Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (Amaranthus cruentus L.) and Cañihua (Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Plant Material
2.3. Protein Extraction and Quantification
2.4. In Vitro Gastrointestinal Digestion
2.5. In Vitro Protein Digestibility
2.6. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.7. Free Amino Acid Analysis
2.8. Antioxidant Activity
2.8.1. Oxygen Radical Absorbance Capacity (ORAC)
2.8.2. ABTS Radical Scavenging Assay
2.8.3. DPPH Radical Scavenging Assay
2.8.4. Cell Culture
2.8.5. Cell Viability Assay
2.8.6. Cellular Antioxidant Activity
2.9. Statistical Analysis
3. Results
3.1. Characterization of Amaranth and Cañihua Protein Concentrates
3.2. Effect of In Vitro Digestion on Amaranth and Cañihua Protein Concentrates
Digestibility of Amaranth and Cañihua Proteins
3.3. Effect of In Vitro Digestion on the Release of Amino Acids from Amaranth and Cañihua Proteins
3.4. Impact of In Vitro Digestion on the Antioxidant Activity of Amaranth and Cañihua Protein Concentrates
3.4.1. Oxygen Radical Absorbance Capacity (ORAC) Assay
3.4.2. ABTS Radical Scavenging Activity
3.4.3. DPPH Radical Scavenging Activity
3.4.4. Cellular Antioxidant Activity (CAA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorieau, L.; Halabi, A.; Ligneul, A.; Hazart, E.; Dupont, D.; Floury, J. Impacto de la estructura del producto lácteo y la naturaleza de la proteína en la proteólisis y la bioaccesibilidad de los aminoácidos durante la digestión in vitro. Hidrocoloides Aliment. 2018, 82, 399–411. [Google Scholar] [CrossRef]
- Li-Chan, E.; Shih-Li, H.; Chia-Ling, J.; Kit-Pan, H.; Kuo-Chiang, H. Peptides Derived from Atlantic Salmon Skin Gelatin as Dipeptidyl-peptidase IV Inhibitors. J. Agric. Food Chem. 2012, 60, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Capraro, J.; Benedetti, S.D.; Heinzl, G.C.; Scarafoni, A.; Magni, C. Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. Int. J. Mol. Sci. 2021, 22, 3543. [Google Scholar] [CrossRef] [PubMed]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving Human Health and Promoting Quality Life—A Review. Plant Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef]
- Przybylska, S.; Tokarczyk, G. Lycopene in the Prevention of Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 1957. [Google Scholar] [CrossRef]
- Mittal, P.; Dhankhar, S.; Chauhan, S.; Garg, N.; Bhattacharya, T.; Ali, M.; Chaudhary, A.A.; Rudayni, H.A.; Al-Zharani, M.; Ahmad, W.; et al. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson’s Disease. Pharmaceuticals 2023, 16, 908. [Google Scholar] [CrossRef]
- Al-Waili, N.; Al-Waili, H.; Al-Waili, T.; Salom, K. Natural Antioxidants in the Treatment and Prevention of Diabetic Nephropathy; A Potential Approach That Warrants Clinical Trials. Redox Rep. 2017, 22, 99–118. [Google Scholar] [CrossRef]
- Dennis, J.M.; Witting, P. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017, 9, 718. [Google Scholar] [CrossRef]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant Properties and Potential Mechanisms of Hydrolyzed Proteins and Peptides from Cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef]
