki, Y. Application of urine-derived stem cells to cellular modeling in neuromuscular and neurodegenerative diseases. Front. Mol. Neurosci. 2019, 12, 297. [Google Scholar] [CrossRef] [PubMed]
- Iberite, F.; Gruppioni, E.; Ricotti, L. Skeletal muscle differentiation of human ipscs meets bioengineering strategies: Perspectives and challenges. NPJ Regen. Med. 2022, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, B.; Zhang, A.; Hassounah, F.; Seow, Y.; Wood, M.; Ma, F.; Klein, J.D.; Price, S.R.; Wang, X.H. Exosome-mediated mir-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol. Ther. J. Am. Soc. Gene Ther. 2019, 27, 571–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Li, M.; Chen, Z.; Xu, L.; Chang, M.; Wang, K.; Deng, C.; Gu, Y.; Zhou, S.; Shen, Y.; et al. Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochem. Pharm. 2022, 198, 114954. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, Y.; Liang, C.; Liu, B.; Ding, F.; Wang, Y.; Zhu, B.; Zhao, R.; Yu, X.Y.; Li, Y. Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circhipk3/ foxo3a pathway. Theranostics 2020, 10, 6728–6742. [Google Scholar] [CrossRef]
- Choi, J.S.; Yoon, H.I.; Lee, K.S.; Choi, Y.C.; Yang, S.H.; Kim, I.S.; Cho, Y.W. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J. Control. Release Off. J. Control. Release Soc. 2016, 222, 107–115. [Google Scholar] [CrossRef]
- Ji, S.; Ma, P.; Cao, X.; Wang, J.; Yu, X.; Luo, X.; Lu, J.; Hou, W.; Zhang, Z.; Yan, Y.; et al. Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio 2022, 12, 2213–2226. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Li, S.; Li, T.; Li, Y.; Wang, N.; Bao, X.; Xue, P.; Liu, S. Bmsc-derived exosomes inhibit dexamethasone-induced muscle atrophy via the mir-486-5p/foxo1 axis. Front. Endocrinol. 2021, 12, 681267. [Google Scholar] [CrossRef]
- Mitutsova, V.; Yeo, W.W.Y.; Davaze, R.; Franckhauser, C.; Hani, E.H.; Abdullah, S.; Mollard, P.; Schaeffer, M.; Fernandez, A.; Lamb, N.J.C. Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice. Stem Cell Res. Ther. 2017, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Liu, D.; Yang, Y.; Xie, W.; He, M.; Yu, D.; Wu, Y.; Wang, X.; Xiao, W.; Li, Y. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res. Ther. 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Meregalli, M.; Navarro, C.; Sitzia, C.; Farini, A.; Montani, E.; Wein, N.; Razini, P.; Beley, C.; Cassinelli, L.; Parolini, D.; et al. Full-length dysferlin expression driven by engineered human dystrophic blood derived cd133+ stem cells. FEBS J. 2013, 280, 6045–6060. [Google Scholar] [CrossRef] [PubMed]
- Murray, I.R.; Baily, J.E.; Chen, W.C.W.; Dar, A.; Gonzalez, Z.N.; Jensen, A.R.; Petrigliano, F.A.; Deb, A.; Henderson, N.C. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential. Pharmacol. Ther. 2017, 171, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, C.H.; de Queiroz, J.C.; Guimarães-Ferreira, L.; Vitzel, K.F.; Nachbar, R.T.; de Sousa, L.G.; de Souza, A.L., Jr.; Nunes, M.T.; Curi, R. Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Rev. Rep. 2012, 8, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Elahi, K.C.; Klein, G.; Avci-Adali, M.; Sievert, K.D.; MacNeil, S.; Aicher, W.K. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells Int. 2016, 2016, 5646384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Roth, P.; Duda, G.N.; Radojewski, P.; Preininger, B.; Strohschein, K.; Röhner, E.; Perka, C.; Winkler, T. Intra-arterial msc transplantation restores functional capacity after skeletal muscle trauma. Open Orthop. J. 2012, 6, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahindran, E.; Law, J.X.; Ng, M.H.; Nordin, F. Mesenchymal stem cell transplantation for the treatment of age-related musculoskeletal frailty. Int. J. Mol. Sci. 2021, 22, 10542. [Google Scholar] [CrossRef]
