Influence of Artichoke Antioxidant Activity in Their Susceptibility to Suffer Frost Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Frost Injury Evaluation
2.3. Analytical Determinations
2.3.1. Average Weight of Artichokes
2.3.2. Size of Artichokes
2.3.3. Identification and Quantification of Individual Phenolic Compounds
2.3.4. Total Antioxidant Activity
2.4. Statistical Analysis
3. Results
3.1. Influence of Artichoke Flower Head Order, Weight and Size of Artichokes on Frost Injury
3.2. Influence of Phenolic Content and Different Phenolic Profiles on Frost Injury
3.3. Influence of Total Phenolic Content and Total Antioxidant Activity on Frost Injury
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT, 2021. Food and Agriculture Data. Global Analysis of Surface Area, Yield and Production of Vegetables: Artichoke. Available online: https://www.fao.org/faostat/en (accessed on 15 May 2023).
- Giménez, M.J.; Giménez-Berenguer, M.; García-Pastor, M.E.; Parra, J.; Zapata, P.J.; Castillo, S. The Influence of Flower Head Order and Gibberellic Acid Treatment on the Hydroxycinnamic Acid and Luteolin Derivatives Content in Globe Artichoke Cultivars. Foods 2021, 10, 1813. [Google Scholar] [CrossRef] [PubMed]
- Janda, T.; Szalai, G.; Rios-Gonzalez, K.; Veisz, O.; Páldi, E. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 2003, 164, 301–306. [Google Scholar] [CrossRef]
- Dalezios, N.R. Environmental Hazards Methodologies for Risk Assessment and Management; IWA: London, UK, 2017; 534p, ISBN 9781780407128. [Google Scholar]
- Amodio, M.L.; la Zazzera, M.; Colelli, G. Floral Vegetables: Artichokes. Control. Modif. Atmos. Fresh Fresh-Cut Prod. 2020, 557–565. [Google Scholar] [CrossRef]
- Kader, A.A.; Lyons, J.M.; Morris, L.L. Postharvest Responses of Vegetables to Preharvest Field Temperature 1. Hort. Sci. 1974, 9, 523–527. [Google Scholar]
- Alharbi, N.H.; Alghamdi, S.S.; Migdadi, H.M.; El-harty, E.H.; Adhikari, K.N. Evaluation of Frost Damage and Pod Set in Faba Bean (Vicia faba L.) under Field Conditions. Plants 2021, 10, 1925. [Google Scholar] [CrossRef]
- Weil, A.; Sofer-Arad, C.; Bar-Noy, Y.; Liran, O.; Rubinovich, L. Comparative Study of Leaf Antioxidant Activity as a Possible Mechanism for Frost Tolerance in “Hass” and “Ettinger” Avocado Cultivars. J. Agric. Sci. 2019, 157, 342–349. [Google Scholar] [CrossRef]
- Neugart, S.; Kläring, H.P.; Zietz, M.; Schreiner, M.; Rohn, S.; Kroh, L.W.; Krumbein, A. The Effect of Temperature and Radiation on Flavonol Aglycones and Flavonol Glycosides of Kale (Brassica oleracea Var. Sabellica). Food Chem. 2012, 133, 1456–1465. [Google Scholar] [CrossRef]
- Mougiou, N.; Baalbaki, B.; Doupis, G.; Kavroulakis, N.; Poulios, S.; Vlachonasios, K.E.; Koubouris, G.C. The Effect of Low Temperature on Physiological, Biochemical and Flowering Functions of Olive Tree in Relation to Genotype. Sustainability 2020, 12, 10065. [Google Scholar] [CrossRef]
- Fuller, M.P.; Fuller, A.M.; Kaniouras, S.; Christophers, J.; Fredericks, T. The Freezing Characteristics of Wheat at Ear Emergence. Eur. J. Agron. 2007, 26, 435–441. [Google Scholar] [CrossRef]
- Oh, M.M.; Carey, E.E.; Rajashekar, C.B. Environmental Stresses Induce Health-Promoting Phytochemicals in Lettuce. Plant Physiol. Biochem. 2009, 47, 578–583. [Google Scholar] [CrossRef]