- Indiano-Romacho, P.; Fernández-Tomé, S.; Amigo, L.; Hernández-Ledesma, B. Multifunctionality of Lunasin and Peptides Released During Its Simulated Gastrointestinal Digestion. Food Res. Int. 2019, 125, 108513. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Tang, X.; Ren, Y.; Wang, E.; Shi, L.; Wu, X.; Wu, H. Novel antioxidant peptides purified from Mulberry (Morus atropurpurea Roxb.) leaf protein hydrolysates with hemolysis inhibition ability and cellular antioxidant activity. J. Agric. Food Chem. 2019, 67, 7650–7659. [Google Scholar] [CrossRef] [PubMed]
- Orsini-Delgado, M.C.; Nardo, A.; Pavlovic, M.; Rogniaux, H.; Añón, M.C.; Tironi, V. Identification and Characterization of Antioxidant Peptides Obtained by Gastrointestinal Digestion of Amaranth Proteins. Food Chem. 2016, 197, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Liu, K.; Yang, J.; Liu, S.; Wang, S.; Wang, S. Advances on Food-Derived Peptidic Antioxidants-A Review. Antioxidants 2020, 9, 799. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Chairez, M.F.; Meza-Márquez, O.G.; Márquez-Flores, Y.K.; Jiménez-Martínez, C.; Osorio-Revilla, G. In Vitro Anti-Inflammatory and Antioxidant Activity of Chickpea (Cicer arietinum L.) Proteins Hydrolysate Fractions. Biotecnia 2022, 24, 59–68. [Google Scholar] [CrossRef]
- Siow, H.L.; Gan, C.Y. Extraction, Identification, and Structure–Activity Relationship of Antioxidative and α-Amylase Inhibitory Peptides from Cumin Seeds (Cuminum cyminum). J. Funct. Foods 2016, 22, 1–12. [Google Scholar] [CrossRef]
- FAO. Quinoa: An Ancient Crop to Contribute to World Food Security; Regional Office for Latin America and the Caribbean: Vitacura, Santiago, Chile, 2011. [Google Scholar]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S. In Vitro Inhibition of Dipeptidyl Peptidase IV by Peptides Derived from the Hydrolysis of Amaranth (Amaranthus hypochondriacus L.) Protein. Food Chem. 2013, 136, 758–764. [Google Scholar] [CrossRef]
- Quiroga, A.; Barrio, D.; Añon, M.C. Amaranth Lectin Presents Potential Antitumor Properties. Food Sci. Technol. 2015, 60, 478–485. [Google Scholar] [CrossRef]
- Moscoso-Mujica, G.; Zavaleta, A.; Mujica, Á.; Santos, M.; Calixto, R. Fractionation and electrophoretic characterization of (Chenopodium pallidicaule Aellen) kanihua seed proteins. Rev. Chil. Nutr. 2017, 44, 144–152. [Google Scholar] [CrossRef]
- Moscoso-Mújica, G.; Zavaleta, A.I.; Mujica, A.; Arnao, I.; Moscoso-Neira, C.; Santos, M.; Sánchez, J. Antimicrobial peptides purified from hydrolysates of kanihua (Chenopodium pallidicaule Aellen) seed protein fractions. Food Chem. 2021, 360, 129951. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, R.; Ochoa, K.; Aguilar-Galvez, A.; Carpentier, S.; Pedreschi, R.; Campos, D. Obtaining of Peptides with In Vitro Antioxidant and Angiotensin I Converting Enzyme Inhibitory Activities from Cañihua Protein (Chenopodium pallidicaule Aellen). J. Cereal Sci. 2018, 83, 139–146. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschiz, R.; Velasquez-Sanchez, M.; Aguilar-Galvez, A.; Campos, D. In Vitro Antioxidant and Angiotensin I-Converting Enzyme Inhibitory Properties of Enzymatically Hydrolyzed Quinoa (Chenopodium quinoa) and Kiwicha (Amaranthus caudatus) Proteins. Cereal Chem. 2020, 97, 949–957. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Babatunde, T.O.; Saka, O.G. Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Cogent Food Agric. 2017, 3, 1296402. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Tomé, D.; Gaudichon, C.; Recio, I. Stimulation of CCK and GLP-1 Secretion and Expression in STC-1 Cells by Human Jejunal Contents and In Vitro Gastrointestinal Digests from Casein and Whey Proteins. Food Funct. 2018, 9, 4702–4713. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Dávalos, A.; Bartolomé, B.; Amigo, L. Preparation of Antioxidant Enzymatic Hydrolysates from α-Lactoalbumin and β-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. J. Agric. Food Chem. 2005, 52, 588–593. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Antunes-Ricardo, M.; Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Heredia, J.B. Cellular Antioxidant Activity and In Vitro Inhibition of α-Glucosidase, α-Amylase, and Pancreatic Lipase of Oregano Polyphenols Under Simulated Gastrointestinal Digestion. Food Res. Int. 2019, 116, 676–686. [Google Scholar] [CrossRef]
- Escudero, N.L.; De Arellano, M.L.; Luco, J.M.; Giménez, M.S.; Mucciarelli, S.I. Comparison of the Chemical Composition and Nutritional Value of Amaranthus cruentus Flour and Its Protein Concentrate. Plant Foods Hum. Nutr. 2004, 59, 15–21. [Google Scholar] [CrossRef]
- Sabbione, A.C.; Scilingo, A.; Añón, M.C. Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. LWT Food Sci. Technol. 2015, 60, 171–177. [Google Scholar] [CrossRef]
- Betalleluz-Pallardel, I.; Inga, M.; Mera, L.; Pedreschi, R.; Campos, D.; Chirinos, R. Optimisation of Extraction Conditions and Thermal Properties of Protein from the Andean Pseudocereal Cañihua (Chenopodium pallidicaule Aellen). Int. J. Food Sci. Technol. 2017, 52, 1026–1034. [Google Scholar] [CrossRef]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef]
- Najdi Hejazi, S.; Orsat, V.; Azadi, B.; Kubow, S. Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. J. Cereal Sci. 2016, 68, 59–65. [Google Scholar] [CrossRef]
- Cornejo, F.; Novillo, G.; Villacrés, E.; Rosell, C.M. Evaluation of the physicochemical and nutritional changes in two amaranth species (Amaranthus quitensis and Amaranthus caudatus) after germination. Food Res. Int. 2019, 121, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Uraipong, C.; Zhao, J. In Vitro Digestion of Rice Bran Proteins Produces Peptides with Potent Inhibitory Effects on α-Glucosidase and Angiotensin I Converting Enzyme. J. Sci. Food Agric. 2018, 98, 758–766. [Google Scholar] [CrossRef]
- Gong, X.; Hui, X.; Wu, G.; Mortin, J.D.; Brennan, M.A.; Brennan, C.S. In Vitro Digestion Characteristics of Cereal Protein Concentrates as Assessed Using a Pepsin-Pancreatin Digestion Model. Food Res. Int. 2022, 152, 110715. [Google Scholar] [CrossRef]
- Gamel, T.H.; Linssen, J.P.; Alink, G.M.; Mosallem, A.S.; Shekib, L.A. Nutritional Study of Raw and Popped Seed Proteins of Amaranthus caudatus L. and Amaranthus cruentus L. J. Sci. Food Agric. 2004, 84, 1153–1158. [Google Scholar] [CrossRef]
