N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals
Abstract
:1. Introduction
NAC Formulations
2. Safety Profile of NAC
3. Transportation of NAC
3.1. Adverse Reactions
3.2. NAC Dosing and Pharmacokinetics
4. Therapeutic Uses of NAC in Animals
5. Therapeutic Uses of NAC in Humans
Study | Study Type | Study Size | NAC Treatment | Type and Incidence of Adverse Events following NAC Treatment | ||
---|---|---|---|---|---|---|
Moderate | Severe | |||||
[38] | Double-blinded, placebo-controlled, crossover design | 17 healthy individuals (age 30 ± 2 years) | 9 mg/kg NAC capsule | Upset stomach (2), nausea (1), stomach/intestinal gas (1), cough (1) | ||
18 mg/kg NAC capsule | Upset stomach (1), nausea (1), stomach/intestinal gas (2), sleepiness (2), metallic taste (1) | |||||
35 mg/kg oral NAC solution | Upset stomach (2), stomach/intestinal gas (2), sleepiness (1), metallic taste (1) | |||||
70 mg/kg oral NAC solution | Upset stomach (2), stomach/intestinal gas (1), sleepiness (3), metallic taste (3), light-headedness (1), cough (1) | Upset stomach (1), | Stomach/intestinal gas (1) | |||
140 mg/kg oral NAC solution | Upset stomach (5), nausea (3), stomach/intestinal gas (2), sleepiness (2), metallic taste (4), light-headedness (1) | Upset stomach (1), stomach/intestinal gas (4) | ||||
[39] | Randomized, placebo-controlled study | 28 individuals (≤75 years) | 20 mg/min intravenous NAC for first hour, then 10 mg/min for next 23 h; total dose of 15 g over 24 h | Haemorrhage (3), headache (4) | Transient episode of extreme sinus bradycardia (1) | |
[40] | Randomized, placebo-controlled study | 4 healthy individuals (age 35 ± 3 years) | 150 mg/kg intravenous | Transient skin flushing (2), pruritus (2), nausea (2) | ||
[41] | Double-blind, randomized trial | 65 chronic bronchitis patients | 4 puffs of NAC (1 mg/puff) two times daily | Coughing (4), Dyspnoea (7) |
5.1. Liver Diseases
5.1.1. Acute Acetaminophen Overdose
5.1.2. Non-Acetaminophen-Induced Acute Liver Failure
5.1.3. Non-Alcoholic Fatty Liver Disease (NAFLD)
5.2. Pulmonary Diseases
5.2.1. Cystic Fibrosis (CF)
5.2.2. Chronic Obstructive Pulmonary Disease (COPD)
5.3. Infectious Diseases
5.3.1. Influenza
5.3.2. COVID-19
6. Autoimmune Diseases
7. Cardiovascular Diseases
8. Chronic Conditions
8.1. Atopic Dermatitis
8.2. Diabetes Mellitus
Disease | Study Type | Study Phase | Dose | Treatment Duration | Administration Routes |
---|---|---|---|---|---|
Liver diseases | |||||
Acute acetaminophen overdose | Interventional (Clinical Trial) NCT03679442 | Phase 1 | Dose corresponding to the clinical treatment guidelines for acetaminophen overdosed patients | 16 h | Intravenous |
Non-alcoholic fatty liver disease | Interventional (Clinical Trial) NCT02117700 | Phase 2 | 600 mg twice/ day | 16 weeks | Oral |
Pulmonary diseases | |||||
Cystic fibrosis | Interventional (Clinical Trial) NCT00809094 | Phase 2 | 900 mg twice/day | 24 weeks | Oral |
Chronic Obstructive Pulmonary Disease | Interventional (Clinical Trial) NCT01136239 | Phase 4 | 600 mg twice/ day | One year | Oral |
Interventional (Clinical Trial) NCT00969904 | Phase 4 | 600 mg twice/ day | 12 weeks | Oral | |
Interventional (Clinical Trial) NCT03388853 | Phase 4 | 1200 mg once daily | 4 weeks | Oral | |
Interventional (Clinical Trial) NCT02579772 | Phase 4 | 600 mg three times/ day for 4 days prior to experimental procedures and 600 mg on the day of the experiment | 4 days | Oral | |
Interventional (Clinical Trial) NCT00184977 | Phase 4 | 600 mg once daily | 3 years | Oral | |
Infectious Diseases | |||||
Influenza | Interventional (Clinical Trial) NCT03900988 | Phase 4 | 100 mg/kg daily as a continuous IV infusion over 24 h | 28 days | Intravenous |
COVID-19 | Interventional (Clinical Trial) NCT04374461 | Phase 2 | 6 g/day | Patients will receive treatment for a max of 3 weeks | Intravenous |
Interventional (Clinical Trial) NCT04928495 | Phase 3 | 1800 mg once daily | 10 days | Oral | |
Interventional (Clinical Trial) NCT04900129 | Phase 1 | 1.2 g twice/day | One month | Inhalation | |
Interventional (Clinical Trial) NCT04792021 | Phase 3 | 600 mg/day | Two weeks/ until hospital discharge or death | Oral | |
Interventional (Clinical Trial) NCT04419025 | Phase 2 | Inpatients: 25 mg/kg (rounded up to the nearest 600 mg) every 4 h until discharge and then 1200 mg twice daily × 1 week post-discharge Outpatients: 2400 mg × 1 then 1200 mg twice daily × 2 weeks | Inpatients: until 1 week post-discharge Outpatients: 15 days | Oral | |
Interventional (Clinical Trial) NCT04455243 | Phase 3 | 150 mg/kg every 12 h diluted in 200 mL diluent (D5%, NS) | 14 days | Oral or intravenous | |
Diabetes Mellitus | Interventional (Clinical Trial) NCT02206152 | Phase 1 and 2 | 150 mg/kg loading dose over the first hour and then follow that with a 50 mg/kg maintenance dose infused over the next 4 h during a controlled hyperinsulinemic hypoglycemic insulin clamp | Two 2-day treatments separated by 8 weeks | Intravenous |
Interventional (Clinical Trial) NCT01394510 | N/A | 600 mg twice daily × 2 weeks, then 1200 mg twice daily × 2 weeks | 4 weeks | Oral | |
Interventional (Clinical Trial) NCT04531163 | Phase 2 and 3 | 1200 mg/day | 2 months | Oral | |
Interventional (Clinical Trial) NCT00556465 | Phase 2 and 3 | 600 mg twice/ day | 3 months | Oral |
9. Use of NAC in Domesticated Animal Health and Production
10. Swine
10.1. Swine Weaning Disorders
10.2. Porcine Epidemic Diarrhea (PED)
11. Cattle
12. Poultry
13. Companion Animals
13.1. Dogs or Cats
13.1.1. Acetaminophen Toxicosis
13.1.2. Infectious Keratitis
13.1.3. Type 1 Diabetes Mellitus
13.1.4. Parvovirus
13.1.5. Otitis Externa
14. NAC Molecular Mechanisms of Action (MOA)
- (1)
- Direct antioxidant activity of NAC as an oxygen radical scavenger
- (2)
- Indirect antioxidant activity of NAC via glutathione replenishment
- (3)
- NAC as a disulfide reductant
15. Alternative MOA via the Sulfane Sulfur Branch of NAC Metabolism
16. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tenório, M.C.D.S.; Graciliano, N.G.; Moura, F.A.; de Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Center for Food Safety and Applied Nutrition. FDA Releases Final Guidance on Enforcement Discretion for Certain NAC Products; FDA: Rockville, MD, USA, 2023. [Google Scholar]
- Lin, X.; Wei, M.; Song, F.; Xue, D.I.; Wang, Y. N-Acetylcysteine (NAC) Attenuating Apoptosis and Autophagy in RAW264.7 Cells in Response to Incubation with Mycolic Acid from Bovine Mycobacterium Tuberculosis Complex. Pol. J. Microbiol. 2020, 69, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K.-H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Jha, R. Oxidative Stress in the Poultry Gut: Potential Challenges and Interventions. Front. Vet. Sci. 2019, 6, 60. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, J.; Hou, Y.; Yi, D.; Ding, B.; Xie, J.; Zhang, Y.; Chen, H.; Wu, T.; Zhao, D.; et al. N-Acetylcysteine Supplementation Alleviates Intestinal Injury in Piglets Infected by Porcine Epidemic Diarrhea Virus. Amino Acids 2017, 49, 1931–1943. [Google Scholar] [CrossRef]
- Dinç, D.A.; Üney, K.; Tras, B. The Effect of N-Acetylcysteine on the Treatment of Clinical Endometritis and Pregnancy Rate in Dairy Cows. Eurasian J. Vet. Sci. 2014, 30, 133. [Google Scholar] [CrossRef]