- Uezumi, A.; Ikemoto-Uezumi, M.; Zhou, H.; Kurosawa, T.; Yoshimoto, Y.; Nakatani, M.; Hitachi, K.; Yamaguchi, H.; Wakatsuki, S.; Araki, T.; et al. Mesenchymal bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. J. Clin. Investig. 2021, 131, e139617. [Google Scholar] [CrossRef]
- Singh, S.; Singh, T.; Kunja, C.; Dhoat, N.S.; Dhania, N.K. Gene-editing, immunological and ipscs based therapeutics for muscular dystrophy. Eur. J. Pharmacol. 2021, 912, 174568. [Google Scholar] [CrossRef] [PubMed]
- Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef]
- Whiteside, T.L. Stimulatory role of exosomes in the context of therapeutic anti-cancer vaccines. Biotarget 2017, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Barile, L.; Vassalli, G. Angiogenic activity of exosomes isolated from human pericardial fluid. Biotarget 2017, 1, 10. [Google Scholar] [CrossRef]
- Nakamura, Y.; Miyaki, S.; Ishitobi, H.; Matsuyama, S.; Nakasa, T.; Kamei, N.; Akimoto, T.; Higashi, Y.; Ochi, M. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 2015, 589, 1257–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, X.; Gong, W.; Wang, Q.; Wang, P.; Shi, T.; Mahmut, A.; Qin, J.; Yao, Y.; Yan, W.; Chen, D.; et al. Atrophic skeletal muscle fibre-derived small extracellular vesicle mir-690 inhibits satellite cell differentiation during ageing. J. Cachexia Sarcopenia Muscle 2022, 13, 3163–3180. [Google Scholar] [CrossRef]
- Shvartsman, D.; Storrie-White, H.; Lee, K.; Kearney, C.; Brudno, Y.; Ho, N.; Cezar, C.; McCann, C.; Anderson, E.; Koullias, J.; et al. Sustained delivery of vegf maintains innervation and promotes reperfusion in ischemic skeletal muscles via ngf/gdnf signaling. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Grasman, J.M.; Do, D.M.; Page, R.L.; Pins, G.D. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries. Biomaterials 2015, 72, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Li, K.; Tian, H.C.; Fan, Z.; Chen, Q.N.; Yang, Y.F.; Yu, J.; Wu, Y.X.; Xiao, Q. Fgf19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin levels via the ampk/sirt-1/pgc-α pathway. J. Cell. Mol. Med. 2021, 25, 3585–3600. [Google Scholar] [CrossRef]
- Benoit, B.; Meugnier, E.; Castelli, M.; Chanon, S.; Vieille-Marchiset, A.; Durand, C.; Bendridi, N.; Pesenti, S.; Monternier, P.A.; Durieux, A.C.; et al. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat. Med. 2017, 23, 990–996. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kim, I.G.; Piao, S.; Jung, A.R.; Lee, J.Y.; Park, K.D.; Lee, J.Y. Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials 2013, 34, 6037–6045. [Google Scholar] [CrossRef]
- Wroblewski, O.M.; Vega-Soto, E.E.; Nguyen, M.H.; Cederna, P.S.; Larkin, L.M. Impact of human epidermal growth factor on tissue-engineered skeletal muscle structure and function. Tissue Eng. Part A 2021, 27, 1151–1159. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Ma, W.; Sun, H. Strategies and potential therapeutic agents to counter skeletal muscle atrophy. Biotarget 2018, 2, 8. [Google Scholar] [CrossRef]
- Timmer, L.T.; Hoogaars, W.M.H.; Jaspers, R.T. The role of igf-1 signaling in skeletal muscle atrophy. Adv. Exp. Med. Biol. 2018, 1088, 109–137. [Google Scholar] [PubMed]
