Insights on the Nutraceutical Properties of Different Specialty Teas Grown and Processed in a German Tea Garden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Tea Samples
2.3. Preparation of Tea Brews
2.4. Determination of Total Phenolic Content (TPC)
2.5. Total Flavonoid Content (TFC)
2.6. Determination of In Vitro Antioxidant Capacity (ABTS, FRAP, ORAC)
2.7. UV-Vis Spectrophotometric Measurements
2.8. ATR-FTIR Measurements and Data Analysis
2.9. Elemental Analysis
2.10. Health Hazard Estimation
2.11. Statistical Analysis
3. Results
3.1. Total Polyphenol and Flavonoid Contents in the Tea Brews
3.2. Antioxidant Capacity of the Tea Brews
3.3. UV-Visible Spectral Characteristics of Tea Brews
3.4. Principal Component Analysis (PCA) on Tea Brews
3.5. ATR-FTIR Analysis on Tea Leaves
3.6. Essential and Potentially Toxic Elements
Exposure Risk Estimation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Yu, F.-L.; Yang, Y.-J. (Eds.) Germplasm and Genetic Improvement of Tea Plant; Chinese Agricultural Science and Technology Press: Beijing, China, 2006; pp. 33–35. [Google Scholar]
- Jin, J.Q.; Ma, J.Q.; Ma, C.L.; Yao, M.Z.; Chen, L. Determination of catechin content in representative Chinese tea germplasms. J. Agric. Food Chem. 2014, 62, 9436–9441. [Google Scholar] [CrossRef]
- Meng, X.H.; Zhu, H.T.; Yan, H.; Wang, D.; Yang, C.R.; Zhang, Y.J. C-8 N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols from the Leaves of Camellia sinensis var. pubilimba. J. Agric. Food Chem. 2018, 66, 7150–7155. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Sirisena, S.; Ng, K. Phytochemical profile of differently processed tea: A review. J. Food Sci. 2022, 87, 1925–1942. [Google Scholar] [CrossRef]
- Xu, L.; Xia, G.; Luo, Z.; Liu, S. UHPLC analysis of major functional components in six types of Chinese teas: Constituent profile and origin consideration. LWT-Food Sci. Technol. 2019, 102, 52–57. [Google Scholar] [CrossRef]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.K.H.Y.; Haufe, T.C.; Ferruzzi, M.G.; Neilson, A.P. Production and polyphenolic composition of tea. Nutr. Today 2018, 53, 268–278. [Google Scholar] [CrossRef]
- Hilal, Y.; Engelhardt, U. Characterisation of white tea—comparison to green and black tea. J. Fur Verbrauchersch. Leb. 2007, 2, 414–421. [Google Scholar] [CrossRef]
- Khokhar, S.; Magnusdottir, S.G. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United kingdom. J. Agric. Food Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef]
- Pettigrew, J. (Ed.) Jane Pettigrew’s World of Tea: Discovering Producing Regions and Their Teas; Hoffman Media: Birmingham, AL, USA, 2018. [Google Scholar]
- EuT. Tea Grown in Europe Association. Available online: https://tea-grown-in-europe.eu (accessed on 29 August 2023).