- Yang, F.; Liu, L.H.; Li, X.P.; Luo, J.Y.; Zhang, Z.; Yan, Z.T.; Zhang, S.D.; Li, H.S. Short Communication: N-Acetylcysteine-Mediated Modulation of Antibiotic Susceptibility of Bovine Mastitis Pathogens. J. Dairy Sci. 2016, 99, 4300–4302. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, L.; Yi, D.; Wu, G. N-Acetylcysteine and Intestinal Health: A Focus on Its Mechanism of Action. Front. Biosci. 2015, 20, 872–891. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Peng, M.; Wang, L.; Zhao, D.; Wu, T.; Yi, D.; Hou, Y.; Wu, G. N-Acetylcysteine Improves Intestinal Function and Attenuates Intestinal Autophagy in Piglets Challenged with β-Conglycinin. Sci. Rep. 2021, 11, 1261. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Guo, L.-Y.; Feng, L.; Jiang, W.-D.; Kuang, S.-Y.; Liu, Y.; Hu, K.; Jiang, J.; Li, S.-H.; Tang, L.; et al. Soybean β-Conglycinin Induces Inflammation and Oxidation and Causes Dysfunction of Intestinal Digestion and Absorption in Fish. PLoS ONE 2013, 8, e58115. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Hou, Y.; Xiao, H.; Wang, L.; Zhang, Y.; Chen, H.; Wu, T.; Ding, B.; Hu, C.-A.A.; Wu, G. N-Acetylcysteine Improves Intestinal Function in Lipopolysaccharides-Challenged Piglets through Multiple Signaling Pathways. Amino Acids 2017, 49, 1915–1929. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, L.; Zhang, W.; Yang, Z.; Ding, B.; Zhu, H.; Liu, Y.; Qiu, Y.; Yin, Y.; Wu, G. Protective Effects of N-Acetylcysteine on Intestinal Functions of Piglets Challenged with Lipopolysaccharide. Amino Acids 2012, 43, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hou, Y.; Yi, D.; Wang, L.; Ding, B.; Chen, X.; Long, M.; Liu, Y.; Wu, G. Protective Effects of N-Acetylcysteine on Acetic Acid-Induced Colitis in a Porcine Model. BMC Gastroenterol. 2013, 13, 133. [Google Scholar] [CrossRef]
- Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T.P. N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Cell Chem. Biol. 2018, 25, 447–459.e4. [Google Scholar] [CrossRef]
- Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The Mechanism of Action of N-Acetylcysteine (NAC): The Emerging Role of H2S and Sulfane Sulfur Species. Pharmacol. Ther. 2021, 228, 107916. [Google Scholar] [CrossRef]
- Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine—A Safe Antidote for Cysteine/Glutathione Deficiency. Curr. Opin. Pharmacol. 2007, 7, 355–359. [Google Scholar] [CrossRef]
- Pei, Y.; Liu, H.; Yang, Y.; Yang, Y.; Jiao, Y.; Tay, F.R.; Chen, J. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects. Oxid. Med. Cell. Longev. 2018, 2018, 2835787. [Google Scholar] [CrossRef]
- Olsson, B.; Johansson, M.; Gabrielsson, J.; Bolme, P. Pharmacokinetics and Bioavailability of Reduced and Oxidized N-Acetylcysteine. Eur. J. Clin. Pharmacol. 1988, 34, 77–82. [Google Scholar] [CrossRef]
- Wynne, H. Drug Metabolism and Ageing. J. Br. Menopause Soc. 2005, 11, 51–56. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jackson, S.H.D. Age-Related Changes in Pharmacokinetics and Pharmacodynamics: Basic Principles and Practical Applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Raftos, J.E.; Whillier, S.; Chapman, B.E.; Kuchel, P.W. Kinetics of Uptake and Deacetylation of N-Acetylcysteine by Human Erythrocytes. Int. J. Biochem. Cell Biol. 2007, 39, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Ziv, T.; Gómez-Canela, C.; Ben-Lulu, S.; Prats, E.; Novoa-Luna, K.A.; Admon, A.; Piña, B.; Tauler, R.; Gómez-Oliván, L.M.; et al. Acrylamide Acute Neurotoxicity in Adult Zebrafish. Sci. Rep. 2018, 8, 7918. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, D.; Milzani, A.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. N-Acetylcysteine Ethyl Ester (NACET): A Novel Lipophilic Cell-Permeable Cysteine Derivative with an Unusual Pharmacokinetic Feature and Remarkable Antioxidant Potential. Biochem. Pharmacol. 2012, 84, 1522–1533. [Google Scholar] [CrossRef]
- Grinberg, L.; Fibach, E.; Amer, J.; Atlas, D. N-Acetylcysteine Amide, a Novel Cell-Permeating Thiol, Restores Cellular Glutathione and Protects Human Red Blood Cells from Oxidative Stress. Free Radic. Biol. Med. 2005, 38, 136–145. [Google Scholar] [CrossRef]
- Scopelliti, A.J.; Ryan, R.M.; Vandenberg, R.J. Molecular Determinants for Functional Differences between Alanine-Serine-Cysteine Transporter 1 and Other Glutamate Transporter Family Members. J. Biol. Chem. 2013, 288, 8250–8257. [Google Scholar] [CrossRef]
- Rushworth, G.F.; Megson, I.L. Existing and Potential Therapeutic Uses for N-Acetylcysteine: The Need for Conversion to Intracellular Glutathione for Antioxidant Benefits. Pharmacol. Ther. 2014, 141, 150–159. [Google Scholar] [CrossRef]
- Bebarta, V.S.; Kao, L.; Froberg, B.; Clark, R.F.; Lavonas, E.; Qi, M.; Delgado, J.; McDonagh, J.; Arnold, T.; Odujebe, O.; et al. A Multicenter Comparison of the Safety of Oral versus Intravenous Acetylcysteine for Treatment of Acetaminophen Overdose. Clin. Toxicol. 2010, 48, 424–430. [Google Scholar] [CrossRef]
- Feng, F.; Zhang, J.; Wang, Z.; Wu, Q.; Zhou, X. Efficacy and Safety of N-Acetylcysteine Therapy for Idiopathic Pulmonary Fibrosis: An Updated Systematic Review and Meta-Analysis. Exp. Ther. Med. 2019, 18, 802–816. [Google Scholar] [CrossRef]
- Waring, W.S.; Stephen, A.F.; Robinson, O.D.; Dow, M.A.; Pettie, J.M. Lower Incidence of Anaphylactoid Reactions to N-Acetylcysteine in Patients with High Acetaminophen Concentrations after Overdose. Clin. Toxicol. 2008, 46, 496–500. [Google Scholar] [CrossRef]
- Flanagan, R.J.; Meredith, T.J. Use of N-Acetylcysteine in Clinical Toxicology. Am. J. Med. 1991, 91, 131S–139S. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.C.; Zaretsky, M.D.; Dubs, J.G.; Roederer, M.; Anderson, M.; Green, A.; Mitra, D.; Watanabe, N.; Nakamura, H.; Tjioe, I.; et al. N-Acetylcysteine Replenishes Glutathione in HIV Infection. Eur. J. Clin. Investig. 2000, 30, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Buur, J.L.; Diniz, P.P.V.P.; Roderick, K.V.; KuKanich, B.; Tegzes, J.H. Pharmacokinetics of N-Acetylcysteine after Oral and Intravenous Administration to Healthy Cats. Am. J. Vet. Res. 2013, 74, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Petkova, T.; Milanova, A. Absorption of N-Acetylcysteine in Healthy and Mycoplasma Gallisepticum-Infected Chickens. Vet. Sci. 2021, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Zhitkovich, A. N-Acetylcysteine: Antioxidant, Aldehyde Scavenger, and More. Chem. Res. Toxicol. 2019, 32, 1318–1319. [Google Scholar] [CrossRef]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an Antioxidant and Disulphide Breaking Agent: The Reasons Why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef]
- Ferreira, L.F.; Campbell, K.S.; Reid, M.B. N-Acetylcysteine in Handgrip Exercise: Plasma Thiols and Adverse Reactions. Int. J. Sport. Nutr. Exerc. Metab. 2011, 21, 146–154. [Google Scholar] [CrossRef]
- Arstall, M.A.; Yang, J.; Stafford, I.; Betts, W.H.; Horowitz, J.D. N-Acetylcysteine in Combination with Nitroglycerin and Streptokinase for the Treatment of Evolving Acute Myocardial Infarction. Safety and Biochemical Effects. Circulation 1995, 92, 2855–2862. [Google Scholar] [CrossRef]
- Travaline, J.M.; Sudarshan, S.; Roy, B.G.; Cordova, F.; Leyenson, V.; Criner, G.J. Effect of N-Acetylcysteine on Human Diaphragm Strength and Fatigability. Am. J. Respir. Crit. Care Med. 1997, 156, 1567–1571. [Google Scholar] [CrossRef]
- Dueholm, M.; Nielsen, C.; Thorshauge, H.; Evald, T.; Hansen, N.C.; Madsen, H.D.; Maltbaek, N. N-Acetylcysteine by Metered Dose Inhaler in the Treatment of Chronic Bronchitis: A Multi-Centre Study. Respir. Med. 1992, 86, 89–92. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of Liver Diseases in the World. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Acetaminophen. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1983 (accessed on 6 October 2023).
- Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-Induced Hepatotoxicity: A Comprehensive Update. J. Clin. Transl. Hepatol. 2016, 4, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Schwalfenberg, G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 9949453. [Google Scholar] [CrossRef]
- Francque, S.M.; Marchesini, G.; Kautz, A.; Walmsley, M.; Dorner, R.; Lazarus, J.V.; Zelber-Sagi, S.; Hallsworth, K.; Busetto, L.; Frühbeck, G.; et al. Non-Alcoholic Fatty Liver Disease: A Patient Guideline. JHEP Rep. 2021, 3, 100322. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Marcheggiani, F.; Cirilli, I.; Ziqubu, K.; Shabalala, S.C.; Johnson, R.; Louw, J.; et al. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants 2020, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- Khoshbaten, M.; Aliasgarzadeh, A.; Masnadi, K.; Tarzamani, M.K.; Farhang, S.; Babaei, H.; Kiani, J.; Zaare, M.; Najafipoor, F. N-Acetylcysteine Improves Liver Function in Patients with Non-Alcoholic Fatty Liver Disease. Hepat. Mon. 2010, 10, 12–16. [Google Scholar] [PubMed]
- Mathurin, P.; Moussalli, J.; Cadranel, J.F.; Thibault, V.; Charlotte, F.; Dumouchel, P.; Cazier, A.; Huraux, J.M.; Devergie, B.; Vidaud, M.; et al. Slow Progression Rate of Fibrosis in Hepatitis C Virus Patients with Persistently Normal Alanine Transaminase Activity. Hepatology 1998, 27, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Puyo, C.A. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther. Clin. Risk Manag. 2020, 16, 1047–1055. [Google Scholar] [CrossRef]
- Guerini, M.; Condrò, G.; Friuli, V.; Maggi, L.; Perugini, P. N-Acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review. Pharmaceuticals 2022, 15, 217. [Google Scholar] [CrossRef]
- Dauletbaev, N.; Fischer, P.; Aulbach, B.; Gross, J.; Kusche, W.; Thyroff-Friesinger, U.; Wagner, T.O.F.; Bargon, J. A Phase II Study on Safety and Efficacy of High-Dose N-Acetylcysteine in Patients with Cystic Fibrosis. Eur. J. Med. Res. 2009, 14, 352–358. [Google Scholar] [CrossRef]
- Chronic Obstructive Pulmonary Disease (COPD)|CDC. Available online: https://www.cdc.gov/copd/index.html (accessed on 6 October 2023).
- Santus, P.; Corsico, A.; Solidoro, P.; Braido, F.; Di Marco, F.; Scichilone, N. Oxidative Stress and Respiratory System: Pharmacological and Clinical Reappraisal of N-Acetylcysteine. COPD 2014, 11, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Messier, E.M.; Day, B.J.; Bahmed, K.; Kleeberger, S.R.; Tuder, R.M.; Bowler, R.P.; Chu, H.W.; Mason, R.J.; Kosmider, B. N-Acetylcysteine Protects Murine Alveolar Type II Cells from Cigarette Smoke Injury in a Nuclear Erythroid 2-Related Factor-2-Independent Manner. Am. J. Respir. Cell Mol. Biol. 2013, 48, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Kasielski, M.; Nowak, D. Long-Term Administration of N-Acetylcysteine Decreases Hydrogen Peroxide Exhalation in Subjects with Chronic Obstructive Pulmonary Disease. Respir. Med. 2001, 95, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Influenza|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/diseases-conditions/influenza (accessed on 6 October 2023).
- Hui, D.S.; Lee, N.; Chan, P.K.; Beigel, J.H. The Role of Adjuvant Immunomodulatory Agents for Treatment of Severe Influenza. Antivir. Res. 2018, 150, 202–216. [Google Scholar] [CrossRef]
- Casanova, T.; Garigliany, M. N-Acetylcysteine: An Old Drug with Variable Anti-Influenza Properties. J. Controv. Biomed. Res. 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Geiler, J.; Michaelis, M.; Naczk, P.; Leutz, A.; Langer, K.; Doerr, H.-W.; Cinatl, J. N-Acetyl-L-Cysteine (NAC) Inhibits Virus Replication and Expression of pro-Inflammatory Molecules in A549 Cells Infected with Highly Pathogenic H5N1 Influenza A Virus. Biochem. Pharmacol. 2010, 79, 413–420. [Google Scholar] [CrossRef]
- De Flora, S.; Grassi, C.; Carati, L. Attenuation of Influenza-like Symptomatology and Improvement of Cell-Mediated Immunity with Long-Term N-Acetylcysteine Treatment. Eur. Respir. J. 1997, 10, 1535–1541. [Google Scholar] [CrossRef]
- Knobil, K.; Choi, A.M.; Weigand, G.W.; Jacoby, D.B. Role of Oxidants in Influenza Virus-Induced Gene Expression. Am. J. Physiol. 1998, 274, L134–L142. [Google Scholar] [CrossRef]
- Kujime, K.; Hashimoto, S.; Gon, Y.; Shimizu, K.; Horie, T. P38 Mitogen-Activated Protein Kinase and c-Jun-NH2-Terminal Kinase Regulate RANTES Production by Influenza Virus-Infected Human Bronchial Epithelial Cells. J. Immunol. 2000, 164, 3222–3228. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Li, C.-H.; Wang, C.-L.; Xu, M.-J.; Xu, T.; Wei, D.; Liu, B.-J.; Wang, G.-H.; Tian, S.-F. N-Acetyl-l-Cystine (NAC) Protects against H9N2 Swine Influenza Virus-Induced Acute Lung Injury. Int. Immunopharmacol. 2014, 22, 1–8. [Google Scholar] [CrossRef]
- Boon, A.C.M.; Vos, A.P.; Graus, Y.M.F.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E. In Vitro Effect of Bioactive Compounds on Influenza Virus Specific B- and T-Cell Responses. Scand. J. Immunol. 2002, 55, 24–32. [Google Scholar] [CrossRef]
- Garigliany, M.-M.O.; Desmecht, D.J. N-Acetylcysteine Lacks Universal Inhibitory Activity against Influenza A Viruses. J. Negat. Results Biomed. 2011, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, R.R.; Padhy, B.M.; Das, S.; Meher, B.R. Therapeutic Potential of N-Acetyl Cysteine (NAC) in Preventing Cytokine Storm in COVID-19: Review of Current Evidence. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2802–2807. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why Does COVID-19 Disproportionately Affect Older People? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef]
- Ungheri, D.; Pisani, C.; Sanson, G.; Bertani, A.; Schioppacassi, G.; Delgado, R.; Sironi, M.; Ghezzi, P. Protective Effect of N-Acetylcysteine in a Model of Influenza Infection in Mice. Int. J. Immunopathol. Pharmacol. 2000, 13, 123–128. [Google Scholar] [PubMed]
- Poe, F.L.; Corn, J. N-Acetylcysteine: A Potential Therapeutic Agent for SARS-CoV-2. Med. Hypotheses 2020, 143, 109862. [Google Scholar] [CrossRef]
- Debnath, U.; Mitra, A.; Dewaker, V.; Prabhakar, Y.S.; Tadala, R.; Krishnan, K.; Wagh, P.; Velusamy, U.; Subramani, C.; Agarwal, S.; et al. N-Acetyl Cysteine: A Tool to Perturb SARS-CoV-2 Spike Protein Conformation. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Ibrahim, H.; Perl, A.; Smith, D.; Lewis, T.; Kon, Z.; Goldenberg, R.; Yarta, K.; Staniloae, C.; Williams, M. Therapeutic Blockade of Inflammation in Severe COVID-19 Infection with Intravenous N-Acetylcysteine. Clin. Immunol. 2020, 219, 108544. [Google Scholar] [CrossRef]
- Taylor, M.D.; Allada, V.; Moritz, M.L.; Nowalk, A.J.; Sindhi, R.; Aneja, R.K.; Torok, K.; Morowitz, M.J.; Michaels, M.; Carcillo, J.A. Use of C-Reactive Protein and Ferritin Biomarkers in Daily Pediatric Practice. Pediatr. Rev. 2020, 41, 172–183. [Google Scholar] [CrossRef]