- Abduelmula, A.; Huang, R.; Pu, Q.; Tamamura, H.; Morosan-Puopolo, G.; Brand-Saberi, B. Sdf-1 controls the muscle and blood vessel formation of the somite. Int. J. Dev. Biol. 2016, 60, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Zimowska, M.; Archacka, K.; Brzoska, E.; Bem, J.; Czerwinska, A.M.; Grabowska, I.; Kasprzycka, P.; Michalczewska, E.; Stepaniec, I.; Soszynska, M.; et al. ; et al. Il-4 and sdf-1 increase adipose tissue-derived stromal cell ability to improve rat skeletal muscle regeneration. Int. J. Mol. Sci. 2020, 21, 3302. [Google Scholar] [CrossRef]
- Ho, T.C.; Chiang, Y.P.; Chuang, C.K.; Chen, S.L.; Hsieh, J.W.; Lan, Y.W.; Tsao, Y.P. Pedf-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells. Am. J. Physiol. Cell Physiol. 2015, 309, C159–C168. [Google Scholar] [CrossRef] [Green Version]
- Aluganti Narasimhulu, C.; Singla, D.K. Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. J. Cachexia Sarcopenia Muscle 2021, 12, 403–420. [Google Scholar] [CrossRef]
- Han, S.; Cui, C.; Zhao, X.; Zhang, Y.; Zhang, Y.; Zhao, J.; Shen, X.; He, H.; Wang, J.; Ma, M.; et al. Filamin c regulates skeletal muscle atrophy by stabilizing dishevelled-2 to inhibit autophagy and mitophagy. Mol. Ther. Nucleic Acids 2022, 27, 147–164. [Google Scholar] [CrossRef]
- Gouveia, M.C.; Vella, J.P.; Cafeo, F.R.; Affonso Fonseca, F.L.; Bacci, M.R. Association between irisin and major chronic diseases: A review. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4072–4077. [Google Scholar]
- Reza, M.M.; Subramaniyam, N.; Sim, C.M.; Ge, X.; Sathiakumar, D.; McFarlane, C.; Sharma, M.; Kambadur, R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun. 2017, 8, 1104. [Google Scholar] [CrossRef] [Green Version]
- Strollo, P.J., Jr.; Soose, R.J.; Maurer, J.T.; de Vries, N.; Cornelius, J.; Froymovich, O.; Hanson, R.D.; Padhya, T.A.; Steward, D.L.; Gillespie, M.B.; et al. Upper-airway stimulation for obstructive sleep apnea. N. Engl. J. Med. 2014, 370, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Atkins, K.D.; Bickel, C.S. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharm. 2021, 60, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Slysz, J.T.; Boston, M.; King, R.; Pignanelli, C.; Power, G.A.; Burr, J.F. Blood flow restriction combined with electrical stimulation attenuates thigh muscle disuse atrophy. Med. Sci. Sport. Exerc. 2021, 53, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, P.L.; Morales, J.S.; Ruilope, L.M.; de la Villa, P.; Santos-Lozano, A.; Lucia, A. Intradialytic neuromuscular electrical stimulation improves functional capacity and muscle strength in people receiving haemodialysis: A systematic review. J. Physiother. 2020, 66, 89–96. [Google Scholar] [CrossRef]
- Merrill, D.R.; Bikson, M.; Jefferys, J.G. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.H.; Hagen, R.; Foerster, G.; Grossmann, W.; Baumbusch, K.; Pototschnig, C. Laryngeal pacing via an implantable stimulator for the rehabilitation of subjects suffering from bilateral vocal fold paralysis: A prospective first-in-human study. Laryngoscope 2016, 126, 1810–1816. [Google Scholar] [CrossRef]
- Magown, P.; Shettar, B.; Zhang, Y.; Rafuse, V.F. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy. Nat. Commun. 2015, 6, 8506. [Google Scholar] [CrossRef] [Green Version]
- Asano, T.; Teh, D.B.L.; Yawo, H. Application of optogenetics for muscle cells and stem cells. Adv. Exp. Med. Biol. 2021, 1293, 359–375. [Google Scholar]