- Sánchez-López, F.; Robles-Olvera, V.J.; Hidalgo-Morales, M.; Tsopmo, A. Characterization of Amaranthus hypochondriacus Seed Protein Fractions, and Their Antioxidant Activity After Hydrolysis with Lactic Acid Bacteria. J. Cereal Sci. 2020, 95, 103075. [Google Scholar] [CrossRef]
- Bejarano-Luján, D.L.; Netto, F.M. Effect of alternative processes on the yield and physicochemical characterization of protein concentrates from Amaranthus cruentus. LWT Food Sci. Technol. 2010, 43, 736–743. [Google Scholar] [CrossRef]
- Mendoza-Figueroa, J.S.; Kvarnheden, A.; Méndez-Lozano, J.; Rodríguez-Negrete, E.A.; Arreguín-Espinosa de los Monteros, R.; Soriano-García, M. A peptide derived from enzymatic digestion of globulins from amaranth shows strong affinity binding to the replication origin of Tomato yellow leaf curl virus reducing viral replication in Nicotiana benthamiana. Pestic. Biochem. Physiol. 2018, 145, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Pazinatto, C.; Malta, L.; Pastore, G.M.; Netto, F.M. Antioxidant Capacity of Amaranth Products: Effects of Thermal and Enzymatic Treatments. Food Sci. Technol. 2013, 33, 485–493. [Google Scholar] [CrossRef]
- Kamal, H.; Mudgil, P.; Bhaskar; Feyisola, A.; Gan, C.Y.; Maqsood, S. Amaranth proteins as a potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. J. Cereal Sci. 2021, 101, 103308. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Miralles, B.; Carrillo, W.; Hernández-Ledesma, B. In Vitro Chemopreventive Properties of Peptides Released from Quinoa (Chenopodium quinoa Willd.) Protein under Simulated Gastrointestinal Digestion. Food Res. Int. 2018, 105, 403–411. [Google Scholar] [CrossRef]
- Hussain, T.; Abbas, S.; Khan, M.A.; Scrimshaw, N.S. Lysine Fortification of Wheat Flour Improves Selected Indices of the Nutritional Status of Predominantly Cereal-Eating Families in Pakistan. Food Nutr. Bull. 2004, 25, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Mora, L.; Hayes, M.; Reig, M.; Toldrá, F. Effect of Cooking and In Vitro Digestion on the Antioxidant Activity of Dry-Cured Ham By-Products. Food Res. Int. 2017, 97, 296–306. [Google Scholar] [CrossRef]
- Montoya-Rodríguez, A.; González, E.; Díaz, V.; Reyes-Moreno, C.; Milán-Carrillo, J. Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-kB signaling. Mol. Nutr. Food Res. 2014, 58, 1028–1041. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Miralles, B.; Hernández-Ledesma, B. Release of Multifunctional Peptides from Kiwicha (Amaranthus caudatus) Protein under In Vitro Gastrointestinal Digestion. J. Sci. Food Agric. 2019, 99, 1225–1232. [Google Scholar] [CrossRef]
- Rodríguez, M.; García, S.F.; Tironi, V. Simulated gastrointestinal digestion of amaranth flour and protein isolate: Comparison of methodologies and release of antioxidant peptides. Food Res. Int. 2020, 138, 109735. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Maux, S.L.; Dubrulle, C.; Barre, C.; FitzGerald, R.J. Quinoa (Chenopodium quinoa Willd.) Protein Hydrolysates with In Vitro Dipeptidyl Peptidase IV (DPP-IV) Inhibitory and Antioxidant Properties. J. Cereal Sci. 2015, 65, 112–118. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wang, L.; Guo, X.; Wang, X.; Yao, H. Isolation and Identification of Antioxidative Peptides from Rice Endosperm Protein Enzymatic Hydrolysate by Consecutive Chromatography and MALDI-TOF/TOF MS/MS. Food Chem. 2010, 119, 226–234. [Google Scholar] [CrossRef]