- Irrgang, P.; Gerling, J.; Kocher, K.; Lapuente, D.; Steininger, P.; Habenicht, K.; Wytopil, M.; Beileke, S.; Schäfer, S.; Zhong, J.; et al. Class Switch toward Noninflammatory, Spike-Specific IgG4 Antibodies after Repeated SARS-CoV-2 mRNA Vaccination. Sci. Immunol. 2023, 8, eade2798. [Google Scholar] [CrossRef]
- Chauhan, R.; Raina, V.; Nandi, S.P. Prevalence of Autoimmune Diseases and Its Challenges in Diagnosis. Crit. Rev. Immunol. 2019, 39, 189–201. [Google Scholar] [CrossRef] [PubMed]
- El Menyiy, N.; El Allam, A.; Aboulaghras, S.; Jaouadi, I.; Bakrim, S.; El Omari, N.; Shariati, M.A.; Miftakhutdinov, A.; Wilairatana, P.; Mubarak, M.S.; et al. Inflammatory Auto-Immune Diseases of the Intestine and Their Management by Natural Bioactive Compounds. Biomed. Pharmacother. 2022, 151, 113158. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Esmaily, H.; Baeeri, M.; Mohammadirad, A.; Fallah, S.; Abdollahi, M. Molecular Evidences on the Benefit of N-Acetylcysteine in Experimental Colitis. Cent. Eur. J. Biol. 2008, 3, 135–142. [Google Scholar] [CrossRef]
- Masnadi Shirazi, K.; Sotoudeh, S.; Masnadi Shirazi, A.; Moaddab, S.-Y.; Nourpanah, Z.; Nikniaz, Z. Effect of N-Acetylcysteine on Remission Maintenance in Patients with Ulcerative Colitis: A Randomized, Double-Blind Controlled Clinical Trial. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101532. [Google Scholar] [CrossRef] [PubMed]
- Bartekova, M.; Barancik, M.; Ferenczyova, K.; Dhalla, N.S. Beneficial Effects of N-Acetylcysteine and N-Mercaptopropionylglycine on Ischemia Reperfusion Injury in the Heart. Curr. Med. Chem. 2018, 25, 355–366. [Google Scholar] [CrossRef]
- Li, X.; Jiang, M.; Tan, T.; Narasimhulu, C.A.; Xiao, Y.; Hao, H.; Cui, Y.; Zhang, J.; Liu, L.; Yang, C.; et al. N-Acetylcysteine Prevents Oxidized Low-Density Lipoprotein-Induced Reduction of MG53 and Enhances MG53 Protective Effect on Bone Marrow Stem Cells. J. Cell. Mol. Med. 2020, 24, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Narasimhulu, C.A.; Liu, L.; Zhang, Q.; Liu, P.Z.; Li, X.; Xiao, Y.; Zhang, J.; Hao, H.; Xie, X.; et al. N-Acetylcysteine Inhibits in Vivo Oxidation of Native Low-Density Lipoprotein. Sci. Rep. 2015, 5, 16339. [Google Scholar] [CrossRef]
- Andrews, N.P.; Prasad, A.; Quyyumi, A.A. N-Acetylcysteine Improves Coronary and Peripheral Vascular Function. J. Am. Coll. Cardiol. 2001, 37, 117–123. [Google Scholar] [CrossRef]
- Nakai, K.; Nishiura, A.; Ishikawa, E.; Moriue, J.; Moriue, T.; Kubota, Y. Topical N-Acetylcysteine Can Restore Skin Barrier Function in Healthy Volunteers and Atopic Dermatitis Patients. J. Dermatol. Sci. 2017, 86, e32. [Google Scholar] [CrossRef]
- Langer, S.S.; Cardili, R.N.; Melo, J.M.L.; Ferriani, M.P.L.; Moreno, A.S.; Dias, M.M.; Bueno-Filho, R.; Pocente, R.H.C.; Roxo-Junior, P.; Silva, J.; et al. Efficacy of House Dust Mite Sublingual Immunotherapy in Patients with Atopic Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Allergy Clin. Immunol. Pract. 2022, 10, 539–549.e7. [Google Scholar] [CrossRef]
- Mokhtari, V.; Afsharian, P.; Shahhoseini, M.; Kalantar, S.M.; Moini, A. A Review on Various Uses of N-Acetyl Cysteine. Cell J. 2017, 19, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lasram, M.M.; Dhouib, I.B.; Annabi, A.; El Fazaa, S.; Gharbi, N. A Review on the Possible Molecular Mechanism of Action of N-Acetylcysteine against Insulin Resistance and Type-2 Diabetes Development. Clin. Biochem. 2015, 48, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.; Roehrs, M.; Bairros, A.; Moro, A.; Charão, M.; Araújo, F.; Valentini, J.; Arbo, M.; Brucker, N.; Moresco, R.; et al. N-Acetylcysteine on Oxidative Damage in Diabetic Rats. Drug Chem. Toxicol. 2011, 34, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Kaneto, H.; Xu, G.; Song, K.H.; Suzuma, K.; Bonner-Weir, S.; Sharma, A.; Weir, G.C. Activation of the Hexosamine Pathway Leads to Deterioration of Pancreatic Beta-Cell Function through the Induction of Oxidative Stress. J. Biol. Chem. 2001, 276, 31099–31104. [Google Scholar] [CrossRef]
- Elbini Dhouib, I.; Jallouli, M.; Annabi, A.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. A Minireview on N-Acetylcysteine: An Old Drug with New Approaches. Life Sci. 2016, 151, 359–363. [Google Scholar] [CrossRef]
- Tieu, S.; Charchoglyan, A.; Wagter-Lesperance, L.; Karimi, K.; Bridle, B.W.; Karrow, N.A.; Mallard, B.A. Immunoceuticals: Harnessing Their Immunomodulatory Potential to Promote Health and Wellness. Nutrients 2022, 14, 4075. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Chen, Y.; Zhang, L.; Wang, T. N-Acetylcysteine Protects against Intrauterine Growth Retardation-Induced Intestinal Injury via Restoring Redox Status and Mitochondrial Function in Neonatal Piglets. Eur. J. Nutr. 2019, 58, 3335–3347. [Google Scholar] [CrossRef]
- Hao, Y.; Xing, M.; Gu, X. Research Progress on Oxidative Stress and Its Nutritional Regulation Strategies in Pigs. Animals 2021, 11, 1384. [Google Scholar] [CrossRef]
- Xu, C.C.; Yang, S.F.; Zhu, L.H.; Cai, X.; Sheng, Y.S.; Zhu, S.W.; Xu, J.X. Regulation of N-Acetyl Cysteine on Gut Redox Status and Major Microbiota in Weaned Piglets. J. Anim. Sci. 2014, 92, 1504–1511. [Google Scholar] [CrossRef]
- Xiong, X.; Tan, B.; Song, M.; Ji, P.; Kim, K.; Yin, Y.; Liu, Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front. Vet. Sci. 2019, 6, 46. [Google Scholar] [CrossRef]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of Weaning and an Antioxidant Blend on Intestinal Barrier Function and Antioxidant Status in Pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef]
- Koivusalo, A.; Kauppinen, H.; Anttila, A.; Rautelin, H.; Jusufovic, J.; Lindahl, H.; Rintala, R. Intraluminal Casein Model of Necrotizing Enterocolitis for Assessment of Mucosal Destruction, Bacterial Translocation, and the Effects of Allopurinol and N-Acetylcysteine. Pediatr. Surg. Int. 2002, 18, 712–717. [Google Scholar] [CrossRef]
- Jung, K.; Saif, L.J. Porcine Epidemic Diarrhea Virus Infection: Etiology, Epidemiology, Pathogenesis and Immunoprophylaxis. Vet. J. 2015, 204, 134–143. [Google Scholar] [CrossRef]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef]
- De Vliegher, S.; Ohnstad, I.; Piepers, S. Management and Prevention of Mastitis: A Multifactorial Approach with a Focus on Milking, Bedding and Data-Management. J. Integr. Agric. 2018, 17, 1214–1233. [Google Scholar] [CrossRef]
- Mbindyo, C.M.; Gitao, G.C.; Mulei, C.M. Prevalence, Etiology, and Risk Factors of Mastitis in Dairy Cattle in Embu and Kajiado Counties, Kenya. Vet. Med. Int. 2020, 2020, 8831172. [Google Scholar] [CrossRef]
- Negasee, K. Clinical Metritis and Endometritis in Diary Cattle: A Review. Vet. Med. Open J. 2020, 5, 51–56. [Google Scholar] [CrossRef]