- Carloni, P.; Albacete, A.; Martinez-Melgarejo, P.A.; Girolametti, F.; Truzzi, C.; Damiani, E. Comparative Analysis of Hot and Cold Brews from Single-Estate Teas (Camellia sinensis) Grown across Europe: An Emerging Specialty Product. Antioxid. 2023, 12, 1306. [Google Scholar] [CrossRef]
- Saptadip, S. Potential bioactive components and health promotional benefits of tea (Camellia sinensis). J. Am. Coll. Nutr. 2020, 41, 65–93. [Google Scholar] [CrossRef]
- Yang, C.S.; Chen, G.; Wu, Q. Recent scientific studies of a traditional chinese medicine, tea, on prevention of chronic diseases. J. Tradit. Complement. Med. 2014, 4, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Girolametti, F.; Annibaldi, A.; Illuminati, S.; Damiani, E.; Carloni, P.; Truzzi, C. Essential and potentially toxic elements (PTEs) content in European tea (Camellia sinensis) leaves: Risk assessment for consumers. Molecules 2023, 28, 3802. [Google Scholar] [CrossRef] [PubMed]
- Europe, T.H.I. Compendium of Guidelines for Tea (Camellia sinensis). Available online: https://thie-online.eu/files/thie/docs/2018-08-20_Compendium_of_Guidelines_for_Tea_ISSUE_5.pdf (accessed on 29 August 2023).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total pehnols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Benzie, I.F.; Devaki, M. The ferric reducing/antixoidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Acitvity and Capcity: Trends and Applications; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 77–106. [Google Scholar]
- Gillespie, K.M.; Ainsworth, E.A. Measurement of reduced, oxidized and total ascorbate content in plants. Nat. Protoc. 2007, 2, 871–874. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Girolametti, F.; Annibaldi, A.; Carnevali, O.; Pignalosa, P.; Illuminati, S.; Truzzi, C. Potential toxic elements (PTEs) in wild and farmed atlantic bluefin tuna (Thunnus Thynnus) from Meditteranean sea: Risks and benefits for human consumption. Food Control 2021, 125, 108012. [Google Scholar] [CrossRef]
- Truzzi, C.; Illuminati, S.; Girolametti, F.; Antonucci, M.; Scarponi, G.; Ruschioni, S.; Riolo, P.; Annibaldi, A. Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption. Int. J. Environ. Res. Public. Health 2019, 16, 4815. [Google Scholar] [CrossRef]
- Williamson, G.; Dionisi, F.; Renouf, M. Flavanols from green tea and phenolic acids from coffee: Critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages. Mol. Nutr. Food Res. 2011, 55, 864–873. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Dankowska, A.; Kowalewski, W. Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 211, 195–202. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR Spectra and PCA to the Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction Process. Food Biophys. 2012, 8, 29–42. [Google Scholar] [CrossRef]
- Xia, J.; Wang, D.; Liang, P.; Zhang, D.; Du, X.; Ni, D.; Yu, Z. Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments. Biophys. Chem. 2020, 256, 106282. [Google Scholar] [CrossRef]
- de Melo, P.P.F. Breve historia de cultura do chà na Ilha de Sao Miguel. Acores Rev. Oriente 2012, 21, 40–49. [Google Scholar]
- Carloni, P.; Tiano, L.; Padella, L.; Bacchetti, T.; Customu, C.; Kay, D.; Damiani, E. Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Res. Int. 2013, 53, 900–908. [Google Scholar] [CrossRef]
- Lin, S.-D.; Udompornmongkol, P.; Yang, J.-H.; Chen, S.Y. Quality and antioxidant properties of three types of tea infusions. J. Food Process. Preserv. 2014, 38, 1401–1408. [Google Scholar] [CrossRef]
- Koch, W. Theaflavins, Thearubigns, and Theasinensis. In Handbook of Dietary Phytochemcials; Xiao, J., Sarker, S., Asakawa, Y., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chong, K.L.; Tan, J.B.L.; Wong, S.K. Antioxidant properties of tropical and temperate herbal teas. J. Food Compos. Anal. 2010, 23, 185–189. [Google Scholar] [CrossRef]
- Gramza-Michalowska, A. Antioxidant Potential and Radical Scavenging Activity of Different Fermentation Degree Tea Leaves Extracts. 2008, pp. 1–28. Available online: https://api.semanticscholar.org/CorpusID:4606895 (accessed on 31 July 2023).