- Llewellyn, M.E.; Thompson, K.R.; Deisseroth, K.; Delp, S.L. Orderly recruitment of motor units under optical control in vivo. Nat. Med. 2010, 16, 1161–1165. [Google Scholar] [CrossRef] [Green Version]
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268. [Google Scholar] [CrossRef]
- Gundelach, L.A.; Hüser, M.A.; Beutner, D.; Ruther, P.; Bruegmann, T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflug. Arch. Eur. J. Physiol. 2020, 472, 527–545. [Google Scholar] [CrossRef]
- Lei, B.K.; Zhao, S.; Xu, T.; Zhou, Y.; Xu, S.S.; Wang, R.Y.; Li, J.P. Tgf-beta1/erk/ctgf pathway involved in effect of acupuncture on exercise-induced skeletal muscle fibrosis. Zhen Ci Yan Jiu 2021, 46, 306–311. [Google Scholar] [PubMed]
- Ding, H.L.; Huang, Z.H.; Ren, Z.F.; Sun, Z.X.; Li, J.P.; Wang, R.Y. Effects of acupuncture on endoplasmic reticulum pathway in exercise-induced skeletal muscle damage in rats and its mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2021, 37, 359–364. [Google Scholar] [PubMed]
- Su, Z.; Robinson, A.; Hu, L.; Klein, J.D.; Hassounah, F.; Li, M.; Wang, H.; Cai, H.; Wang, X.H. Acupuncture plus low-frequency electrical stimulation (acu-lfes) attenuates diabetic myopathy by enhancing muscle regeneration. PloS ONE 2015, 10, e0134511. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Klein, J.D.; Hassounah, F.; Cai, H.; Zhang, C.; Xu, P.; Wang, X.H. Low-frequency electrical stimulation attenuates muscle atrophy in ckd--a potential treatment strategy. J. Am. Soc. Nephrol. JASN 2015, 26, 626–635. [Google Scholar] [CrossRef]
- Takaoka, Y.; Ohta, M.; Ito, A.; Takamatsu, K.; Sugano, A.; Funakoshi, K.; Takaoka, N.; Sato, N.; Yokozaki, H.; Arizono, N.; et al. Electroacupuncture suppresses myostatin gene expression: Cell proliferative reaction in mouse skeletal muscle. Physiol. Genom. 2007, 30, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ye, X.; Huang, X. Effect of electroacupuncture on denervated skeletal muscle atrophy and expression of igf-1/pi3k/akt in rats. Zhongguo Zhen Jiu 2018, 38, 1311–1317. [Google Scholar] [PubMed]
- Zhao, N.; Liu, B.; Liu, S.W.; Zhang, W.; Li, H.N.; Pang, G.; Luo, X.F.; Wang, J.G. The combination of electroacupuncture and massage therapy alleviates myofibroblast transdifferentiation and extracellular matrix production in blunt trauma-induced skeletal muscle fibrosis. Evid.-Based Complement. Altern. Med. Ecam 2021, 2021, 5543468. [Google Scholar] [CrossRef]
- Ou, H.C.; Chu, P.M.; Huang, Y.T.; Cheng, H.C.; Chou, W.C.; Yang, H.L.; Chen, H.I.; Tsai, K.L. Low-level laser prevents doxorubicin-induced skeletal muscle atrophy by modulating ampk/sirt1/pcg-1α-mediated mitochondrial function, apoptosis and up-regulation of pro-inflammatory responses. Cell Biosci. 2021, 11, 200. [Google Scholar] [CrossRef]
- Neves, M.; Tavares, A.L.F.; Reginato, A.; Kakihata, C.M.M.; Bertolini, G.R.F.; Ribeiro, L.F.C. Low-level laser therapy in different wavelengths on the tibialis anterior muscle of wistar rats after nerve compression injury. J. Manip. Physiol. 2020, 43, 700–707. [Google Scholar] [CrossRef]
- Kou, Y.T.; Liu, H.T.; Hou, C.Y.; Lin, C.Y.; Tsai, C.M.; Chang, H. A transient protective effect of low-level laser irradiation against disuse-induced atrophy of rats. Lasers Med. Sci. 2019, 34, 1829–1839. [Google Scholar] [CrossRef]