- Constantin, N.T. The effect of intra-uterine treatment with diluted n-Acetylcysteine on bovine endometritis. Sci. Works. Ser. C Vet. Med. 2018, 64, 31–33. [Google Scholar]
- Peel, D.S. The Effect of Market Forces on Bovine Respiratory Disease. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 497–508. [Google Scholar] [CrossRef]
- Kirchhoff, J.; Uhlenbruck, S.; Goris, K.; Keil, G.M.; Herrler, G. Three Viruses of the Bovine Respiratory Disease Complex Apply Different Strategies to Initiate Infection. Vet. Res. 2014, 45, 20. [Google Scholar] [CrossRef]
- Antonis, A.F.G.; Swanenburg, M.; Wisselink, H.J.; Smid, B.; van Klink, E.; Hagenaars, T.J. Respiratory Pathogens in Veal Calves: Inventory of Circulating Pathogens. Vet. Microbiol. 2022, 274, 109571. [Google Scholar] [CrossRef]
- Gershwin, L.J.; Van Eenennaam, A.L.; Anderson, M.L.; McEligot, H.A.; Shao, M.X.; Toaff-Rosenstein, R.; Taylor, J.F.; Neibergs, H.L.; Womack, J. Bovine Respiratory Disease Complex Coordinated Agricultural Project Research Team Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex. PLoS ONE 2015, 10, e0142479. [Google Scholar] [CrossRef]
- Valdivia, A.G.; Martínez, A.; Damián, F.J.; Quezada, T.; Ortíz, R.; Martínez, C.; Llamas, J.; Rodríguez, M.L.; Yamamoto, L.; Jaramillo, F.; et al. Efficacy of N-Acetylcysteine to Reduce the Effects of Aflatoxin B1 Intoxication in Broiler Chickens. Poult. Sci. 2001, 80, 727–734. [Google Scholar] [CrossRef]
- Li, C.; Peng, M.; Liao, M.; Guo, S.; Hou, Y.; Ding, B.; Wu, T.; Yi, D. Effects of N-Acetylcysteine on the Energy Status and Antioxidant Capacity in Heart and Liver of Cold-Stressed Broilers. Asian-Australas. J. Anim. Sci. 2020, 33, 1444–1454. [Google Scholar] [CrossRef]
- Yi, D.; Hou, Y.; Tan, L.; Liao, M.; Xie, J.; Wang, L.; Ding, B.; Yang, Y.; Gong, J. N-Acetylcysteine Improves the Growth Performance and Intestinal Function in the Heat-Stressed Broilers. Anim. Feed. Sci. Technol. 2016, 220, 83–92. [Google Scholar] [CrossRef]
- Meadows, I.; Dvm, S.G.-B. The 10 Most Common Toxicoses in Dogs. Vet. Med.-Bonn. Springs Edwardsville 2006, 101, 142. [Google Scholar]
- Avizeh, R.; Najafzadeh, H.; Jalali, M.R.; Shirali, S. Evaluation of Prophylactic and Therapeutic Effects of Silymarin and N-Acetylcysteine in Acetaminophen-Induced Hepatotoxicity in Cats. J. Vet. Pharmacol. Ther. 2010, 33, 95–99. [Google Scholar] [CrossRef]
- Richardson, J.A. Management of Acetaminophen and Ibuprofen Toxicoses in Dogs and Cats. J. Veter. Emerg. Crit. 2000, 10, 285–291. [Google Scholar] [CrossRef]
- Perry, H. Acetaminophen. In Clinical Management of Poisoning and Drug Overdose; W.B. Saunders Co.: Philadelphia, PA, USA, 1998; pp. 188–198. [Google Scholar]
- Fisher, D.J. Disorders of Red Blood Cells. In Handbook of Small Animal Practice; W.B. Saunders: Philadelphia, PA, USA, 1997; pp. 656–673. [Google Scholar]
- Osweiler, G. Household Drugs. In Handbook of Small Animal Practice; W.B. Saunders: Philadelphia, PA, USA, 1997; pp. 1279–1283. [Google Scholar]
- Allen, A.L. The Diagnosis of Acetaminophen Toxicosis in a Cat. Can. Vet. J. 2003, 44, 509–510. [Google Scholar]
- Osweiler, G.D. Over-the-Counter Drugs and Illicit Drugs of Abuse. In Toxicology; Williams & Wilkins: Baltimore, MD, USA, 1996; pp. 303–304. [Google Scholar]
- Oehme, F.W. Aspirin and Acetaminophen. In Kirk’s Current Veterinary Therapy IX; W.B. Saunders: Philadelphia, PA, USA, 1986; pp. 188–190. [Google Scholar]
- Plumb, D.C. Veterinary Drug Handbook, 3rd ed.; Wiley-Blackwell: Oxford, UK, 1999. [Google Scholar]
- Sellon, R.K. Acetaminophen. In Small Animal Toxicology; W.B. Saunders: Philadelphia, PA, USA, 2001; pp. 388–395. [Google Scholar]
- Dart, R.C. The 5 Minute Toxicology Consult; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Taylor, N.; Dhupa, N. Acetaminophen Toxicity in Cats and Dogs. Compend. Contin. Educ. Pract. Vet. 2000, 22, 160. [Google Scholar]
- Bistner, S. Clinical Diagnosis and Treatment of Infectious Keratitis. Compend. Contin. Educ. Pract. Vet. 1981, 3, 1056–1066. [Google Scholar]
- Whitley, R.D. Canine and Feline Primary Ocular Bacterial Infections. Vet. Clin. N. Am. Small Anim. Pract. 2000, 30, 1151–1167. [Google Scholar] [CrossRef] [PubMed]
- Nasisse, M.P. Canine Ulcerative Keratitis. Compend. Contin. Educ. Pract. Vet. 1985, 7, 686–701. [Google Scholar]
- Belknap, E.B. Corneal Emergencies. Top. Companion Anim. Med. 2015, 30, 74–80. [Google Scholar] [CrossRef]
- Jeng, B.H.; Gritz, D.C.; Kumar, A.B.; Holsclaw, D.S.; Porco, T.C.; Smith, S.D.; Whitcher, J.P.; Margolis, T.P.; Wong, I.G. Epidemiology of Ulcerative Keratitis in Northern California. Arch. Ophthalmol. 2010, 128, 1022–1028. [Google Scholar] [CrossRef]
- Reed, Z.; Thomasy, S.M.; Good, K.L.; Maggs, D.J.; Magdesian, K.G.; Pusterla, N.; Hollingsworth, S.R. Equine Keratomycoses in California from 1987 to 2010 (47 Cases). Equine Vet. J. 2013, 45, 361–366. [Google Scholar] [CrossRef]
- Ekapopphan, D.; Srisutthakarn, A.; Moonarmart, W.; Buddhirongawatr, R.; Bangphoomi, N. Identification and Antimicrobial Susceptibility of Microorganisms Isolated from Severe Corneal Ulcers of Dogs in Thailand. J. Vet. Med. Sci. 2018, 80, 1259–1265. [Google Scholar] [CrossRef]
- Goldreich, J.E.; Franklin-Guild, R.J.; Ledbetter, E.C. Feline Bacterial Keratitis: Clinical Features, Bacterial Isolates, and In Vitro Antimicrobial Susceptibility Patterns. Vet. Ophthalmol. 2020, 23, 90–96. [Google Scholar] [CrossRef]
- Hewitt, J.S.; Allbaugh, R.A.; Kenne, D.E.; Sebbag, L. Prevalence and Antibiotic Susceptibility of Bacterial Isolates from Dogs with Ulcerative Keratitis in Midwestern United States. Front. Vet. Sci. 2020, 7, 583965. [Google Scholar] [CrossRef]
- Hindley, K.E.; Groth, A.D.; King, M.; Graham, K.; Billson, F.M. Bacterial Isolates, Antimicrobial Susceptibility, and Clinical Characteristics of Bacterial Keratitis in Dogs Presenting to Referral Practice in Australia. Vet. Ophthalmol. 2016, 19, 418–426. [Google Scholar] [CrossRef]
- Lin, C.-T.; Petersen-Jones, S.M. Antibiotic Susceptibility of Bacterial Isolates from Corneal Ulcers of Dogs in Taiwan. J. Small Anim. Pract. 2007, 48, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.R.; Rocha, M.F.G.; Brito, E.H.S.; Girão, M.D.; Monteiro, A.J.; Teixeira, M.F.S.; Sidrim, J.J.C. Survey of Bacterial Microorganisms in the Conjunctival Sac of Clinically Normal Dogs and Dogs with Ulcerative Keratitis in Fortaleza, Ceará, Brazil. Vet. Ophthalmol. 2005, 8, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Tolar, E.L.; Hendrix, D.V.H.; Rohrbach, B.W.; Plummer, C.E.; Brooks, D.E.; Gelatt, K.N. Evaluation of Clinical Characteristics and Bacterial Isolates in Dogs with Bacterial Keratitis: 97 Cases (1993–2003). J. Am. Vet. Med. Assoc. 2006, 228, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Walter, H.; Verspohl, J.; Meißner, J.; Oltmanns, H.; Geks, A.K.; Busse, C. In Vitro Antimicrobial Activity of N-Acetylcysteine against Pathogens Most Commonly Associated with Infectious Keratitis in Dogs and Cats. Antibiotics 2023, 12, 559. [Google Scholar] [CrossRef]