- Spanu, E.; Deligios, P.A.; Azara, E.; Delogub, G.; Leddaa, L. Effects of alternative cropping systems on globe artichoke qualitative traits. J. Sci. Food Agric. 2018, 98, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 2023, 3, 57–585. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Shrestha, P.M.; Dhillion, S.S. Diversity and Traditional Knowledge Concerning Wild Food Species in a Locally Managed Forest in Nepal. Agrofor. Syst. 2006, 66, 55–63. [Google Scholar] [CrossRef]
- Bendary, E.; Francis, R.R.; Ali, H.M.G.; Sarwat, M.I.; El Hady, S. Antioxidant and Structure–Activity Relationships (SARs) of Some Phenolic and Anilines Compounds. Ann. Agric. Sci. 2013, 58, 173–181. [Google Scholar] [CrossRef]
- Noreen, H.; Semmar, N.; Farman, M.; McCullagh, J.S.O. Measurement of Total Phenolic Content and Antioxidant Activity of Aerial Parts of Medicinal Plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017, 10, 792–801. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P.; Hernández, F. Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L. Molecules 2019, 24, 1222. [Google Scholar] [CrossRef]
- Côté, J.; Caillet, S.; Doyon, G.; Sylvain, J.F.; Lacroix, M. Bioactive Compounds in Cranberries and Their Biological Properties. Crit. Rev. Food Sci. Nutr. 2010, 50, 666–679. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K. Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Crit. Rev. Food Sci. Nutr. 2015, 55, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Hochstein, P.; Atallah, A.S. The Nature of Oxidants and Antioxidant Systems in the Inhibition of Mutation and Cancer. Mutat. Res. 1988, 202, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Berenguer, M.; García-Pastor, M.E.; García-Martínez, S.; Giménez, M.J.; Zapata, P.J. Evaluation of “Lorca” Cultivar Aptitude for Minimally Processed Artichoke. Agronomy 2022, 12, 515. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Characterization of Phenolic Acids and Flavonoids in Leaves, Stems, Bracts and Edible Parts of Globe Artichokes. Acta Hortic. 2012, 942, 413–417. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe Artichoke: A Functional Food and Source of Nutraceutical Ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Ceccarelli, N.; Curadi, M.; Picciarelli, P.; Martelloni, L.; Sbrana, C.; Giovannetti, M. Globe Artichoke as a Functional Food. Mediterr. J. Nutr. Metab. 2010, 3, 197–201. [Google Scholar] [CrossRef]
- Palma, A.; Cossu, M.; Deligios, P.A.; Ledda, L.; Tiloca, M.T.; Sassu, M.M.; D’Aquino, S. Organic versus conventional globe artichoke: Influence of cropping system and harvest date on physiological activity, physicochemical parameters, and bioactive compounds. Sci. Hortic. 2023, 321, 112304. [Google Scholar] [CrossRef]
- Giménez, M.J.; Giménez-Berenguer, M.; García-Pastor, M.E.; Castillo, S.; Valverde, J.M.; Serrano, M.; Valero, D.; Zapata, P.J. Influence of Flower Head Order on Phenolic Content and Quality of Globe Artichoke at Harvest and during Twenty-One Days of Cold Storage. Sci. Hortic. 2022, 295, 110846. [Google Scholar] [CrossRef]
- Carrión Pávez, R.F. Germinabilidad y Habilidad de Fertilización del Polen en la Producción de Semillas de Alcachofa (Cynara cardunculus L. Var. scolymus (L.) Hayek) en la Región de Coquimbo; Escuela de Agronomía, Universidad de la Serena: La Serena, Chile, 2013. [Google Scholar]
- Pearce, R.S. Plant Freezing and Damage. Ann. Bot. 2001, 87, 417–424. [Google Scholar] [CrossRef]
