The Role of Omega-3 in Attenuating Cardiac Remodeling and Heart Failure through the Oxidative Stress and Inflammation Pathways
Abstract
:1. Introduction
2. Mechanisms through Which ω3-PUFAs Exert Their Biological Actions
2.1. Anti-Inflammatory and Antioxidant Effects
2.2. Myocardial Metabolism Effects
2.3. The Effects of Cardiomyocyte Ion Channels
2.4. Vascular Endothelial Effects
2.5. Autonomic Nervous System Effects
3. Experimental Evidence of the Influence of Omega-3 on Cardiac Remodeling
3.1. Preventive Effects of ω3-PUFAs in the Development of HF
3.2. Effects of ω3-PUFAs on Cardiac Remodeling Secondary to Acute MI
3.3. Effects of ω3-PUFAs on Pressure-Overload-Induced Cardiac Remodeling
3.4. Effects of ω3-PUFAs on Cardiac Remodeling in Other HF Models
3.5. Absence of Significant Effects of ω3-PUFAs on Cardiac Remodeling
4. Clinical Aspects of ω3-PUFAs on HF
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azevedo, P.S.; Polegato, B.F.; Minicucci, M.F.; Paiva, S.A.R.; Zornoff, L.A.M. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq. Bras. Cardiol. 2016, 106, 62–69. [Google Scholar] [CrossRef]
- Martins, D.; Garcia, L.R.; Queiroz, D.A.R.; Lazzarin, T.; Tonon, C.R.; Balin, P.D.S.; Polegato, B.F.; de Paiva, S.A.R.; Azevedo, P.S.; Minicucci, M.F.; et al. Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants 2022, 11, 2371. [Google Scholar] [CrossRef] [PubMed]
- Oppedisano, F.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Macrì, R.; Carresi, C.; Maiuolo, J.; Serra, M.; Cardamone, A.; et al. PUFA Supplementation and Heart Failure: Effects on Fibrosis and Cardiac Remodeling. Nutrients 2021, 13, 2965. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Saotome, M.; Iguchi, K.; Maekawa, Y. Marine-Derived Omega-3 Polyunsaturated Fatty Acids and Heart Failure: Current Understanding for Basic to Clinical Relevance. Int. J. Mol. Sci. 2019, 20, 4025. [Google Scholar] [CrossRef] [PubMed]
- Aarsetoey, H.; Grundt, H.; Nygaard, O.; Nilsen, D.W.T. The Role of Long-Chained Marine N-3 Polyunsaturated Fatty Acids in Cardiovascular Disease. Cardiol. Res. Pract. 2012, 2012, 303456. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, T.D.; Block, R.C.; Huang, S.P.; Shearer, G.C. ω3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J. Mol. Cell Cardiol. 2017, 103, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.O.; Dyerberg, J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. Adv. Nutri. Res. 1980, 3, 1–32. [Google Scholar]
- Wang, C.; Xiong, B.; Huang, J. The Role of Omega-3 Polyunsaturated Fatty Acids in Heart Failure: A Meta-Analysis of Randomised Controlled Trials. Nutrients 2016, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef]
- Galvao, T.F.; Khairallah, R.J.; Dabkowski, E.R.; Brown, B.H.; Hecker, P.A.; O’Connell, K.A.; O’Shea, K.M.; Sabbah, H.N.; Rastogi, S.; Daneault, C.; et al. Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H12–H21. [Google Scholar] [CrossRef]
- Richardson, E.S.; Iaizzo, P.A.; Xiao, Y.F. Electrophysiological Mechanisms of the Anti-arrhythmic Effects of Omega-3 Fatty Acids. J. Cardiovasc. Trans. Res. 2011, 4, 42–52. [Google Scholar] [CrossRef] [PubMed]