- Yilancioglu, K. Antimicrobial Drug Interactions: Systematic Evaluation of Protein and Nucleic Acid Synthesis Inhibitors. Antibiotics 2019, 8, 114. [Google Scholar] [CrossRef]
- Joksimovic, M.; Ford, B.A.; Lazic, T.; Soldatovic, I.; Luzetsky, S.; Grozdanic, S. Antibiotic Recommendations for Treatment of Canine Stromal Corneal Ulcers. Vet. Sci. 2023, 10, 66. [Google Scholar] [CrossRef]
- Lin, A.; Rhee, M.K.; Akpek, E.K.; Amescua, G.; Farid, M.; Garcia-Ferrer, F.J.; Varu, D.M.; Musch, D.C.; Dunn, S.P.; Mah, F.S.; et al. Bacterial Keratitis Preferred Practice Pattern®. Ophthalmology 2019, 126, P1–P55. [Google Scholar] [CrossRef]
- Dave, S.B.; Toma, H.S.; Kim, S.J. Changes in Ocular Flora in Eyes Exposed to Ophthalmic Antibiotics. Ophthalmology 2013, 120, 937–941. [Google Scholar] [CrossRef]
- McClellan, K.A. Mucosal Defense of the Outer Eye. Surv. Ophthalmol. 1997, 42, 233–246. [Google Scholar] [CrossRef]
- Tsvetanova, A.; Powell, R.M.; Tsvetanov, K.A.; Smith, K.M.; Gould, D.J. Melting Corneal Ulcers (Keratomalacia) in Dogs: A 5-Year Clinical and Microbiological Study (2014–2018). Vet. Ophthalmol. 2021, 24, 265–278. [Google Scholar] [CrossRef]
- Chan, W.Y.; Khazandi, M.; Hickey, E.E.; Page, S.W.; Trott, D.J.; Hill, P.B. In Vitro Antimicrobial Activity of Seven Adjuvants against Common Pathogens Associated with Canine Otitis Externa. Vet. Dermatol. 2019, 30, 133-e38. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; De Vecchi, E.; Mattina, R.; Romanò, C.L. Activity of N-Acetyl-L-Cysteine against Biofilm of Staphylococcus aureus and Pseudomonas aeruginosa on Orthopedic Prosthetic Materials. Int. J. Artif. Organs 2013, 36, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Eroshenko, D.; Polyudova, T.; Korobov, V. N-Acetylcysteine Inhibits Growth, Adhesion and Biofilm Formation of Gram-Positive Skin Pathogens. Microb. Pathog. 2017, 105, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-H.; Choi, Y.-S.; Lee, H.-W.; Heo, J.S.; Chang, S.W.; Lee, J.-Y. Antibacterial Effects of N-Acetylcysteine against Endodontic Pathogens. J. Microbiol. 2016, 54, 322–329. [Google Scholar] [CrossRef]
- Onger, M.E.; Gocer, H.; Emir, D.; Kaplan, S. N-Acetylcysteine Eradicates Pseudomonas Aeruginosa Biofilms in Bone Cement. Scanning 2016, 38, 766–770. [Google Scholar] [CrossRef]
- Quah, S.Y.; Wu, S.; Lui, J.N.; Sum, C.P.; Tan, K.S. N-Acetylcysteine Inhibits Growth and Eradicates Biofilm of Enterococcus Faecalis. J. Endod. 2012, 38, 81–85. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, L.; Li, J.; Li, J.; Cui, L.; Dong, J.; Meng, X.; Qian, C.; Wang, H. Antibiotic Resistance, Biofilm Formation, and Virulence Factors of Isolates of Staphylococcus Pseudintermedius from Healthy Dogs and Dogs with Keratitis. Front. Vet. Sci. 2022, 9, 903633. [Google Scholar] [CrossRef]
- Lorenzo, D. Chloramphenicol Resurrected: A Journey from Antibiotic Resistance in Eye Infections to Biofilm and Ocular Microbiota. Microorganisms 2019, 7, 278. [Google Scholar] [CrossRef]
- Juárez-Verdayes, M.A.; Reyes-López, M.A.; Cancino-Díaz, M.E.; Muñoz-Salas, S.; Rodríguez-Martínez, S.; de la Serna, F.J.Z.-D.; Hernández-Rodríguez, C.H.; Cancino-Díaz, J.C. Isolation, Vancomycin Resistance and Biofilm Production of Staphylococcus Epidermidis from Patients with Conjunctivitis, Corneal Ulcers, and Endophthalmitis. Rev. Latinoam. Microbiol. 2006, 48, 238–246. [Google Scholar]
- Płoneczka-Janeczko, K.; Lis, P.; Bierowiec, K.; Rypuła, K.; Chorbiński, P. Identification of Bap and icaA Genes Involved in Biofilm Formation in Coagulase Negative Staphylococci Isolated from Feline Conjunctiva. Vet. Res. Commun. 2014, 38, 337–346. [Google Scholar] [CrossRef]
- Eghtedari, Y.; Oh, L.J.; Girolamo, N.D.; Watson, S.L. The Role of Topical N-Acetylcysteine in Ocular Therapeutics. Surv. Ophthalmol. 2022, 67, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Sebbag, L.; Allbaugh, R.A.; Wehrman, R.F.; Uhl, L.K.; Ben-Shlomo, G.; Chen, T.; Mochel, J.P. Fluorophotometric Assessment of Tear Volume and Turnover Rate in Healthy Dogs and Cats. J. Ocul. Pharmacol. Ther. 2019, 35, 497–502. [Google Scholar] [CrossRef]
- Wang, S.; Huo, H.; Wu, H.; Ma, F.; Liao, J.; Li, X.; Ding, Q.; Tang, Z.; Guo, J. Effects of NAC Assisted Insulin on Cholesterol Metabolism Disorders in Canine Type 1 Diabetes Mellitus. Life Sci. 2023, 313, 121193. [Google Scholar] [CrossRef] [PubMed]
- Rand, J.S.; Fleeman, L.M.; Farrow, H.A.; Appleton, D.J.; Lederer, R. Canine and Feline Diabetes Mellitus: Nature or Nurture? J. Nutr. 2004, 134, 2072S–2080S. [Google Scholar] [CrossRef] [PubMed]
- Gilor, C. Discussing Prognosis for Canine Diabetes Mellitus: Do We Have Relevant Data? Vet. Rec. 2019, 185, 689–691. [Google Scholar] [CrossRef] [PubMed]
- La Sala, L.; Prattichizzo, F.; Ceriello, A. The Link between Diabetes and Atherosclerosis. Eur. J. Prev. Cardiol. 2019, 26, 15–24. [Google Scholar] [CrossRef]
- Kangralkar, V.A.; Patil, S.D.; Bandivadekar, R.M. Oxidative Stress and Diabetes: A Review. Int. J. Pharm. Appl. 2010, 1, 38–45. [Google Scholar]
- Ma, F.; Li, H.; Huo, H.; Han, Q.; Liao, J.; Zhang, H.; Li, Y.; Pan, J.; Hu, L.; Guo, J.; et al. N-Acetyl-L-Cysteine Alleviates FUNDC1-Mediated Mitophagy by Regulating Mitochondrial Dynamics in Type 1 Diabetic Nephropathy Canine. Life Sci. 2023, 313, 121278. [Google Scholar] [CrossRef]
- Huo, H.; Wu, H.; Ma, F.; Li, X.; Liao, J.; Hu, L.; Han, Q.; Li, Y.; Pan, J.; Zhang, H.; et al. N-Acetyl-L-Cysteine Ameliorates Hepatocyte Pyroptosis of Dog Type 1 Diabetes Mellitus via Suppression of NLRP3/NF-κB Pathway. Life Sci. 2022, 306, 120802. [Google Scholar] [CrossRef]
- Gaykwad, C.; Garkhal, J.; Chethan, G.E.; Nandi, S.; De, U.K. Amelioration of Oxidative Stress Using N-acetylcysteine in Canine Parvoviral Enteritis. J. Vet. Pharmacol. Ther. 2018, 41, 68–75. [Google Scholar] [CrossRef]
- Hueffer, K.; Parker, J.S.L.; Weichert, W.S.; Geisel, R.E.; Sgro, J.-Y.; Parrish, C.R. The Natural Host Range Shift and Subsequent Evolution of Canine Parvovirus Resulted from Virus-Specific Binding to the Canine Transferrin Receptor. J. Virol. 2003, 77, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Canine Parvovirus—Digestive System. Available online: https://www.msdvetmanual.com/digestive-system/diseases-of-the-stomach-and-intestines-in-small-animals/canine-parvovirus (accessed on 7 October 2023).
- Canine Parvovirus. Available online: https://www.avma.org/resources-tools/pet-owners/petcare/canine-parvovirus (accessed on 7 October 2023).