- Wang, J.S.; Zhao, M.M.; Zhao, Q.Z.; Jiang, Y.M. Antioxidant Properties of Papain Hydrolysates of Wheat Gluten in Different Oxidation Systems. Food Chem. 2007, 101, 1658–1663. [Google Scholar] [CrossRef]
- Ayala-Niño, A.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Contreras-López, E.; Regal-López, P.; Cepeda-Saez, A. Sequence Identification of Bioactive Peptides from Amaranth Seed Proteins (Amaranthus hypochondriacus spp.). Molecules 2019, 24, 3033. [Google Scholar] [CrossRef] [PubMed]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Free Aromatic Amino Acids in Egg Yolk Show Antioxidant Properties. Food Chem. 2011, 129, 155–161. [Google Scholar] [CrossRef]
- Betancur-Ancona, D.; Sosa-Espinoza, T.; Ruiz-Ruiz, J.; Segura-Campos, M.; Chel-Guerrero, L. Enzymatic hydrolysis of hard-to-cook bean (Phaseolus vulgaris L.) protein concentrates and its effects on biological and functional properties. Int. J. Food Sci. Technol. 2014, 49, 2–8. [Google Scholar] [CrossRef]
- Torruco-Uco, J.; Chel-Guerrero, L.; Martínez-Ayala, A.; Dávila-Ortíz, G.; Bentancur-Ancona, D. Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysates from Phaseolus lunatus and Phaseolus vulgaris Seeds. LWT Food Sci. Technol. 2009, 42, 1597–1604. [Google Scholar] [CrossRef]
- Peña-Ramos, A.; Xiong, Y.L.; Artega, G.E. Fractionation and Characterisation for Antioxidant Activity of Hydrolysed Whey Protein. J. Sci. Food Agric. 2004, 84, 1908–1918. [Google Scholar] [CrossRef]
- Mahdavi-Yekta, M.; Nouri, L.; Azizi, M.H. The effects of hydrolysis condition on antioxidant activity of protein hydrolyzate from quinoa. Food Sci. Nutr. 2019, 7, 930–936. [Google Scholar] [CrossRef]
- Tavano, O.; Amistá, M.; Del Ciello, G.; Martini, M.; Bono, A.; Alves, L.; Moreira, B.; da Silva, R.; Parolini, M.; da Silva, S. Isolation and Evaluation of Quinoa (Chenopodium quinoa Willd.) Protein Fractions. A Nutritional and Bio-functional Approach to the Globulin Fraction. Curr. Res. Food Sci. 2022, 5, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Aluko, R.E.; Monu, E. Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates. Food Chem. Toxicol. 2003, 68, 1254–1258. [Google Scholar] [CrossRef]
- Mudgil, P.; Omar, L.S.; Kamal, H.; Kilari, B.; Maqsood, S. Multi-functional bioactive properties of intact and enzymatically hydrolyzed quinoa and amaranth proteins. LWT Food Sci. Technol. 2019, 110, 207–213. [Google Scholar] [CrossRef]
- Umayaparvathi, S.; Meenakshi, S.; Vimalraj, V.; Arumugam, M.; Sivagami, G.; Balasubramanian, T. Antioxidant Activity and Anticancer Effect of Bioactive Peptide from Enzymatic Hydrolysate of Oyster (Saccostrea cucullata). Biomed. Prev. Nutr. 2014, 233, 343–353. [Google Scholar] [CrossRef]
- Wu, H.C.; Chen, H.M.; Shiau, C.Y. Free Amino Acids and Peptides as Related to Antioxidant Properties in Protein Hydrolysates of Mackerel (Scomber austriasicus). Food Res. Int. 2003, 36, 949–957. [Google Scholar] [CrossRef]
- Famuwagun, A.; Alashi, A.; Gbadamosi, O.; Taiwo, K.; Oyele, D.; Adebooye, O.; Aluko, R. Antioxidant and Enzymes Inhibitory Properties of Amaranth Leaf Protein Hydrolyzates and Ultrafiltration Peptide Fractions. J. Food Biochem. 2020, 45, e13396. [Google Scholar] [CrossRef]