- La Rovere, M.T.; Staszewsky, L.; Barlera, S.; Maestri, R.; Mezzani, A.; Midi, P.; Marchioli, R.; Maggioni, A.P.; Tognoni, G.; Tavazzi, L.; et al. n-3PUFA and Holter-derived autonomic variables in patients with heart failure: Data from the Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca (GISSI-HF) Holter substudy. Heart Rhythm. 2013, 10, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, A.; Cazzaniga, M.; Viola, A.; Balestri, G.; Janetti, M.B.; Signorini, M.G.; Castiglioni, P.; Azzellino, A.; Mancia, G.; Ferrari, A.U. Enhanced Baroreceptor Control of the Cardiovascular System by Polyunsaturated Fatty Acids in Heart Failure Patients. J. Am. Coll. Cardiol. 2006, 48, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Pros and Cons of Long-Chain Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Health. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Saeedi Saravi, S.S.; Bonetti, N.R.; Vukolic, A.; Vdovenko, D.; Lee, P.; Liberale, L.; Basso, C.; Rizzo, S.; Akhmedov, A.; Lüscher, T.F.; et al. Long-term dietary n3 fatty acid prevents aging-related cardiac diastolic and vascular dysfunction. Vascul Pharmacol. 2023, 150, 107175. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Q.; Na, R.; Liu, B. Omega-3 polyunsaturated fatty acids prevent murine dilated cardiomyopathy by reducing oxidative stress and cardiomyocyte apoptosis. Exp. Ther. Med. 2017, 14, 6152–6158. [Google Scholar] [CrossRef]
- Gharraee, N.; Wang, Z.; Pflum, A.; Medina-Hernandez, D.; Herrington, D.; Zhu, X.; Meléndez, G.C. Eicosapentaenoic Acid Ameliorates Cardiac Fibrosis and Tissue Inflammation in Spontaneously Hypertensive Rats. J. Lipid Res. 2022, 63, 100292. [Google Scholar] [CrossRef]
- Fosshaug, L.E.; Berge, R.K.; Beitnes, J.O.; Berge, K.; Vik, H.; Aukrust, P.; Gullestad, L.; Vinge, L.E.; Øie, E. Krill oil attenuates left ventricular dilatation after myocardial infarction in rats. Lipids Health Dis. 2011, 10, 245. [Google Scholar] [CrossRef]
- Fang, Y.; Favre, J.; Vercauteren, M.; Laillet, B.; Remy-Jouet, I.; Skiba, M.; Lallemand, F.; Dehaudt, C.; Monteil, C.; Thuillez, C.; et al. Reduced cardiac remodelling and prevention of glutathione deficiency after omega-3 supplementation in chronic heart failure. Fundam. Clin. Pharmacol. 2011, 25, 323–332. [Google Scholar] [CrossRef]
- Abdukeyum, G.G.; Owen, A.J.; Larkin, T.A.; McLennan, P.L. Up-Regulation of Mitochondrial Antioxidant Superoxide Dismutase Underpins Persistent Cardiac Nutritional-Preconditioning by Long Chain n-3 Polyunsaturated Fatty Acids in the Rat. J. Clin. Med. 2016, 5, 32. [Google Scholar] [CrossRef]
