Mediterranean Diet and Melatonin: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching Strategy
2.2. Selection Criteria
2.3. Data Extraction and Reliability
3. Results
3.1. Search and Selection of Studies
3.2. Melatonin in Mediterranean Diet Foods
3.2.1. Melatonin Content in Fruit and Vegetables
3.2.2. Melatonin Content in Nuts, Legumes, and Animal-Derived Products
3.3. Melatonin Levels and Mediterranean Diet
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galbete, C.; Schwingshackl, L.; Schwedhelm, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: An umbrella review of meta-analysis. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.M. Agriculture in the Prehistoric Aegean: Data versus Speculation. Am. J. Archaeol. 1988, 92, 39–52. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Hershey, M.S.; Zape, I.; Trichopoulou, A. Transferability of the Mediterranean diet to non-Mediterranean countries. What is and what is not the Mediterranean diet. Nutrients 2017, 8, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprara, G. Mediterranean-Type Dietary Pattern and Physical Activity: The Winning Combination to Counteract the Rising Burden of Non-Communicable Diseases (NCDs). Nutrients 2021, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Mediterranean diets: What is so special about the diet of Greece? The scientific evidence. Am. Soc. Nutr. Sci. 2001, 131, 3065S–3073S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2019, 177, 1241–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiglione, D.; Platania, A.; Conti, A.; Falla, M.; D’Urso, M.; Marranzano, M. Dietary Micronutrient and Mineral Intake in the Mediterranean Healthy Eating, Ageing, and Lifestyle (MEAL) Study. Antioxidants 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Rozanska, A.; Russo, M.; Caccopña, F.; Salafia, F.; Polkowska, Z.; Dugo, P.; Modello, L. Concentration of Potentially Bioactive Compounds in Italian Extra Virgin Olive Oils from Various Sources by Using LC-MS and Multivariate Data Analysis. Foods 2020, 9, 1120. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Cao, T.; Lu, X.; Zhang, T.; Luo, B.; Li, Z. Mediterranean Diet Patterns in Relation to Lung Cancer Risk: A Meta-Analysis. Front. Nutr. 2022, 11, 844382. [Google Scholar] [CrossRef] [PubMed]
- Couto, E.; Boffetta, P.; Lagiou, P.; Ferrari, P.; Buckland, G.; Overvad, K.; Dahm, C.C.; Tjonneland, A.; Olsen, A.; Clavel-Chapelon, F.; et al. Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br. J. Cancer 2011, 109, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventao, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Tang, C.; Wang, X.; Qin, L.Q.; Dong, J.Y. Mediterranean Diet and Mortality in People with Cardiovascular Disease: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 19, 2623. [Google Scholar] [CrossRef]
- Fu, J.; Tan, L.J.; Lee, J.E.; Shin, S. Association between the mediterranean diet and cognitive health among healthy adults: A systematic review and meta-analysis. Front. Nutr. 2022, 9, 946361. [Google Scholar] [CrossRef] [PubMed]
- Ballarini, T.; Melo van Lent, D.; Brunner, J.; Schroder, A.; Wolfsgruber, S.; Altenstein, S.; Brosseron, F.; Buerger, K.; Dechent, P.; Dobisch, L.; et al. Mediterranean Diet, Alzheimer Disease Biomarkers and Brain Atrophy in Old Age. Neurology 2021, 96, e2920–e2932. [Google Scholar] [CrossRef] [PubMed]
- Strikwerda, A.J.; Dommershuijsen, L.J.; Ikram, M.K.; Voortman, T. Diet Quality and Risk of Parkison’s Disease: The Rotterdam Study. Nutrients 2021, 13, 3970. [Google Scholar] [CrossRef]
- Menotti, A.; Puddu, P.E.; Catasta, G. Dietary Habits, Cardiovascular And Other Causes Of Death In A Practically Extinct Cohort Of Middle-Aged Men Followed-Up For 61 Years. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Davinelli, S.; Accardi, G.; Aiello, A.; Caruso, C.; Duro, G.; Ligotti, M.E.; Pojero, F.; Scapagnini, G.; Candore, G. Healthy ageing and Mediterranean diet: A focus on hormetic phytochemicals. Mech. Ageing Dev. 2021, 200, 111592. [Google Scholar] [CrossRef]