- Daliri, H.; Ahmadi, R.; Pezeshki, A.; Hamishehkar, H.; Mohammadi, M.; Beyrami, H.; Khakbaz, M.; Ghorbani, M. Quinoa Bioactive Protein Hydrolysate Produced by Pancreatin Enzyme-Functional and Antioxidant Properties. LWT Food Sci. Technol. 2021, 150, 11185. [Google Scholar] [CrossRef]
- Abbasi, S.; Moslehishad, M.; Salami, M. Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. Int. J. Biol. Macromol. 2022, 213, 602–609. [Google Scholar] [CrossRef]
- Furger, C. Live Cell Assays for the Assessment of Antioxidant Activities of Plant Extracts. Antioxidants 2021, 10, 944. [Google Scholar] [CrossRef]
- Goya, L.; Martin, M.; Ramos, S.; Mateos, R.; Bravo, L. A Cell Culture Model for the Assessment of the Chemopreventive Potential of Dietary Compounds. Curr. Nutr. Food Sci. 2009, 5, 56–64. [Google Scholar] [CrossRef]
- Kellett, M.E.; Greenspan, P.; Pegg, R.B. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chem. 2018, 244, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Esfandi, R.; Willmore, W.G.; Tsopmo, A. Antioxidant Activity of Oat Proteins Derived Peptides in Stressed Hepatic HepG2 Cells. Antioxidants 2016, 5, 39. [Google Scholar] [CrossRef]
- Liu, H.; Ye, H.; Sun, C.; Xi, H.; Ma, J.; Lai, F.; Wu, H. Antioxidant activity in HepG2 cells, immunomodulatory effects in RAW 264.7 cells and absorption characteristics in Caco-2 cells of the peptide fraction isolated from Dendrobium aphyllum. Int. J. Food Sci. Technol. 2018, 53, 2027–2036. [Google Scholar] [CrossRef]
- She, X.; Wang, F.; Ma, J.; Chen, X.; Ren, D.; Lu, J. In vitro antioxidant and protective effects of corn peptides on ethanol-induced damage in HepG2 cells. Food Agric. Immunol. 2016, 27, 99–110. [Google Scholar] [CrossRef]
- García, S.; Tironi, V. Intracellular antioxidant activity and intestinal absorption of amaranth peptides released using simulated gastrointestinal digestion with Caco-2 TC7 cells. Food Biosci. 2021, 41, 101086. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, M.; Lin, S.; Cheng, S. Contribution of specific amino acid and secondary structure to the antioxidant property of corn gluten proteins. Food Res. Int. 2018, 105, 836–844. [Google Scholar] [CrossRef] [PubMed]
Amino Acid | Gastric Digestion | Intestinal Digestion |
---|---|---|
Val | 0.143 ± 0.07 a | 8.710 ± 0.07 h |
Met | 0.173 ± 0.07 a | 4.626 ± 0.07 f |
Gly | 0.230 ± 0.07 ab | 2.970 ± 0.07 e |
Cys | 0.289 ± 0.07 ab | 1.871 ± 0.07 d |
Pro | 0.454 ± 0.07 ab | 2.882 ± 0.07 e |
Ala | 0.460 ± 0.07 ab | 5.969 ± 0.07 g |
Thr | 0.481 ± 0.07 ab | 4.664 ± 0.07 f |
His | 0.604 ± 0.07 b | 4.682 ± 0.07 f |
Asp | 0.854 ± 0.07 bc | 12.058 ± 0.07 k |
Phe | 0.867 ± 0.07 bc | 14.738 ± 0.07 l |
Ile | 0.903 ± 0.07 bc | 9.314 ± 0.07 i |
Ser | 0.951 ± 0.07 bc | 9.175 ± 0.07 i |
Arg | 1.022 ± 0.07 bc | 15.849 ± 0.07 m |
Tyr | 1.049 ± 0.07 c | 16.408 ± 0.07 n |
Lys | 1.050 ± 0.07 c | 13.213 ± 0.07 j |
Leu | 1.268 ± 0.07 cd | 16.131 ± 0.07 mn |
Glu | 1.504 ± 0.07 d | 15.084 ± 0.07 l |
EAA | 5.489 ± 0.13 | 76.078 ± 0.13 |
Aromatic | 1.916 ± 0.13 | 30.869 ± 0.13 |
Branched chain | 2.314 ± 0.13 | 34.155 ± 0.13 |
Hydrophobic | 5.606 ± 0.13 | 80.649 ± 0.13 |