- Takamura, M.; Kurokawa, K.; Ootsuji, H.; Inoue, O.; Okada, H.; Nomura, A.; Kaneko, S.; Usui, S. Long-Term Administration of Eicosapentaenoic Acid Improves Post-Myocardial Infarction Cardiac Remodeling in Mice by Regulating Macrophage Polarization. J. Am. Heart Assoc. 2017, 6, e004560. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.; Raj, P.; Austria, J.A.; Yu, L.; Garg, B.; Netticadan, T.; Pierce, G.N. Dietary flaxseed protects against ventricular arrhythmias and left ventricular dilation after a myocardial infarction. J. Nutr. Biochem. 2019, 71, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Habicht, I.; Mohsen, G.; Eichhorn, L.; Frede, S.; Weisheit, C.; Hilbert, T.; Treede, H.; Güresir, E.; Dewald, O.; Duerr, G.D.; et al. DHA Supplementation Attenuates MI-Induced LV Matrix Remodeling and Dysfunction in Mice. Oxid. Med. Cell Longev. 2020, 2020, 7606938. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gong, Y.; Chen, T.; Li, B.; Zhang, W.; Yin, L.; Zhao, H.; Tang, Y.; Wang, X.; Huang, C. Maresin1 ameliorates ventricular remodelling and arrhythmia in mice models of myocardial infarction via NRF2/HO-1 and TLR4/NF-kB signalling. Int. Immunopharmacol. 2022, 113, 109369. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Anzai, T.; Mano, Y.; Kaneko, H.; Anzai, A.; Sugano, Y.; Maekawa, Y.; Takahashi, T.; Yoshikawa, T.; Fukuda, K. Eicosapentaenoic acid suppresses adverse effects of C-reactive protein overexpression on pressure overload-induced cardiac remodeling. Heart Vessels. 2013, 28, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Dabkowski, E.R.; O’Connell, K.A.; Xu, W.; Ribeiro, R.F., Jr.; Hecker, P.A.; Shekar, K.C.; Daneault, C.; Des Rosiers, C.; Stanley, W.C. Docosahexaenoic acid supplementation alters key properties of cardiac mitochondria and modestly attenuates development of left ventricular dysfunction in pressure overload-induced heart failure. Cardiovasc. Drugs Ther. 2013, 27, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Toko, H.; Morita, H.; Katakura, M.; Hashimoto, M.; Ko, T.; Bujo, S.; Adachi, Y.; Ueda, K.; Murakami, H.; Ishizuka, M.; et al. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci. Rep. 2020, 10, 15553. [Google Scholar] [CrossRef]
- Shah, K.B.; Duda, M.K.; O’Shea, K.M.; Sparagna, G.C.; Chess, D.J.; Khairallah, R.J.; Robillard-Frayne, I.; Xu, W.; Murphy, R.C.; Des Rosiers, C.; et al. The cardioprotective effects of fish oil during pressure overload are blocked by high fat intake: Role of cardiac phospholipid remodeling. Hypertens 2009, 54, 605–611. [Google Scholar] [CrossRef]
- Duda, M.K.; O’Shea, K.M.; Tintinu, A.; Xu, W.; Khairallah, R.J.; Barrows, B.R.; Chess, D.J.; Azimzadeh, A.M.; Harris, W.S.; Sharov, V.G.; et al. Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction. Cardiovasc. Res. 2009, 81, 319–327. [Google Scholar] [CrossRef]
- Szeiffova Bacova, B.; Viczenczova, C.; Andelova, K.; Sykora, M.; Chaudagar, K.; Barancik, M.; Adamcova, M.; Knezl, V.; Egan Benova, T.; Weismann, P.; et al. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants 2020, 9, 546. [Google Scholar] [CrossRef]
- Abdellatif, S.Y.; Fares, N.H.; Elsharkawy, S.H.; Mahmoud, Y.I. Calanus oil attenuates isoproterenol-induced cardiac hypertrophy by regulating myocardial remodeling and oxidative stress. Ultrastruct. Pathol. 2023, 47, 12–21. [Google Scholar] [CrossRef]