- Fang, Z.-T.; Yang, W.-T.; Li, C.-Y.; Li, D.; Dong, J.-J.; Zhao, D.; Xu, H.-R.; Ye, J.-H.; Zheng, Z.-Q.; Liang, Y.-R.; et al. Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. J. Food Compos. Anal. 2021, 97, 103772. [Google Scholar] [CrossRef]
- Bhuyan, L.P.; Hussain, A.; Tamuly, P.; Gogoi, R.C.; Bordoloi, P.K.; Hazarika, M. Chemical characterization of CTC black tea of northeast India: Correlation of quality parameters with tea tasters’ evaluation. J. Sci. Food Agric. 2009, 89, 1498–1507. [Google Scholar] [CrossRef]
- Cheng, H.; Wei, K.; Wang, L. The impact of variety, environment and agricultural practices on catechins and caffeine in plucked tea leaves. In Processing and Impact on Active Components in Food; Preedy, V.R., Ed.; Academic Press: London, UK, 2015; pp. 597–603. [Google Scholar]
- Sabhapondit, S.; Karak, T.; Bhuyan, L.P.; Goswami, B.C.; Hazarika, M. Diversity of catechin in northeast Indian tea cultivars. Sci. World J. 2012, 2012, 485193. [Google Scholar] [CrossRef]
- Cai, J.X.; Wang, Y.F.; Xi, X.G.; Li, H.; Wei, X.L. Using FTIR spectra and pattern recognition for discrimination of tea varieties. Int. J. Biol. Macromol. 2015, 78, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Fu, H.; Wu, X.; Dai, C. Discrimination of tea varieties based on FTIR spectroscopy and an adaptive improved possibilistic c-means clustering. J. Food Process. Preserv. 2020, 44, e14795. [Google Scholar] [CrossRef]
- Liu, S.L.; Jaw, Y.M.; Wang, L.F.; Chuang, G.C.; Zhuang, Z.Y.; Chen, Y.S.; Liou, B.K. Evaluation of Sensory Quality for Taiwanese Specialty Teas with Cold Infusion Using CATA and Temporal CATA by Taiwanese Consumers. Foods 2021, 10, 2344. [Google Scholar] [CrossRef]
- Damiani, E.; Bacchetti, T.; Padella, L.; Tiano, L.; Carloni, P. Antioxidant activity of different white teas: Comparison of hot and cold tea infusions. J. Food Compos. Anal. 2014, 33, 59–66. [Google Scholar] [CrossRef]
- Venditti, E.; Bacchetti, T.; Tiano, L.; Carloni, P.; Greci, L.; Damiani, E. Hot vs. cold water steeping of different teas: Do they affect antioxidant activity? Food Chem. 2010, 119, 1597–1604. [Google Scholar] [CrossRef]
- Na Nagara, V.; Sarkar, D.; Luo, Q.; Biswas, J.K.; Datta, R. Health Risk Assessment of Exposure to Trace Elements from Drinking Black and Green Tea Marketed in Three Countries. Biol. Trace Elem. Res. 2022, 200, 2970–2982. [Google Scholar] [CrossRef]