Positively charged | 2.676 ± 0.13 | 33.744 ± 0.13 |
Negatively charged | 2.371 ± 0.13 | 27.142 ± 0.13 |
Amino Acid | Gastric Digestion | Intestinal Digestion |
---|---|---|
Gly | 0.067 ± 0.04 a | 3.818 ± 0.04 g |
Ile | 0.088 ± 0.04 a | 5.662 ± 0.04 j |
Lys | 0.148 ± 0.04 a | 13.339 ± 0.04 o |
Cys | 0.154 ± 0.04 a | 1.717 ± 0.04 f |
Ala | 0.194 ± 0.04 a | 5.822 ± 0.04 k |
Met | 0.291 ± 0.04 ba | 3.984 ± 0.04 g |
Pro | 0.411 ± 0.04 b | 4.103 ± 0.04 hg |
Thr | 0.452 ± 0.04 b | 4.865 ± 0.04 i |
Val | 0.462 ± 0.04 b | 6.250 ± 0.04 l |
His | 0.552 ± 0.04 b | 4.177 ± 0.04 hg |
Arg | 0.620 ± 0.04 b | 16.667 ± 0.04 s |
Asp | 0.648 ± 0.04 b | 14.726 ± 0.04 p |
Ser | 0.756± 0.04 b | 10.721 ± 0.04 m |
Tyr | 1.132 ± 0.04 c | 13.205 ± 0.04 o |
Phe | 1.235± 0.04 d | 15.589 ± 0.04 q |
Glu | 1.315± 0.04 d | 16.073 ± 0.04 r |
Leu | 1.465 ± 0.04 ed | 11.085 ± 0.04 n |
EAA | 4.693 ± 0.06 | 64.951± 0.06 |
Aromatic | 2.367 ± 0.06 | 28.794 ± 0.06 |
Branched chain | 3.015 ± 0.06 | 22.997 ± 0.06 |
Hydrophobic | 6.432 ± 0.06 | 67.417 ± 0.06 |
Positively charged | 1.320 ± 0.06 | 34.183 ± 0.06 |
Negatively charged | 1.963 ± 0.06 | 30.799 ± 0.06 |
Sample | ORAC Value (µmol TE mg−1) | ABTS Value (µmol TE mg−1) | DPPH Value (µmol TE mg−1) | |||
---|---|---|---|---|---|---|
Amaranth | Cañihua | Amaranth | Cañihua | Amaranth | Cañihua | |
Protein concentrate | 1.78 ± 0.01 d | 1.42 ± 0.01 b | 29.80 ± 1.28 a | 29.82 ± 1.28 a | 3.48 ± 0.19 a | 5.75 ± 0.36 b |
Gastric digestion | 1.57 ± 0.01 c | 1.28 ± 0.01 a | 119.97 ± 1.28 bc | 119.05 ± 1.28 bc | 5.58 ± 0.19 b | 6.88 ± 0.36 b |
Intestinal digestion | 1.62 ± 0.01 c | 1.45 ± 0.01 b | 121.97 ± 1.28 c | 114.89 ± 1.28 b | 6.38 ± 0.19 b | 12.18 ± 0.36 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serena-Romero, G.; Ignot-Gutiérrez, A.; Conde-Rivas, O.; Lima-Silva, M.Y.; Martínez, A.J.; Guajardo-Flores, D.; Cruz-Huerta, E. Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (Amaranthus cruentus L.) and Cañihua (Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells. Antioxidants 2023, 12, 2075. https://doi.org/10.3390/antiox12122075
Serena-Romero G, Ignot-Gutiérrez A, Conde-Rivas O, Lima-Silva MY, Martínez AJ, Guajardo-Flores D, Cruz-Huerta E. Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (Amaranthus cruentus L.) and Cañihua (Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells. Antioxidants. 2023; 12(12):2075. https://doi.org/10.3390/antiox12122075
Chicago/Turabian StyleSerena-Romero, Gloricel, Anaís Ignot-Gutiérrez, Osvaldo Conde-Rivas, Marlenne Y. Lima-Silva, Armando J. Martínez, Daniel Guajardo-Flores, and Elvia Cruz-Huerta. 2023. "Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (Amaranthus cruentus L.) and Cañihua (Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells" Antioxidants 12, no. 12: 2075. https://doi.org/10.3390/antiox12122075
APA StyleSerena-Romero, G., Ignot-Gutiérrez, A., Conde-Rivas, O., Lima-Silva, M. Y., Martínez, A. J., Guajardo-Flores, D., & Cruz-Huerta, E. (2023). Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (Amaranthus cruentus L.) and Cañihua (Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells. Antioxidants, 12(12), 2075. https://doi.org/10.3390/antiox12122075