- Gui, T.; Li, Y.; Zhang, S.; Zhang, N.; Sun, Y.; Liu, F.; Chen, Q.; Gai, Z. Docosahexaenoic acid protects against palmitate-induced mitochondrial dysfunction in diabetic cardiomyopathy. Biomed. Pharmacother. 2020, 128, 110306. [Google Scholar] [CrossRef]
- Olivares-Silva, F.; De Gregorio, N.; Espitia-Corredor, J.; Espinoza, C.; Vivar, R.; Silva, D.; Osorio, J.M.; Lavandero, S.; Peiró, C.; Sánchez-Ferrer, C.; et al. Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166241. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, K.M.; Khairallah, R.J.; Sparagna, G.C.; Xu, W.; Hecker, P.A.; Robillard-Frayne, I.; Des Rosiers, C.; Kristian, T.; Murphy, R.C.; Fiskum, G.; et al. Dietary ω-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition. J. Mol. Cell Cardiol. 2009, 47, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Dyerberg, J.; Bang, H.O.; Stoffersen, E.; Moncada, S.; Vane, J.R. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet Lond Engl. 1978, 2, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Dyerberg, J.; Bang, H.O. Haemostatic function and platelet polyunsatured fatty acids in eskimos. Lancet 1979, 314, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Bryson, C.L.; Lemaitre, R.N.; Burke, G.L.; Siscovick, D.S. Fish Intake and Risk of Incident Heart Failure. J. Am. Coll. Cardiol. 2005, 45, 2015–2021. [Google Scholar] [CrossRef]
- Belin, R.J.; Greenland, P.; Martin, L.; Oberman, A.; Tinker, L.; Robinson, J.; Larson, J.; Van Horn, L.; Lloyd-Jones, D. Fish Intake and the Risk of Incident Heart Failure: The Women’s Health Initiative. Circ. Heart Fail. 2011, 4, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Wilk, J.B.; Tsai, M.Y.; Hanson, N.Q.; Gaziano, J.M.; Djoussé, L. Plasma and dietary omega-3 fatty acids, fish intake, and heart failure risk in the Physicians’ Health Study. Am. J. Clin. Nutr. 2012, 96, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Block, R.C.; Liu, L.; Herrington, D.M.; Huang, S.; Tsai, M.Y.; O’Connell, T.D.; Shearer, G.C. Predicting Risk for Incident Heart Failure With Omega-3 Fatty Acids. JACC Heart Fail. 2019, 7, 651–661. [Google Scholar] [CrossRef]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G. Gissi-HF Investigators. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1223–1230. [Google Scholar]
- Nodari, S.; Metra, M.; Milesi, G.; Manerba, A.; Cesana, B.M.; Gheorghiade, M.; Dei Cas, L. The role of n-3 PUFAs in preventing the arrhythmic risk in patients with idiopathic dilated cardiomyopathy. Cardiovasc. Drugs Ther. 2009, 23, 5–15. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Shao, L.; Teng, L.L.; Hu, B.; Luo, Y.; Yu, X.; Zhang, D.F.; Zhang, H. Effects of n-3 polyunsaturated fatty acid therapy on plasma inflammatory markers and N-terminal pro-brain natriuretic peptide in elderly patients with chronic heart failure. J. Int. Med. Res. 2009, 37, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Ghio, S.; Scelsi, L.; Latini, R.; Masson, S.; Eleuteri, E.; Palvarini, M.; Vriz, O.; Pasotti, M.; Gorini, M.; Marchioli, R.; et al. Effects of n-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: A substudy of GISSI-HF trial. Eur. J. Heart Fail. 2010, 12, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Moertl, D.; Hammer, A.; Steiner, S.; Hutuleac, R.; Vonbank, K.; Berger, R. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: A double-blind, placebo-controlled, 3-arm study. Am. Heart J. 2011, 161, 915.e1–915.e9. [Google Scholar] [CrossRef] [PubMed]