- Luo, Y.; Qiu, J. Parvovirus Infection-Induced DNA Damage Response. Future Virol. 2013, 8, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Nykky, J.; Vuento, M.; Gilbert, L. Role of Mitochondria in Parvovirus Pathology. PLoS ONE 2014, 9, e86124. [Google Scholar] [CrossRef]
- Panda, D.; Patra, R.C.; Nandi, S.; Swarup, D. Oxidative Stress Indices in Gastroenteritis in Dogs with Canine Parvoviral Infection. Res. Vet. Sci. 2009, 86, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Kayar, A.; Dokuzeylul, B.; Kandemir, F.M.; Kirbas, A.; Bayrakal, A.; Or, M.E. Total Oxidant and Antioxidant Capacities, Nitric Oxide and Malondialdehyde Levels in Cats Seropositive for the Feline Coronavirus. Vet. Med. 2015, 60, 274–281. [Google Scholar] [CrossRef]
- Durgut, R.; Ataseven, V.S.; Sağkan-Öztürk, A.; Oztürk, O.H. Evaluation of Total Oxidative Stress and Total Antioxidant Status in Cows with Natural Bovine Herpesvirus-1 Infection. J. Anim. Sci. 2013, 91, 3408–3412. [Google Scholar] [CrossRef]
- Stukelj, M.; Toplak, I.; Svete, A.N. Blood Antioxidant Enzymes (SOD, GPX), Biochemical and Haematological Parameters in Pigs Naturally Infected with Porcine Reproductive and Respiratory Syndrome Virus. Pol. J. Vet. Sci. 2013, 16, 369–376. [Google Scholar] [CrossRef]
- Kumar De, U.; Mukherjee, R.; Nandi, S.; Patel, B.H.M.; Dimri, U.; Ravishankar, C.; Verma, A.K. Alterations in Oxidant/Antioxidant Balance, High-Mobility Group Box 1 Protein and Acute Phase Response in Cross-Bred Suckling Piglets Suffering from Rotaviral Enteritis. Trop. Anim. Health Prod. 2014, 46, 1127–1133. [Google Scholar] [CrossRef]
- Beck, M.A. The Influence of Antioxidant Nutrients on Viral Infection. Nutr. Rev. 1998, 56, S140–S146. [Google Scholar] [CrossRef]
- Chandrasena, L.G.; Peiris, H.; Kamani, J.; Wanigasuriya, P.; Jayaratne, S.D.; Wijayasiri, W.A.A.; Wijesekara, G.U.S. Antioxidants in Patients with Dengue Viral Infection. Southeast Asian J. Trop. Med. Public Health 2014, 45, 1015–1022. [Google Scholar]
- Crump, K.E.; Langston, P.K.; Rajkarnikar, S.; Grayson, J.M. Antioxidant Treatment Regulates the Humoral Immune Response during Acute Viral Infection. J. Virol. 2013, 87, 2577–2586. [Google Scholar] [CrossRef] [PubMed]
- Chethan, G.E.; De, U.K.; Singh, M.K.; Chander, V.; Raja, R.; Paul, B.R.; Choudhary, O.P.; Thakur, N.; Sarma, K.; Prasad, H. Antioxidant Supplementation during Treatment of Outpatient Dogs with Parvovirus Enteritis Ameliorates Oxidative Stress and Attenuates Intestinal Injury: A Randomized Controlled Trial. Vet. Anim. Sci. 2023, 21, 100300. [Google Scholar] [CrossRef] [PubMed]
- May, E.R.; Ratliff, B.E.; Bemis, D.A. Antibacterial Effect of N-Acetylcysteine in Combination with Antimicrobials on Common Canine Otitis Externa Bacterial Isolates. Vet. Dermatol. 2019, 30, 531-e161. [Google Scholar] [CrossRef] [PubMed]
- Perry, L.R.; MacLennan, B.; Korven, R.; Rawlings, T.A. Epidemiological Study of Dogs with Otitis Externa in Cape Breton, Nova Scotia. Can. Vet. J. 2017, 58, 168–174. [Google Scholar]
- May, E.R.; Conklin, K.A.; Bemis, D.A. Antibacterial Effect of N-Acetylcysteine on Common Canine Otitis Externa Isolates. Vet. Dermatol. 2016, 27, 188-e47. [Google Scholar] [CrossRef]
- Forge, A.; Schacht, J. Aminoglycoside Antibiotics. Audiol. Neurootol. 2000, 5, 3–22. [Google Scholar] [CrossRef]
- Oishi, N.; Talaska, A.E.; Schacht, J. Ototoxicity in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2012, 42, 1259–1271. [Google Scholar] [CrossRef]
- Son, Y.; Bae, S. In Vitro Efficacy of N-Acetylcysteine in Combination with Antimicrobial Agents against Pseudomonas Aeruginosa in Canine Otitis Externa. Korean J. Vet. Res. 2021, 61, e16. [Google Scholar] [CrossRef]
- Colombo, G.; Clerici, M.; Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. Redox Albuminomics: Oxidized Albumin in Human Diseases. Antioxid. Redox Signal 2012, 17, 1515–1527. [Google Scholar] [CrossRef]
- Aldini, G.; Regazzoni, L.; Orioli, M.; Rimoldi, I.; Facino, R.M.; Carini, M. A Tandem MS Precursor-Ion Scan Approach to Identify Variable Covalent Modification of Albumin Cys34: A New Tool for Studying Vascular Carbonylation. J. Mass Spectrom. 2008, 43, 1470–1481. [Google Scholar] [CrossRef]
- Nagumo, K.; Tanaka, M.; Chuang, V.T.G.; Setoyama, H.; Watanabe, H.; Yamada, N.; Kubota, K.; Tanaka, M.; Matsushita, K.; Yoshida, A.; et al. Cys34-Cysteinylated Human Serum Albumin Is a Sensitive Plasma Marker in Oxidative Stress-Related Chronic Diseases. PLoS ONE 2014, 9, e85216. [Google Scholar] [CrossRef] [PubMed]
- Carballal, S.; Radi, R.; Kirk, M.C.; Barnes, S.; Freeman, B.A.; Alvarez, B. Sulfenic Acid Formation in Human Serum Albumin by Hydrogen Peroxide and Peroxynitrite. Biochemistry 2003, 42, 9906–9914. [Google Scholar] [CrossRef] [PubMed]
- Sueishi, Y.; Hori, M.; Ishikawa, M.; Matsu-Ura, K.; Kamogawa, E.; Honda, Y.; Kita, M.; Ohara, K. Scavenging Rate Constants of Hydrophilic Antioxidants against Multiple Reactive Oxygen Species. J. Clin. Biochem. Nutr. 2014, 54, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Harada, D.; Anraku, M.; Fukuda, H.; Naito, S.; Harada, K.; Suenaga, A.; Otagiri, M. Kinetic Studies of Covalent Binding between N-Acetyl-L-Cysteine and Human Serum Albumin through a Mixed-Disulfide Using an N-Methylpyridinium Polymer-Based Column. Drug Metab. Pharmacokinet. 2004, 19, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Storkey, C.; Davies, M.J.; Pattison, D.I. Reevaluation of the Rate Constants for the Reaction of Hypochlorous Acid (HOCl) with Cysteine, Methionine, and Peptide Derivatives Using a New Competition Kinetic Approach. Free Radic. Biol. Med. 2014, 73, 60–66. [Google Scholar] [CrossRef]
- Samuni, Y.; Goldstein, S.; Dean, O.M.; Berk, M. The Chemistry and Biological Activities of N-Acetylcysteine. Biochim. Biophys. Acta 2013, 1830, 4117–4129. [Google Scholar] [CrossRef]
- Fu, X.; Cate, S.A.; Chen, J.; Özpolat, T.; Norby, C.; Konkle, B.A.; Lopez, J.A. Effect of N-Acetyl-L-Cysteine on Cysteine Redox Status in Patients with Thrombotic Thrombocytopenic Purpura: Protein Disulfide Bound Cysteine As a Biomarker of Oxidative Stress. Blood 2015, 126, 1044. [Google Scholar] [CrossRef]
- Anders, M.W.; Dekant, W. Aminoacylases. Adv. Pharmacol. 1994, 27, 431–448. [Google Scholar] [CrossRef]
- Yamauchi, A.; Ueda, N.; Hanafusa, S.; Yamashita, E.; Kihara, M.; Naito, S. Tissue Distribution of and Species Differences in Deacetylation of N-Acetyl-L-Cysteine and Immunohistochemical Localization of Acylase I in the Primate Kidney. J. Pharm. Pharmacol. 2002, 54, 205–212. [Google Scholar] [CrossRef]
- Nagy, P. Kinetics and Mechanisms of Thiol-Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways. Antioxid. Redox Signal. 2013, 18, 1623–1641. [Google Scholar] [CrossRef]
- Gleixner, A.M.; Hutchison, D.F.; Sannino, S.; Bhatia, T.N.; Leak, L.C.; Flaherty, P.T.; Wipf, P.; Brodsky, J.L.; Leak, R.K. N-Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Mol. Pharmacol. 2017, 92, 564–575. [Google Scholar] [CrossRef]
- Konarkowska, B.; Aitken, J.F.; Kistler, J.; Zhang, S.; Cooper, G.J.S. Thiol Reducing Compounds Prevent Human Amylin-Evoked Cytotoxicity. FEBS J. 2005, 272, 4949–4959. [Google Scholar] [CrossRef]