- Nani, A.; Murtaza, B.; Khan, S.A.; Khan, N.A.; Hichami, A. Antioxidant and Anti-Inflammatory Potential of Polyphenols COntained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021, 26, 985. [Google Scholar] [CrossRef]
- Sarapis, K.; George, E.S.; Marx, W.; Mayr, H.L.; Willcox, J.; Esmaili, T.; Powell, K.L.; Folasire, O.S.; Lohning, A.E.; Garg, M.; et al. Extra virgin olive oil high in polyphenols improves antioxidant status in adults: A double-blind randomized controlled, cross-over study (OLIVAUS). Eur. J. Nutr. 2022, 61, 1073–1086. [Google Scholar] [CrossRef]
- Sarkhosh-Khorasani, S.; Sangsefidi, Z.S.; Hosseinzadeh, M. The effect of grape products containing polyphenols on oxidative stress: A systematic review and meta-analysis of randomized clinical trials. Nutr. J. 2021, 20, 25. [Google Scholar] [CrossRef]
- Herbello-hermelo, P.; Lamas, J.P.; Lores, M.; Dominguez-Gonzalez, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Polyphenol bioavailability in nuts and sedes by an in vitro dialyzability approach. Food Chem. 2018, 254, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Lanza, B.; Ninfali, P. Antioxidants in Extra Virgin Olive Oil and Table Olives: Connections between Agriculture and Processing For Health Choices. Antioxidants 2020, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Iritri, M.; Varoni, E.M.; Vitalini, S. Melatonin in traditional Mediterranean diets. J. Pineal Res. 2010, 49, 101–105. [Google Scholar]
- Iritri, M.; Varoni, E.M. Melatonin in Mediterranean diet, a new perspective. J. Sci. Food Agric. 2015, 95, 2355–2359. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, W.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin synthesis and function: Evolutionary history in animals and plants. Front. Endocrinol. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schomerus, C.; Korf, H.W. Mechanisms regulating melatonin synthesis in the mammalian pineal organ. Ann. N. Y. Acad. Sci. 2005, 1057, 372–378. [Google Scholar] [CrossRef]
- Fan, J.; Xie, Y.; Zhang, Z.; Chen, L. Melatonin: A multifunctional factor in plants. Int. J. Mol. Sci. 2018, 19, 1528. [Google Scholar] [CrossRef] [Green Version]
- Murch, S.J.; Erland, L.A.E. A Systematic Review of Melatonin in Plants: An Example of Evolution of literature. Front. Plant Sci. 2021, 12, 1–24. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernandez-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, A.V.; Mosser, E.A.; Oikonomou, G.; Prober, D.A. Melatonin is required for the circadian regulation of sleep. Neuron 2015, 85, 1193–1199. [Google Scholar] [CrossRef] [Green Version]
- Lerner, A.B.; Case, L.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Pfeffer, M.; von Gall, C.; Wicht, H.; Korf, H.W. The Role of the Melatoninergic System in Circadian and Seasonal Rhythms-Insights From Different Mouse Strains. Front. Physiol. 2022, 13, 883637. [Google Scholar] [CrossRef] [PubMed]
- Harderland, R.; Poeggeler, B. Non-vertebrate melatonin. J. Pineal Res. 2003, 34, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Harderland, R.; Manchester, L.C.; Rosales-Corral, S.; Coto-Montes, A.; Boga, J.A.; Reiter, R.J. Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J. Pineal. Res. 2012, 53, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Q.; Fichna, J.; Bashashati, M.; Li, Y.Y.; Storr, M. Distribution, function and physiological role of melatonin in the lower gut. World J. Gastroenterol. 2011, 17, 3888–3898. [Google Scholar] [CrossRef] [PubMed]
- Harderland, R.; Cardinali, D.P.; Srinivasan, V.; Spence, D.W.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin- A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 2011, 93, 350–384. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Vico, A.; Lardone, J.P.; Alvarez-Sanchez, N.; Rodriguez-Rodriguez, A.; Guerrero, J.M. Melatonin: Buffering the Immune System. Int. J. Mol. Sci. 2013, 14, 8638–8683. [Google Scholar] [CrossRef] [Green Version]
- Calvo, J.R.; Gonzalez-Yanes, C.; Maldonado, M.D. The role of melatonin in the cells of the innate immunity: A review. J. Pineal Res. 2013, 55, 103–120. [Google Scholar] [CrossRef]
- Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab. 2008, 19, 17–24. [Google Scholar] [CrossRef]
- Shi, L.; Li, N.; Bo, L.; Xu, Z. Melatonin and Hypothalamic-Pituitary-Gonadal Axis. Curr. Med. Chem. 2013, 20, 2017–2031. [Google Scholar] [CrossRef]
- Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Targhazeh, N.; Reiter, R.J.; Rahimi, M.; Qujeq, D.; Yousefi, T.; Shahavi, M.H.; Mir, S.M. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy. Biochimie 2022, 200, 44–59. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Q.; Tian, M.; Gao, L. Mechanisms of melatonin in anti-aging and its regulation effects in radiation-induced premature senescence. Radiat. Med. Prot. 2021, 2, 33–37. [Google Scholar] [CrossRef]
- Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.M. Melatonin’s Impact on Antioxidative and Anti-inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wang, X.; Wiu, J.; Zhu, Y.; Liang, T.; Gao, B.; Wu, Z.; Lian, C.; Peng, Y.; Liang, A.; et al. Melatonin Rescued Reactive Oxygen Species-Impaired Osteogenesis of human Bone Marrow Mesenchymal Stem Cells in the Presence of Tumor Necrosis Factor-Alpha. Stem Cells Int. 2019, 2019, 6403967. [Google Scholar] [CrossRef]
- Huang, C.C.; Lai, C.J.; Tsai, M.H.; Wu, Y.C.; Chen, K.T.; Jou, M.J.; Fu, P.I.; Wu, C.H.; Wei, I.H. Effects of melatonin on the nitric oxide system and protein nitration in the hypobarix hypoxic rat hippocampus. BMC Neurosci. 2015, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Fardid, R.; Salajegheh, A.; Mosleh-Shirazi, M.A.; Sharifzadeh, S.; Okhovat, M.A.; Najafi, M.; Rezaeyan, A.; Abaszadeh, A. Melatonin Ameliorates The Production of COX-2, Inos, and The Formation of 8-OHdG in Non-Targeted Lung Tissue after Pelvic Irradiation. Cell J. 2017, 19, 324–331. [Google Scholar]
- Rehman, S.U.; Ikram, M.; Ullah, N.; Alam, S.I.; Park, H.Y.; Badshah, H.; Choe, K.; Kim, M.O. Neurological Enhancement Effects of Melatonin against Brain Injury-induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019, 8, 760. [Google Scholar] [CrossRef] [Green Version]
- Morvaridzadeh, M.; Sadeghi, E.; Agah, S.; Nachvak, S.M.; Fazelian, S.; Moradi, F.; Persad, E.; Heshmati, J. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol. Res. 2020, 161, 105210. [Google Scholar] [CrossRef]
- Abadi, S.H.M.H.; Shirazi, A.; Alizadeh, A.M.; Changizi, V.; Najafi, M.; Khalighfard, S.; Nosrati, H. The Effect of Melatonin on Superoxide Dismutase and Glutathione Peroxidase Activity, and Malondialdehyde Levels in the Targeted and the Non-targeted Lung and Heart Tissues after Irradiation in Xenograft Mice Colon Cancer. Curr. Mol. Pharmacol. 2018, 11, 326–335. [Google Scholar] [CrossRef]
- Taysi, S.; Ucuncu, H.; Elmastas, M.; Aktan, b.; Buyukokuroglu, M.E. Effect of melatonin on lipid peroxidation, glutathione and glutathione-dependent enzyme activities in experimental otitis media with effusion in guinea pigs. J. Pineal Res. 2005, 39, 283–286. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, K.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Bourton, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BJM 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H.B. Dietary sources and bioactivities of melatonin. Nutrients 2017, 9, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercolini, L.; Mandrioli, R.; Raggi, M.A. Content of melatonin and other antioxidants in grape-related foodstuffs: Measurement using a MEPS-HPLC-F method. J. Pineal Res. 2012, 53, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Viegas, O.; Esteves, C.; Rocha, J.; Melo, A.; Ferreira, I.M.P.L.V.O. Simultaneous determination of melatonin and trans-resveratrol in wine by dispersive liquid-liquid microextraction followed by HPLC-FLD. Food Chem. 2021, 339, 128091. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Naranjo, M.I.; Gil-Izquierdo, A.; Troncoso, A.M.; Cantos-Villar, E.; Garcia-Parrilla, M.C. Melatonin is ynthesized by yeast during alcoholic fermentation in wines. Food Chem. 2011, 126, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Stege, P.W.; Sombra, L.L.; Messina, G.; Martinez, L.D.; Silva, M.F. Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis 2010, 31, 2242–2248. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Naranjo, M.I.; Gil-Izquierdo, A.; Troncoso, A.M.; Cantos, E.; Garcia-Parrilla, M.C. Melatonin: A new bioactive compound in wine. J. Food Compos. Anal. 2011, 24, 603–608. [Google Scholar] [CrossRef]