- Alessi Pissulin, C.N.; Henrique Fernandes, A.A.; Sanchez Orellana, A.M.; Rossi, E.S.R.C.; Michelin Matheus, S.M. Low-level laser therapy (lllt) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine. J. Photochem. Photobiol. B 2017, 168, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakyova, L.; Toporcer, T.; Tomeckova, V.; Sabo, J.; Radonak, J. Low-level laser therapy for protection against skeletal muscle damage after ischemia-reperfusion injury in rat hindlimbs. Lasers Surg. Med. 2010, 42, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Hafen, P.S.; Abbott, K.; Bowden, J.; Lopiano, R.; Hancock, C.R.; Hyldahl, R.D. Daily heat treatment maintains mitochondrial function and attenuates atrophy in human skeletal muscle subjected to immobilization. J. Appl. Physiol. 2019, 127, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Hesketh, K.; Shepherd, S.O.; Strauss, J.A.; Low, D.A.; Cooper, R.J.; Wagenmakers, A.J.M.; Cocks, M. Passive heat therapy in sedentary humans increases skeletal muscle capillarization and enos content but not mitochondrial density or glut4 content. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H114–H123. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.A.; Bomhoff, G.L.; Swerdlow, R.H.; Geiger, P.C. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 2009, 58, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, S.P.; Bishop, N.C.; Faulkner, S.H.; Bailey, S.J.; Leicht, C.A. Acute and chronic effects of hot water immersion on inflammation and metabolism in sedentary, overweight adults. J. Appl. Physiol. 2018, 125, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, S.J. Mild hyperthermia-induced myogenic differentiation in skeletal muscle cells: Implications for local hyperthermic therapy for skeletal muscle injury. Oxidative Med. Cell. Longev. 2018, 2018, 2393570. [Google Scholar] [CrossRef]
- Nonaka, K.; Une, S.; Akiyama, J. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats. Acta Physiol. Hung. 2015, 102, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Tsuchida, W.; Iwata, M.; Akimoto, T.; Matsuo, S.; Asai, Y.; Suzuki, S. Heat stress modulates both anabolic and catabolic signaling pathways preventing dexamethasone-induced muscle atrophy in vitro. J. Cell. Physiol. 2017, 232, 650–664. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.J. Nutritional support to counteract muscle atrophy. Adv. Exp. Med. Biol. 2018, 1088, 483–495. [Google Scholar]
- Dolan, E.; Artioli, G.G.; Pereira, R.M.R.; Gualano, B. Muscular atrophy and sarcopenia in the elderly: Is there a role for creatine supplementation? Biomolecules 2019, 9, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafii, M.; Chapman, K.; Owens, J.; Elango, R.; Campbell, W.W.; Ball, R.O.; Pencharz, P.B.; Courtney-Martin, G. Dietary protein requirement of female adults >65 years determined by the indicator amino acid oxidation technique is higher than current recommendations. J. Nutr. 2015, 145, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.R.; Tan, Z.J.; Zhang, Q.; Gui, Q.F.; Yang, Y.M. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana, L.R.; Chiocchetti, G.M.E.; Oroy, L.; Vieira, W.F.; Busanello, E.N.B.; Marques, A.C.; Salgado, C.M.; de Oliveira, A.L.R.; Vieira, A.S.; Suarez, P.S.; et al. Leucine-rich diet improved muscle function in cachectic walker 256 tumour-bearing wistar rats. Cells 2021, 10, 3272. [Google Scholar] [CrossRef]
- May, P.E.; Barber, A.; D’Olimpio, J.T.; Hourihane, A.; Abumrad, N.N. Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am. J. Surg. 2002, 183, 471–479. [Google Scholar] [CrossRef]