- Nodari, S.; Triggiani, M.; Campia, U.; Manerba, A.; Milesi, G.; Cesana, B.M.; Gheorghiade, M.; Dei Cas, L. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2011, 57, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Kojuri, J.; Ostovan, M.A.; Rezaian, G.R.; Archin Dialameh, P.; Zamiri, N.; Sharifkazemi, M.B.; Jannati, M. Effect of omega-3 on brain natriuretic peptide and echocardiographic findings in heart failure: Double-blind placebo-controlled randomized trial. J. Cardiovasc. Dis. Res. 2013, 4, 20–24. [Google Scholar] [CrossRef]
- Kohashi, K.; Nakagomi, A.; Saiki, Y.; Morisawa, T.; Kosugi, M.; Kusama, Y.; Atarashi, H.; Shimizu, W. Effects of Eicosapentaenoic Acid on the Levels of Inflammatory Markers, Cardiac Function and Long-Term Prognosis in Chronic Heart Failure Patients with Dyslipidemia. J. Atheroscler. Thromb. 2014, 21, 712–729. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Metallinos, G.; Georgiopoulos, G.; Mendrinos, D.; Papanikolaou, A.; Magkas, N.; Pitsavos, C.; Vyssoulis, G.; Stefanadis, C.; Tousoulis, D. Short term omega-3 polyunsaturated fatty acid supplementation induces favorable changes in right ventricle function and diastolic filling pressure in patients with chronic heart failure; A randomized clinical trial. Vascul Pharmacol. 2016, 79, 43–50. [Google Scholar] [CrossRef]
- Heydari, B.; Abdullah, S.; Pottala, J.V.; Shah, R.; Abbasi, S.; Mandry, D.; Francis, S.A.; Lumish, H.; Ghoshhajra, B.B.; Hoffmann, U.; et al. Effect of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction: The OMEGA-REMODEL Randomized Clinical Trial. Circulation 2016, 134, 378–391. [Google Scholar] [CrossRef]
- Oikonomou, E.; Vogiatzi, G.; Karlis, D.; Siasos, G.; Chrysohoou, C.; Zografos, T.; Lazaros, G.; Tsalamandris, S.; Mourouzis, K.; Georgiopoulos, G.; et al. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin. Nutr. Edinb. Scotl. 2019, 38, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Cook, N.R.; Kim, E.; Bodar, V.; Walter, J.; Bubes, V.; Luttmann-Gibson, H.; Mora, S.; Joseph, J.; Lee, I.M.; et al. Supplementation With Vitamin D and Omega-3 Fatty Acids and Incidence of Heart Failure Hospitalization: VITAL-Heart Failure. Circulation 2020, 141, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Kalstad, A.A.; Myhre, P.L.; Laake, K.; Tveit, S.H.; Schmidt, E.B.; Smith, P.; Nilsen, D.W.T.; Tveit, A.; Fagerland, M.W.; Solheim, S.; et al. Effects of n-3 Fatty Acid Supplements in Elderly Patients After Myocardial Infarction: A Randomized, Controlled Trial. Circulation 2021, 143, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Juliano, R.A.; Jiao, L.; Tardif, J.C.; Ballantyne, C.M. REDUCE-IT Investigators. Impact of Icosapent Ethyl on Cardiovascular Risk Reduction in Patients With Heart Failure in REDUCE-IT. J. Am. Heart Assoc. 2022, 11, e024999. [Google Scholar] [CrossRef]