- Larcher, W. Temperature Stress and Survival Ability of Mediterranean Sclerophyllous Plants. Plant Biosyst. 2000, 134, 279–295. [Google Scholar] [CrossRef]
- Ziena, H.M.; El-Tabey Shehata, A.M.; Youssef, M.M. The Effect of Pod and Seed Positions on the Physical and Cooking Properties of Faba Beans (Vicia faba). J. Sci. Food Agric. 1984, 35, 207–211. [Google Scholar] [CrossRef]
- Togun, A.O.; Tayo, T.O. Flowering and Pod and Seed Development in Pigeon Pea (Cajanus cajan). J. Agric. Sci. 1990, 115, 327–335. [Google Scholar] [CrossRef]
- Brat, P.; Georgé, S.; Bellamy, A.; Du Chaffaut, L.; Scalbert, A.; Mennen, L.; Arnault, N.; Amiot, M.J. Daily Polyphenol Intake in France from Fruit and Vegetables. J. Nutr. 2006, 136, 2368–2373. [Google Scholar] [CrossRef] [PubMed]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Profile of Polyphenols and Phenolic Acids in Bracts and Receptacles of Globe Artichoke (Cynara crdunculus Var. Scolymus) Germplasm. J. Food Compos. Anal. 2011, 24, 148–153. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The Nutraceutical Response of Two Globe Artichoke Cultivars to Contrasting NPK Fertilizer Regimes. Food Res. Int. 2015, 76, 852–859. [Google Scholar] [CrossRef]
- Schütz, K.; Kammerer, D.; Carle, R.; Schieber, A. Identification and Quantification of Caffeoylquinic Acids and Flavonoids from Artichoke (Cynara scolymus L.) Heads, Juice, and Pomace by HPLC-DAD-ESI/MSn. J. Agric. Food Chem. 2004, 52, 4090–4096. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Graziani, G.; Ritieni, A.; Cardarelli, M.; De Pascale, S. Phenolic Composition, Antioxidant Activity and Mineral Profile in Two Seed-Propagated Artichoke Cultivars as Affected by Microbial Inoculants and Planting Time. Food Chem. 2017, 234, 10–19. [Google Scholar] [CrossRef]
- Tao, D.L.; Öquist, G.; Wingsle, G. Active oxygen scavengers during cold acclimation of Scots pine seedlings in relation to freezing tolerance. Cryobiology 1998, 37, 38–45. [Google Scholar] [CrossRef]
- Hashempour, A.; Ghasemnezhad, M.; Fotouhi Ghazvini, R.; Sohani, M.M. The physiological and biochemical responses to freezing stress of olive plants treated with salicylic acid. Russ. J. Plant Physiol. 2014, 61, 443–450. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez-Berenguer, M.; Gutiérrez-Pozo, M.; Serna-Escolano, V.; Giménez, M.J.; Zapata, P.J. Influence of Artichoke Antioxidant Activity in Their Susceptibility to Suffer Frost Injury. Antioxidants 2023, 12, 1960. https://doi.org/10.3390/antiox12111960
Giménez-Berenguer M, Gutiérrez-Pozo M, Serna-Escolano V, Giménez MJ, Zapata PJ. Influence of Artichoke Antioxidant Activity in Their Susceptibility to Suffer Frost Injury. Antioxidants. 2023; 12(11):1960. https://doi.org/10.3390/antiox12111960
Chicago/Turabian StyleGiménez-Berenguer, Marina, María Gutiérrez-Pozo, Vicente Serna-Escolano, María José Giménez, and Pedro Javier Zapata. 2023. "Influence of Artichoke Antioxidant Activity in Their Susceptibility to Suffer Frost Injury" Antioxidants 12, no. 11: 1960. https://doi.org/10.3390/antiox12111960
APA StyleGiménez-Berenguer, M., Gutiérrez-Pozo, M., Serna-Escolano, V., Giménez, M. J., & Zapata, P. J. (2023). Influence of Artichoke Antioxidant Activity in Their Susceptibility to Suffer Frost Injury. Antioxidants, 12(11), 1960. https://doi.org/10.3390/antiox12111960