- Nazıroğlu, M.; Ciğ, B.; Ozgül, C. Neuroprotection Induced by N-Acetylcysteine against Cytosolic Glutathione Depletion-Induced Ca2+ Influx in Dorsal Root Ganglion Neurons of Mice: Role of TRPV1 Channels. Neuroscience 2013, 242, 151–160. [Google Scholar] [CrossRef]
- Steenvoorden, D.P.; Beijersburgen van Henegouwen, G.M. Glutathione Synthesis Is Not Involved in Protection by N-Acetylcysteine against UVB-Induced Systemic Immunosuppression in Mice. Photochem. Photobiol. 1998, 68, 97–100. [Google Scholar] [CrossRef]
- Yan, C.Y.; Ferrari, G.; Greene, L.A. N-Acetylcysteine-Promoted Survival of PC12 Cells Is Glutathione-Independent but Transcription-Dependent. J. Biol. Chem. 1995, 270, 26827–26832. [Google Scholar] [CrossRef]
- Jurkowska, H.; Wróbel, M. Inhibition of Human Neuroblastoma Cell Proliferation by N-Acetyl-L-Cysteine as a Result of Increased Sulfane Sulfur Level. Anticancer. Res. 2018, 38, 5109–5113. [Google Scholar] [CrossRef]
- Kartha, R.V.; Zhou, J.; Hovde, L.B.; Cheung, B.W.Y.; Schröder, H. Enhanced Detection of Hydrogen Sulfide Generated in Cell Culture Using an Agar Trap Method. Anal. Biochem. 2012, 423, 102–108. [Google Scholar] [CrossRef]
- Ono, K.; Akaike, T.; Sawa, T.; Kumagai, Y.; Wink, D.A.; Tantillo, D.J.; Hobbs, A.J.; Nagy, P.; Xian, M.; Lin, J.; et al. Redox Chemistry and Chemical Biology of H2S, Hydropersulfides, and Derived Species: Implications of Their Possible Biological Activity and Utility. Free Radic. Biol. Med. 2014, 77, 82–94. [Google Scholar] [CrossRef]
- Furne, J.; Saeed, A.; Levitt, M.D. Whole Tissue Hydrogen Sulfide Concentrations Are Orders of Magnitude Lower than Presently Accepted Values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1479–R1485. [Google Scholar] [CrossRef]
- Li, L.; Rose, P.; Moore, P.K. Hydrogen Sulfide and Cell Signaling. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 169–187. [Google Scholar] [CrossRef]
- Nicholson, C.K.; Calvert, J.W. Hydrogen Sulfide and Ischemia-Reperfusion Injury. Pharmacol. Res. 2010, 62, 289–297. [Google Scholar] [CrossRef]
- Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical Biology of H2S Signaling through Persulfidation. Chem. Rev. 2018, 118, 1253–1337. [Google Scholar] [CrossRef]
- Predmore, B.L.; Lefer, D.J.; Gojon, G. Hydrogen Sulfide in Biochemistry and Medicine. Antioxid. Redox Signal. 2012, 17, 119–140. [Google Scholar] [CrossRef]
- Szabo, C.; Ransy, C.; Módis, K.; Andriamihaja, M.; Murghes, B.; Coletta, C.; Olah, G.; Yanagi, K.; Bouillaud, F. Regulation of Mitochondrial Bioenergetic Function by Hydrogen Sulfide. Part I. Biochemical and Physiological Mechanisms. Br. J. Pharmacol. 2014, 171, 2099–2122. [Google Scholar] [CrossRef]
- Abiko, Y.; Shinkai, Y.; Unoki, T.; Hirose, R.; Uehara, T.; Kumagai, Y. Polysulfide Na2S4 Regulates the Activation of PTEN/Akt/CREB Signaling and Cytotoxicity Mediated by 1,4-Naphthoquinone through Formation of Sulfur Adducts. Sci. Rep. 2017, 7, 4814. [Google Scholar] [CrossRef]
- Bianco, C.L.; Akaike, T.; Ida, T.; Nagy, P.; Bogdandi, V.; Toscano, J.P.; Kumagai, Y.; Henderson, C.F.; Goddu, R.N.; Lin, J.; et al. The Reaction of Hydrogen Sulfide with Disulfides: Formation of a Stable Trisulfide and Implications for Biological Systems. Br. J. Pharmacol. 2019, 176, 671–683. [Google Scholar] [CrossRef]
- Ihara, H.; Kasamatsu, S.; Kitamura, A.; Nishimura, A.; Tsutsuki, H.; Ida, T.; Ishizaki, K.; Toyama, T.; Yoshida, E.; Abdul Hamid, H.; et al. Exposure to Electrophiles Impairs Reactive Persulfide-Dependent Redox Signaling in Neuronal Cells. Chem. Res. Toxicol. 2017, 30, 1673–1684. [Google Scholar] [CrossRef]
- Akiyama, M.; Shinkai, Y.; Unoki, T.; Shim, I.; Ishii, I.; Kumagai, Y. The Capture of Cadmium by Reactive Polysulfides Attenuates Cadmium-Induced Adaptive Responses and Hepatotoxicity. Chem. Res. Toxicol. 2017, 30, 2209–2217. [Google Scholar] [CrossRef]
- Baskin, S.I.; Horowitz, A.M.; Nealley, E.W. The Antidotal Action of Sodium Nitrite and Sodium Thiosulfate against Cyanide Poisoning. J. Clin. Pharmacol. 1992, 32, 368–375. [Google Scholar] [CrossRef]
- Patterson, S.E.; Moeller, B.; Nagasawa, H.T.; Vince, R.; Crankshaw, D.L.; Briggs, J.; Stutelberg, M.W.; Vinnakota, C.V.; Logue, B.A. Development of Sulfanegen for Mass Cyanide Casualties. Ann. N. Y. Acad. Sci. 2016, 1374, 202–209. [Google Scholar] [CrossRef]
- Benchoam, D.; Semelak, J.A.; Cuevasanta, E.; Mastrogiovanni, M.; Grassano, J.S.; Ferrer-Sueta, G.; Zeida, A.; Trujillo, M.; Möller, M.N.; Estrin, D.A.; et al. Acidity and Nucleophilic Reactivity of Glutathione Persulfide. J. Biol. Chem. 2020, 295, 15466–15481. [Google Scholar] [CrossRef]
- Cuevasanta, E.; Lange, M.; Bonanata, J.; Coitiño, E.L.; Ferrer-Sueta, G.; Filipovic, M.R.; Alvarez, B. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide. J. Biol. Chem. 2015, 290, 26866–26880. [Google Scholar] [CrossRef] [PubMed]
- Ida, T.; Sawa, T.; Ihara, H.; Tsuchiya, Y.; Watanabe, Y.; Kumagai, Y.; Suematsu, M.; Motohashi, H.; Fujii, S.; Matsunaga, T.; et al. Reactive Cysteine Persulfides and S-Polythiolation Regulate Oxidative Stress and Redox Signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 7606–7611. [Google Scholar] [CrossRef] [PubMed]
- Fukuto, J.M. The Biological/Physiological Utility of Hydropersulfides (RSSH) and Related Species: What Is Old Is New Again. Antioxid. Redox Signal. 2022, 36, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Solov’eva, M.E.; Solov’ev, V.V.; Faskhutdinova, A.A.; Kudryavtsev, A.A.; Akatov, V.S. Prooxidant and Cytotoxic Action of N-Acetylcysteine and Glutathione in Combinations with Vitamin B12b. Cell Tissue Biol. 2007, 1, 40–49. [Google Scholar] [CrossRef]
Oxidant | Antioxidant | K (M−1 s−1) | References |
---|---|---|---|
H2O2 | NAC | 0.16 | [183] |
GSH | 0.89 | [183] | |
Cys | 2.9 | [183] | |
O2•− | NAC | 68 | [184] |
GSH | 200 | [185] | |
Cys | 15 | [184] | |
HO• | NAC | 1.36 × 1010 | [186] |
GSH | 1.64 × 1010 | [187] | |
Cys | 5.35 ± 0.2 × 109 | [188] | |
HO(X) | NAC | 0.29 ± 0.04 × 108 | [189] |
GSH | 1.2 ± 0.2 × 108 | [189] | |
Cys | 3.6 ± 0.5 × 108 | [189] | |
NO2 | NAC | 1 × 107 | estimated by [190] |
GSH | 2 × 107 | [191] | |
Cys | 6 × 107 | [191] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tieu, S.; Charchoglyan, A.; Paulsen, L.; Wagter-Lesperance, L.C.; Shandilya, U.K.; Bridle, B.W.; Mallard, B.A.; Karrow, N.A. N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals. Antioxidants 2023, 12, 1867. https://doi.org/10.3390/antiox12101867
Tieu S, Charchoglyan A, Paulsen L, Wagter-Lesperance LC, Shandilya UK, Bridle BW, Mallard BA, Karrow NA. N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals. Antioxidants. 2023; 12(10):1867. https://doi.org/10.3390/antiox12101867
Chicago/Turabian StyleTieu, Sophie, Armen Charchoglyan, Lauryn Paulsen, Lauri C. Wagter-Lesperance, Umesh K. Shandilya, Byram W. Bridle, Bonnie A. Mallard, and Niel A. Karrow. 2023. "N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals" Antioxidants 12, no. 10: 1867. https://doi.org/10.3390/antiox12101867
APA StyleTieu, S., Charchoglyan, A., Paulsen, L., Wagter-Lesperance, L. C., Shandilya, U. K., Bridle, B. W., Mallard, B. A., & Karrow, N. A. (2023). N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals. Antioxidants, 12(10), 1867. https://doi.org/10.3390/antiox12101867