- Mehra, M.R.; Lavie, C.J.; Ventura, H.O.; Milani, R.V. Fish oils produce anti-inflammatory effects and improve body weight in severe heart failure. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2006, 25, 834–838. [Google Scholar] [CrossRef]
- Buchan, T.A.; Ching, C.; Foroutan, F.; Malik, A.; Daza, J.F.; Hing, N.N.F.; Siemieniuk, R.; Evaniew, N.; Orchanian-Cheff, A.; Ross, H.J.; et al. Prognostic value of natriuretic peptides in heart failure: Systematic review and meta-analysis. Heart Fail. Rev. 2022, 27, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, A.A.; Wiest, M.M.; Lavie, C.J.; Milani, R.V.; Laukkanen, J.A. Effect of Omega-3 Dosage on Cardiovascular Outcomes. Mayo Clin. Proc. 2021, 96, 304–313. [Google Scholar] [CrossRef]
- Skou, H.A.; Toft, E.; Christensen, J.H.; Hansen, J.B.; Dyerberg, J.; Schmidt, E.B. N-3 Fatty Acids and Cardiac Function after Myocardial Infarction in Denmark. Int. J. Circumpolar Health 2001, 60, 360–365. [Google Scholar] [CrossRef]
- Kromhout, D.; Giltay, E.J.; Geleijnse, J.M. n–3 Fatty Acids and Cardiovascular Events after Myocardial Infarction. N. Engl. J. Med. 2010, 363, 2015–2026. [Google Scholar] [CrossRef]
- Jacobs, M.L.; Faizi, H.A.; Peruzzi, J.A.; Vlahovska, P.M.; Kamat, N.P. EPA and DHA differentially modulate membrane elasticity in the presence of cholesterol. Biophys. J. 2021, 120, 2317–2329. [Google Scholar] [CrossRef]
- Sherratt, S.C.R.; Libby, P.; Budoff, M.J.; Bhatt, D.L.; Mason, R.P. Role of Omega-3 Fatty Acids in Cardiovascular Disease: The Debate Continues. Curr. Atheroscler. Rep. 2023, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Serini, S.; Calviello, G. Omega-3 PUFA Responders and Non-Responders and the Prevention of Lipid Dysmetabolism and Related Diseases. Nutrients 2020, 12, 1363. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Model | ω3-PUFA | Cardiac Remodeling Effect | Mechanisms |
---|---|---|---|---|
Saeedi, 2023 [15] | Mice (aged) | diet containing 7.3% ALA for 12 months | prevents diastolic dysfunction (↓ E/A, ↑ IVRT) ↓ ECM remodeling | ↓ inflammation (↓ NFKB1, ↓ TNF-α, ↓ COX2), ↓ OS (↓ MDA, ↑ SOD, ↑ GPX), ↓ apoptosis |
Li, 2017 [16] | Mice (heart/muscle-specific Mn-SOD-deficient) | 3 mg/(kg·day) n-3 PUFA for 10 weeks | ↓ Fibrosis | ↓ ROS, ↓ protein carbonylation, ↓ apoptosis |
Gharrae, 2022 [17] | Rats (hypertension) | EPA 1.9 g/kg for 20 weeks | ↓ E/e′, ↓ fibrosis | ↓ inflammation (↑ IL-10) |
Fosshaug, 2011 [18] | Rats (MI) | krill oil (EPA + DHA 0.75% of energy intake) 14 days before MI until 7 weeks after | ↓ HW, ↓ LVDD, ↓ RWT | ↓ ANP, TGF-β, TNF-α, IL-1, IL-6, MCP-1 |
Fang, 2011 [19] | Rats (MI) | PUFA (450 mg/kg (30% ALA) 12 weeks | ↓ LVDD, ↓ LVSD, ↑ FS, ↓ LVWt, ↑ LV dP/dt, ↑ LVESPVR ↓ LVEDPVR ↓ LVEDP ↓ Tau, ↓ fibrosis (collagen) | ↓ OS (↑ GSH total and reduced, ↓ GSSG) |
Abdukevum, 2016 [20] | Rats (MI) | fish oil (n-3 PUFA); sunflower seed oil (n-6 PUFA); or beef tallow (saturated fat, SF) for 6 weeks before MI | n-3 PUFA ↓ Infarct size | n-3 PUFA ↓ LPO, MDA, ↑ SOD |