- Raiteri, T.; Zaggia, I.; Reano, S.; Scircoli, A.; Salvadori, L.; Prodam, F.; Filigheddu, N. The atrophic effect of 1,25(oh)(2) vitamin d(3) (calcitriol) on c2c12 myotubes depends on oxidative stress. Antioxidants 2021, 10, 1980. [Google Scholar] [CrossRef]
- Jeon, S.H.; Choung, S.Y. Oyster hydrolysates attenuate muscle atrophy via regulating protein turnover and mitochondria biogenesis in c2c12 cell and immobilized mice. Nutrients 2021, 13, 4385. [Google Scholar] [CrossRef]
- Wallace, M.A.; Aguirre, N.W.; Marcotte, G.R.; Marshall, A.G.; Baehr, L.M.; Hughes, D.C.; Hamilton, K.L.; Roberts, M.N.; Lopez-Dominguez, J.A.; Miller, B.F.; et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell 2021, 20, e13322. [Google Scholar] [CrossRef]
- Fielding, R.; Riede, L.; Lugo, J.P.; Bellamine, A. L-carnitine supplementation in recovery after exercise. Nutrients 2018, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.K.; Kim, J.H.; Lee, J.H.; Son, Y.H.; Lee, M.W.; Kim, H.J.; Noh, S.A.; Kim, K.P.; Kim, I.G.; Lee, M.J. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp. Mol. Med. 2017, 49, e287. [Google Scholar] [CrossRef] [Green Version]
- Dupont, J.; Dedeyne, L.; Dalle, S.; Koppo, K.; Gielen, E. The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clin. Exp. Res. 2019, 31, 825–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cezar, C.A.; Mooney, D.J. Biomaterial-based delivery for skeletal muscle repair. Adv. Drug Deliv. Rev. 2015, 84, 188–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lev, R.; Seliktar, D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J. R. Soc. Interface 2018, 15, 20170380. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, C.; Rizzi, R.; Biondo, A.; Longa, E.; Mascaro, A.; Shapira-Schweitzer, K.; Kossovar, O.; Benedetti, S.; Salvatori, M.L.; Santoleri, S.; et al. In vivo generation of a mature and functional artificial skeletal muscle. EMBO Mol. Med. 2015, 7, 411–422. [Google Scholar] [CrossRef]
- Otzel, D.M.; Lee, J.; Ye, F.; Borst, S.E.; Yarrow, J.F. Activity-based physical rehabilitation with adjuvant testosterone to promote neuromuscular recovery after spinal cord injury. Int. J. Mol. Sci. 2018, 19, 1701. [Google Scholar] [CrossRef]
Drug/ Compound | Mechanism of Action | Function | Ref. | |
---|---|---|---|---|
Active Substances of Traditional Chinese Medicine | Magnesium Lithospermate B | Activation of the PI3K-Akt-FoxO1 pathway and inhibition of the TNF-α/TNFRI/NF-κB pathway Inhibition of MAFbx- and MuRF1-mediated muscle degeneration | Alleviates obesity-related myasthenia gravis | [20] |
Puerarin | Activation of AKT/mTOR and inhibition of autophagy | Anti-diabetic rat muscle atrophy | [21,22] | |
Tetramethylpyrazine | Inhibition of Ca2+/reactive oxygen species increase and subsequent protein hydrolysis and apoptosis | Alleviates waste-induced muscle atrophy | [23] | |
mulberry leaf flavone | Increases levels of p-AMPK and PGC-1α; Improvement of insulin resistance and mitochondrial function | Anti-type 2 diabetes mellitus | [24] | |
Ginsenosides | Promotes myogenic cell differentiation; Regulates the Akt/mTOR/FoxO3 pathway | Protects dexamethasone -treated C2C12 myotube | [25] | |
Triptolide | Up-regulates protein synthesis signals; Downregulates ubiquitin-proteasome, autophagy-lysosome-related molecules and inflammatory mediators | Alleviates LPS-induced inflammation and skeletal muscle atrophy | [26,27] | |