- Karak, T.; Bhagat, R.M. Trace elements in tea leaves, made tea and tea infusion: A review. Food Res. Int. 2010, 43, 2234–2252. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Li, Y.C.; Ni, X. The Role of Soil Mineral Multi-elements in Improving the Geographical Origin Discrimination of Tea (Camellia sinensis). Biol. Trace Elem. Res. 2021, 199, 4330–4341. [Google Scholar] [CrossRef]
- Castro, P.H.; Lilay, G.H.; Assuncao, A.G.L. Regulation of micronurient homeostasis and deficiency response in plants. In Plant Micronutrient Use Efficiency; Hossain, M.A., Kamiya, T., Burrit, D.J., Tran, L.-S.P., Fujiwara, T., Eds.; Academic Press: Cambridge MA, USA, 2018; pp. 1–15. [Google Scholar]
Type | Variety | Cultivar | Label |
---|---|---|---|
White | pubilimba | Vietnam | WV |
Yellow | sinensis | Korea | YK |
Green | sinensis | Korea | GK |
Oolong | assamica | Azores | OA |
sinensis | Korea | OK | |
Black | assamica | Azores | BA |
pubilimba | Vietnam | BV | |
sinensis | Korea | BK |
Type | Code | TPC (mM GAEq) | TFC (mM CAEq) | ORAC (mM TXEq) | ABTS (mM TXEq) | FRAP (mM AAEq) |
---|---|---|---|---|---|---|
Cold | 5.4 ± 2.46 | 0.87 ± 0.413 | 21.8 ± 8.0 | 15.1 ± 5.8 | 10.4 ± 5.23 | |
black | BA | 3.6 ± 0.15 E | 0.56 ± 0.028 H | 14.6 ± 2.0 I | 10.8 ± 1.5 D | 6.6 ± 0.87 H |
BV | 2.1 ± 0.20 F | 0.32 ± 0.025 I | 11.0 ± 0.8 J | 7.2 ± 0.9 F | 4.3 ± 0.72 I | |
BK | 2.4 ± 0.14 F | 0.36 ± 0.020 I | 13.3 ± 0.6 I | 7.7 ± 1.3 EF | 3.5 ± 0.59 I | |
All | 2.7 ± 0.80 | 0.41 ± 0.131 | 13.0 ± 1.8 | 8.6 ± 2.0 | 4.8 ± 1.59 | |
green | GK | 8.9 ± 0.35 A | 1.42 ± 0.115 A | 33.2 ± 2.5 A | 21.8 ± 3.1 A | 17.5 ± 1.78 A |
yellow | YK | 6.9 ± 0.33 BC | 1.06 ± 0.088 D | 25.8 ± 1.8 DE | 18.7 ± 1.7 B | 13.4 ± 1.56 C |
oolong | OK | 5.4 ± 0.23 D | 0.87 ± 0.066 EF | 22.5 ± 0.9 FG | 15.6 ± 1.8 C | 9.6 ± 1.43 F |
OA | 6.8 ± 0.56 BC | 1.25 ± 0.114 B | 27.9 ± 2.2 C | 18.7 ± 2.5 B | 12.9 ± 1.83 CD | |
All | 6.1 ± 1.44 | 1.06 ± 0.240 | 25.2 ± 4.5 | 17.1 ± 2.5 | 11.2 ± 3.26 | |
white | WV | 7.1 ± 0.36 B | 1.10 ± 0.046 CD | 26.5 ± 1.8 CD | 20.6 ± 2.2 A | 15.4 ± 2.01 B |
Hot | 5.8 ± 2.06 | 0.87 ± 0.309 | 20.9 ± 6.5 | 15.2 ± 5.0 | 9.2 ± 3.84 | |
black | BA | 5.5 ± 0.36 D | 0.79 ± 0.052 G | 16.9 ± 1.1 H | 14.0 ± 1.1 C | 7.6 ± 0.53 GH |
BV | 2.5 ± 0.21 F | 0.38 ± 0.028 I | 10.5 ± 0.5 J | 7.6 ± 0.4 F | 4.2 ± 0.23 I | |
BK | 3.7 ± 0.16 E | 0.52 ± 0.036 H | 14.7 ± 1.1 I | 9.2 ± 0.7 DE | 4.4 ± 0.35 I | |
All | 3.9 ± 1.54 | 0.56 ± 0.211 | 14.1 ± 3.2 | 10.3 ± 3.3 | 5.4 ± 1.92 | |
green | GK | 9.0 ± 0.66 A | 1.30 ± 0.093 B | 30.4 ± 1.7 B | 22.2 ± 2.7 A | 15.2 ± 1.14 B |
yellow | YK | 6.7 ± 0.39 C | 1.03 ± 0.075 D | 24.3 ± 1.4 EF | 18.6 ± 0.8 B | 11.8 ± 0.86 DE |
oolong | OK | 5.3 ± 0.29 D | 0.84 ± 0.071 FG | 21.8 ± 0.8 G | 14.0 ± 1.0 C | 8.2 ± 0.53 G |