Takamura, 2017 [21] | Rats (MI) | EPA 28 days pre and 28 post-MI, 1 g/(kg·day) | ↓ mortality, ↓ heart weight, ↓ LVEDD, ↓ LVESD, ↑ LVEF, ↑ %FS, ↓ CSA, ↓ fibrosis, ↓ ANP and BNP mRNA expression | ↓ macrophage polarization ↓ inflammation (↓ TGFB, CCL2, EMR1, IL-6, IRF5 ↑ MRC1, VEGF), |
Parikh, 2019 [22] | Rats (MI) | Flaxseed (milled and oil) 2 weeks pre and 8 weeks post-MI. | ↓ MI size, ↓ arrhythmias, ↓ LVID, ↓ fibrosis | ↓ inflammation (TNF-α) |
Habicht, 2020 [23] | Rats (MI) | DHA 0.26 g/kg for 7 days after MI | ↓ LVEDP, ↑ EF, ↑ dP/dt, ↓ Tau | ↓ inflammation (↓ TNF-α, IL-1, IL-10, ↓ chemokine mRNA), ↓ OS (↓ GPX, ↓ HO-1, variation in UCP3) |
Wang, 2022 [24] | Rats (MI) | Maresin1 (intraperitoneal injection 10 ng/g once every 2 days for 28 days) | ↑ EF, ↑ FS, ↓ LVEDV, ↓ LVESV, ↓ LVIDD, ↓ LVIDS, ↓ fibrosis (↓ collagen, ↓ α-SMA), | ↓ OS (↑NRF2/HO-1, ↑ SOD, ↓ MDA), ↓ inflammation (↓ TLR4, TNFa, IL-6), ↓ apoptosis (↓ Bax, caspase-3, ↑ Bcl2) |
Nagai, 2013 [25] | Rats (transverse aortic constriction) | EPA (7% of the total energy) 2 weeks pre and 4 weeks post TAC | ↓ HW, ↓ LVEDD,↓ LVESD, ↓ LVEDP, ↑ FS, ↓ AWT, ↓ PWT, ↓ CSA, ↓ fibrosis (↓ TGF-β) | ↓ inflammation (IL6), ↓ OS (GPX, p47 phox) |
Dabkowski, 2013 [26] | Rats (transverse aortic constriction) | DHA 2.3% of energy intake, 3 days after surgery for 14 weeks | ↑ FS, ↑ EF | ↓ ROS-induced mitochondrial permeability transition |
Toko, 2020 [27] | Rats (transverse aortic constriction) | EPA + DHA, 1.5 mg/g for 4 weeks | ↓ LVESD, ↑ FS, ↓ HW, ↓ CSA, ↓ Fibrosis | ↓ inflammation (↓ leukocytes and macrophages, ↓ TNFα and MIP-1α), no difference in MDA and iso-PGF2α |
Shah, 2009 [28] | Rats (abdominal aortic banding) | EPA + DHA 2.3% of energy intake, | ↓ LVM | ↓ inflammation (↓ AA in cardiac phospholipids, ↓ TA2 excretion) |
Duda, 2009 [29] | Rats (abdominal aortic banding) | EPA + DHA or ALA 0.7–7% of energy intake, 1 week before and 12 weeks after surgery | ↑ FS, ↑ EF, ↓ PWT, ↓ LVEDV, ↓ LVESV | ↓ inflammation (↓ AA in cardiac phospholipids, ↓ TNF-α, ↓ TA2, ↓ 6-KPGF1α) |
Szeiffova, 2020 [30] | Rats (isoproterenol) | Omega-3 1.68 g/(kg·day) until 60 days | ↓ fibrosis and ECM remodeling, ↓ myocardial injury ↓ LVW | ↓ OS (↑ SOD) |
Abdellatif, 2023 [31] | Rats (isoproterenol) | Calanus oil 400 mg/kg b.wt for 4 weeks | ↓ LVPWd, ↓ IVd, ↑ LVIDD, ↓ IVs, ↑ LVIDS, ↓ LVM, ↑FS ↑ EF, ↓ HW, ↓ hypertrophy | ↓ MDA, ↑TAC |
Gui, 2020 [32] | Cardiomyocytes | DHA (20 μM) for 16 weeks | ↓ HW, ↓ hypertrophy, ↓ fibrosis (↓ α-SMA) | ↓ OS (↓ Tom20, ↓ R OS, ↓ roGFP, ↓ 4HNE), ↓ apoptosis |
Olivares-Silva, 2021 [33] | Rats (ang II hypertension) | RvD1 (3 μg/(kg·day) i.p.) after surgery until euthanized | ↓ CSA, ↓ IVSWT, ↓ PWT, ↓ LVEDD, ↓ fibrosis | ↓ inflammation (↓ granulation, neutrophil and macrophage; ↓ ICAM-1, VCAM-1, IL-1β, TNF-α, IL-6, IL-10, KC e MCP-1) |
Author, Year | Country | N | Patients | Omega-3 Dose/Day | Follow Up | Main Indexes |
---|---|---|---|---|---|---|
Tavazzi, 2008 [41] | Italy | 7046 | CHF NYHA II–IV | 1 g (EPA/DHA) | 3.9 years | ↓ Mortality (all causes and owing to CV), ↓ hospitalization |