Salidroside | Inhibits overproduction of ROS and pro-inflammatory cytokines; Reduce expression of Foxo3A and inhibition of UPS and ALP activation | Alleviates denervation-induced muscle atrophy | [28,29,30] | |
Baicalin | Reversal of mitochondrial dysfunction with reduced expression of Cytochrome c and apoptosis-inducing factor; Reversal of caspase-3 and caspase-9 activation | Protect c2c12 myoblast against apoptosis | [31] | |
Corylifol A | Activates p38 MAPK pathway; Inhibition of NF-κB-mediated E3 ligase mechanism and activation of Akt | Protects myotubes against dexamethasone damage | [32] | |
Chemical Drugs | Metformin | Reduce intramuscular lipid sediments, and increase glucose utilization through the AMPK/Sirt1 pathway | Alleviates skeletal muscle atrophy in grx1 ko mice | [33,34] |
Lithium chloride | Inhibition of expression of inflammation-related factors and atrophy genes | Therapeutic effects on sepsis-induced muscle atrophy and cancer cachexia. | [35,36] | |
Imidazolo-oxindole | Anti-inflammatory; Attenuates MuRF1 and MAFbx expression; Promotes protein synthesis through AKT/mTOR/S6K1 axis | Therapeutic effects in C2C12 myotubes and LPS-treated mouse skeletal muscle | [37] | |
Antioxidants | Resveratrol | Reversal of mitochondrial dysfunction via PKA/LKB1/AMPK pathway; Reversal of oxidative stress | Therapeutic effects on sarcopenia | [38] |
Carnosol | Inhibition of TNF-α/NF-κB pathway; anti-malignant effects | Alleviates muscle atrophy and fat lipolysis induced by cancer cachexia | [39] | |
Isoquercetin | Reversal of oxidative stress; Conversion of skeletal muscle from slow to fast fiber types | Protective effect on denervated muscle atrophy | [9] | |
N-acetyl-L-cysteine | Reduces ROS levels in mouse muscle Increase myosin heavy chain | Alleviates denervation or fasting-induced skeletal muscle atrophy | [3] | |
Pyrroloquinoline quinone | Inhibition of Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK and NF-κB signaling pathways | Alleviates denervation or fasting-induced muscle atrophy | [40] | |
Hormone Drugs | Testosterone | Stimulates the Ras/MEK/ERK pathway and inhibits MSTN expression; Inactive FoxO | Protects C2C12 skeletal muscle cells against apoptosis | [41,42] |
Enzyme Inhibitors and Activators | Aspirin | Regulates STAT3 inflammatory signaling pathway; Regulates the Sirt1/PGC-1α signaling axis | Alleviates denervation-induced muscle atrophy | [43] |
Celecoxib | Inhibition of skeletal muscle inflammation and oxidative stress; Inhibition of ALP and UPS; Improves blood flow | Alleviates denervation-induced muscle atrophy | [44] | |
Trichostatin A | Activates SMN2 gene expression Inhibit HDAC4/MYOG/FoxO axis; Downregulates UPS, markers of apoptosis; Partially preventing the reduction of type I and type IIa fibers | Increases survival of SMA mouse; Anti-atrophy induced by cigarette smoke exposure and unloading | [45,46,47,48] | |
Rolipram | Decrease MAFbx and MuRF1 levels; Decrease the activity of calpain and caspase-3 | Alleviates skeletal muscle atrophy in diabetes mellitus rats | [49] | |
Roflumilast | Upregulates of the NRF2, sirtuin-1 pathway; increases cAMP signaling; decrease UPS and MSTN gene expression | Therapeutic effect of muscle wasting in patients with COPD | [50] | |
Torbafylline(HWA 448) | Anti-inflammation; Activates PDE4/cAMP/Epac/PI3K/AKT pathway | Alleviates skeletal muscle atrophy caused by injury, denervation, diabetes mellitus, cancer, and sepsis | [51] | |
Pentoxifylline | Activates cAMP and AKT; Inhibits the expression of atrogenes and calpain/caspase-3 | Mitigates the loss of muscle mass in diabetic rats | [52] | |