OA | 7.2 ± 0.49 B | 1.16 ± 0.074 C | 26.6 ± 1.5 CD | 18.6 ± 1.0 B | 11.0 ± 0.79 E | |
All | 6.3 ± 1.44 | 1.00 ± 0.180 | 24.2 ± 3.5 | 16.3 ± 3.0 | 9.6 ± 2.65 | |
white | WV | 6.7 ± 0.53 C | 0.92 ± 0.058 E | 21.7 ± 0.9 G | 17.6 ± 1.2 B | 11.5 ± 0.98 E |
(a) | Variables | TPC | TFC | ORAC | ABTS | FRAP |
TPC | 1 | 0.981 | 0.966 | 0.987 | 0.956 | |
TFC | 0.981 | 1 | 0.986 | 0.977 | 0.955 | |
ORAC | 0.966 | 0.986 | 1 | 0.967 | 0.957 | |
ABTS | 0.987 | 0.977 | 0.967 | 1 | 0.976 | |
FRAP | 0.956 | 0.955 | 0.957 | 0.976 | 1 | |
(b) | Variables | TPC | TFC | ORAC | ABTS | FRAP |
TPC | 0 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
TFC | <0.0001 | 0 | <0.0001 | <0.0001 | <0.0001 | |
ORAC | <0.0001 | <0.0001 | 0 | <0.0001 | <0.0001 | |
ABTS | <0.0001 | <0.0001 | <0.0001 | 0 | <0.0001 | |
FRAP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0 |
Peak Position (cm−1) | Vibrational Mode | Biological Attribution |
---|---|---|
~2921, and ~2849 | νasym and νsym CH2 | Lipids |
~1739 | ν C=O ester | Pheophytin |
~1703 | ν C=O | Chlorophyll |
~1623 (~1644, ~1624, and ~1603) | ν C=O, ν C-N and δ N-H (Amide I) | CONH groups in alkaloids |
~1514 | ν conjugated C=C | Polyphenols |
~1237 | phenyl ring breathing vibration | |
~1451, ~1368, and ~1315 | δ C-H | Cellulose |
~1033 | ν C-OH | |
~1147 | ν O-C-O | Carbohydrates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carloni, P.; Girolametti, F.; Giorgini, E.; Bacchetti, T.; Truzzi, C.; Illuminati, S.; Damiani, E. Insights on the Nutraceutical Properties of Different Specialty Teas Grown and Processed in a German Tea Garden. Antioxidants 2023, 12, 1943. https://doi.org/10.3390/antiox12111943
Carloni P, Girolametti F, Giorgini E, Bacchetti T, Truzzi C, Illuminati S, Damiani E. Insights on the Nutraceutical Properties of Different Specialty Teas Grown and Processed in a German Tea Garden. Antioxidants. 2023; 12(11):1943. https://doi.org/10.3390/antiox12111943
Chicago/Turabian StyleCarloni, Patricia, Federico Girolametti, Elisabetta Giorgini, Tiziana Bacchetti, Cristina Truzzi, Silvia Illuminati, and Elisabetta Damiani. 2023. "Insights on the Nutraceutical Properties of Different Specialty Teas Grown and Processed in a German Tea Garden" Antioxidants 12, no. 11: 1943. https://doi.org/10.3390/antiox12111943
APA StyleCarloni, P., Girolametti, F., Giorgini, E., Bacchetti, T., Truzzi, C., Illuminati, S., & Damiani, E. (2023). Insights on the Nutraceutical Properties of Different Specialty Teas Grown and Processed in a German Tea Garden. Antioxidants, 12(11), 1943. https://doi.org/10.3390/antiox12111943