Nodari, 2009 [42] | Italy | 44 | CHF by DCM EF ≤ 45% | 1 g (EPA/DHA) | 6 months | ↓ LVESV, ↑ EF, ↓ arrhythmia risk, ↑ VO2, ↓ serum norepinephrine TNFα, IL-1, IL-6 |
Zhao, 2009 [43] | China | 76 | CHF NYHA II–III DCM, EF < 40% | 2 g (EPA/DHA) | 3 months | ↓ CRP, ↓ TNFα, ↓ IL6, ↓ ICAM-1, ↓ NT-proBNP |
Ghio, 2010 [44] | Italy | 608 | Patients with CHF NYHA II–IV 1 | 1 g (EPA/DHA) | 3 years | ↑ EF |
Moertl, 2011 [45] | Austria | 43 | CHF NYHA III–IV DCM EF < 35% | 1–4 g (EPA/DHA) | 3 months | ↑ EF, ↓ IL-6 |
Nodari, 2011 [46] | Italy, USA | 133 | CHF NYHA II–III DCM EF ≤ 45% | 2 g (EPA/DHA) | 12 months | ↑ EF, ↑ VO2, ↑ exercise duration, ↓ mean NYHA class, ↓ hospitalization, improved systolic and diastolic function, ↓ IL-6, IL-1, TNFα |
Kojuri, 2013 [47] | Iran | 70 | CHF NYHA II–III ICM EF < 40% | 2 g (EPA/DHA) | 6 months | ↓ Tei index, ↑ AM index |
Kohashi, 2014 [48] | Japan | 139 | CHF mean EF 37.6% ± 8% | 1.8 g (EPA/DHA) | 12 months | ↓ BNP, ↓ BP, ↓ cholesterol, ↑ EF, ↓ CRP, ↓ mean NYHA class, ↓ MCP-1, ↓ TNFα, ↓ AA |
Chrysohoou, 2016 [49] | Greece | 205 | CHF NYHA I–III ICM and DCM | 1 g (EPA/DHA) | 6 months | ↓ BNP, ↓ LVESD, ↓ LVEDD, ↓ LA, ↓ Etv/Atv |
Heydari et al., 2016 [50] | EUA | 358 | MI | 4 g (EPA/DHA) | 6 months | ↓ LVESVI, ↓ Fibrosis |
Oikonomou et al., 2019 [51] | Greece | 31 | CHF–ICM with EF < 40% | 2 g (EPA/DHA) | 6 weeks | ↑ EF, ↓ global longitudinal strain, ↓ E/e’ ratio, ↓ ST2 levels, ↑ flow-mediated dilation, ↓ CRP levels |
Djoussé et al., 2020 [52] | EUA | 499 | patients with CHF 2 | 1 g (EPA/DHA) | 5.3 years | ↓ recurrent CHF hospitalization |
Kalstad et al., 2021 [53] | Norway | 1027 | MI | 1.8 g (EPA/DHA) | 2 years | ↓ composite nonfatal MI, CRev, stroke, all-cause death, CHF hospitalization. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazzarin, T.; Martins, D.; Ballarin, R.S.; Monte, M.G.; Minicucci, M.F.; Polegato, B.F.; Zornoff, L. The Role of Omega-3 in Attenuating Cardiac Remodeling and Heart Failure through the Oxidative Stress and Inflammation Pathways. Antioxidants 2023, 12, 2067. https://doi.org/10.3390/antiox12122067
Lazzarin T, Martins D, Ballarin RS, Monte MG, Minicucci MF, Polegato BF, Zornoff L. The Role of Omega-3 in Attenuating Cardiac Remodeling and Heart Failure through the Oxidative Stress and Inflammation Pathways. Antioxidants. 2023; 12(12):2067. https://doi.org/10.3390/antiox12122067
Chicago/Turabian StyleLazzarin, Taline, Danilo Martins, Raquel S. Ballarin, Marina G. Monte, Marcos F. Minicucci, Bertha F. Polegato, and Leonardo Zornoff. 2023. "The Role of Omega-3 in Attenuating Cardiac Remodeling and Heart Failure through the Oxidative Stress and Inflammation Pathways" Antioxidants 12, no. 12: 2067. https://doi.org/10.3390/antiox12122067
APA StyleLazzarin, T., Martins, D., Ballarin, R. S., Monte, M. G., Minicucci, M. F., Polegato, B. F., & Zornoff, L. (2023). The Role of Omega-3 in Attenuating Cardiac Remodeling and Heart Failure through the Oxidative Stress and Inflammation Pathways. Antioxidants, 12(12), 2067. https://doi.org/10.3390/antiox12122067