ALKBH5 | Demethylation of HDAC4 mRNA and stabilization of HDAC4 mRNA; Block the activation of FoxO3 | Alleviates denervation-induced muscle atroph | [53,54,55] |
Cells/ Exosomes | Mechanism of Action | Limitation | Ref. | |
---|---|---|---|---|
Muscle-Derived Stem Cells | Satellite cells | Produces progeny and form muscle fibers for transplantation into the defective area | / | [120,121] |
CD133+ angioblasts | Repopulated ecological niches of satellite cells, regenerative response after injury | Cells are few and fragiles; limited delivery efficience | [122,123] | |
Pericytes | Release of nutritional factors; Modulates local immune response | lack optimal harvesting organ and strategies | [124,125] | |
Non-Muscle-Derived Stem Cells | Bone marrow-derived MSCs (BM-MSCs) | Improve muscle contraction | uncertainties regarding the paracrine effect of MSC, clinical optimization, and CM manufacturing process standards | [126,127] |
Allogeneic placenta-derived MSCs (PL-MSCs) | Reduces fibrosis and inflammation | [128] | ||
Umbilical cord-derived MSCs (UC-MSCs) | Reduced expression of atrophy-related protein; inhibition of ROS production | [129,130] | ||
IPSCs | Activation of myogenic signaling; Induces regenerating myogenic progenitor cells | The residual epigenetic memory from the somatic donor cell source may reduce the pluripotency of the generated cell line, leading to a biased differentiation potential | [131,132,133] | |
Exosomes | Exosomes from satellite cells transduced with Ad-miR29 | Downregulation of YY1 and TGF-β pathway proteins | The follow-up time for treatment was relatively short | [134,135] |
UC-MSC-EVs | Release of circHIPK3 serves as a miR-421 sponge to inhibit inflammation, increases FOXO3a expression and prevents the activation of inflammasome | / | [136] | |
Exosomes from differentiated human skeletal myoblasts | Regulate skeletal myogenesis through the transfer of diverse myogenic factors; Reduces the fibrotic area and increased the number of regenerated myofibers | Unknown about the key factors in controlling cell fate and promoting skeletal muscle regeneration; The adverse effects may arise from high doses of exosomes (e.g., cell apoptosis) | [137,138] | |
SKP-SC-EVs | Reduces ROS production and inflammation; Downregulate UPS and ALP; Improves microcirulation | / | [6] | |
exosomes from human BM-MSCs | Inhibit dexamethasone-induced muscle atrophy via miR486-5p/Foxo1 Axis | / | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Li, M.; Deng, C.; Qiu, J.; Wang, K.; Chang, M.; Zhou, S.; Gu, Y.; Shen, Y.; Wang, W.; et al. Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants 2023, 12, 44. https://doi.org/10.3390/antiox12010044
Huang L, Li M, Deng C, Qiu J, Wang K, Chang M, Zhou S, Gu Y, Shen Y, Wang W, et al. Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants. 2023; 12(1):44. https://doi.org/10.3390/antiox12010044
Chicago/Turabian StyleHuang, Li, Ming Li, Chunyan Deng, Jiayi Qiu, Kexin Wang, Mengyuan Chang, Songlin Zhou, Yun Gu, Yuntian Shen, Wei Wang, and et al. 2023. "Potential Therapeutic Strategies for Skeletal Muscle Atrophy" Antioxidants 12, no. 1: 44. https://doi.org/10.3390/antiox12010044
APA StyleHuang, L., Li, M., Deng, C., Qiu, J., Wang, K., Chang, M., Zhou, S., Gu, Y., Shen, Y., Wang, W., Huang, Z., & Sun, H. (2023). Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants, 12(1), 44. https://doi.org/10.3390/antiox12010044