- Maldonado, M.D.; Moreno, H.; Calvo, J.R. Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clin. Nutr. 2009, 28, 188–191. [Google Scholar] [CrossRef]
- De la Puerta, C.; Carrascosa-Salmoral, M.P.; Garcia-Luna, P.P.; Lardone, P.J.; Herrera, J.L.; Fernandez-Montesinos, R.; Guerrero, J.M.; Pozo, D. Melatonin is a phytochemical in olive oil. Food Chem. 2007, 104, 609–612. [Google Scholar] [CrossRef]
- Stürtz, M.; Cerezo, A.B.; Cantos-Villar, E.; Garcia-Parrilla, M.C. Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chem. 2011, 127, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Pape, C.; Lüning, K. Quantification of melatonin in phototrophic organisms. J. Pineal Res. 2006, 41, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.W.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high-performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef]
- Reinholds, I.; Pugajeva, I.; Radenkovs, V.; Rjabova, J.; Bartkevics, V. Development and Validation of New Ultra-High-Performance Liquid Chromatography-Hybrid Quadrupole-Orbitrap Mass Spectrometry method for Determination of Melatonin in Fruits. J. Chromatogr. Sci. 2016, 54, 977–984. [Google Scholar] [CrossRef] [Green Version]
- Pranil, T.; Moongngarm, A.; Manwiwattanakul, G.; Loypimai, P.; Kerr, W.L. Melatonin and its derivative contents in tropical fruits and fruit tablets. J. Food Compos. Anal. 2021, 103, 104109. [Google Scholar] [CrossRef]
- Okazaki, M.; Ezura, H. Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar Micro-Tom. J. Pineal Res. 2009, 46, 338–343. [Google Scholar] [CrossRef]
- Riga, P.; Medina, S.; Garcia-Flores, L.A. Melatonin content of pepper and tomato fruits: Effects of cultivar and solar radiation. Food Chem. 2014, 156, 347–352. [Google Scholar] [CrossRef]
- Xia, H.; Shen, Y.; Shen, T.; Wang, X.; Zhang, X.; Hu, P.; Liang, D.; Lin, L.; Deng, H.; Wang, J.; et al. Melatonin Accumulation in Sweet Cherry and Its Influence on Fruit Quality and Antioxidant Properties. Molecules 2020, 25, 753. [Google Scholar] [CrossRef] [Green Version]
- Badria, F.A. Melatonin, serotonin, and tryptamine in some egyptian food and medicinal plants. J. Med. Food 2002, 5, 153–157. [Google Scholar] [CrossRef]
- Huang, X.; Mazza, G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 3890–3899. [Google Scholar] [CrossRef]
- Reiter, R.J.; Manchester, L.C.; Tan, D.X. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Verde, A.; Minguez, J.M.; Leao-Martins, J.M.; Gago-Martinez, A.; Gallardo, M. Melatonin content in walnuts and other commercial nuts. Influence of cultivar, ripening and processing (roasting). J. Food Compos. Anal. 2022, 105, 104180. [Google Scholar] [CrossRef]
- Paroni, R.; Dei Cas, M.; Rizzo, J.; Ghidoni, R.; Montagna, M.T.; Rubino, F.M.; Iritri, M. Bioactive phytochemicals of tree nuts. Determination of the melatonin and sphingolipid content in almonds and pistachios. J. Food Compos. Anal. 2019, 82, 103227. [Google Scholar] [CrossRef]
- Oladi, E.; Mohamadi, M.; Shamspur, T.; Mostafavi, A. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 132, 326–329. [Google Scholar] [CrossRef]
- Manchester, L.C.; Tan, D.X.; Reiter, R.J.; Park, W.; Monis, K.; Qi, W. High levels of melatonin in the seeds of edible plants. Life Sci. 2000, 67, 3023–3029. [Google Scholar] [CrossRef]
- Sangsopha, J.; Johns, N.P.; Johns, J.; Moongngarm, A. Dietary sources of melatonin and benefits from production of high melatonin pasteurized milk. J. Food Sci. Technol. 2020, 57, 2026–2037. [Google Scholar] [CrossRef]
- Tan, D.X.; Zanghi, B.M.; Manchester, L.C.; Reiter, R.J. Melatonin identified in meats and other food stuffs: Potentially nutritional impact. J. Pineal Res. 2014, 57, 213–218. [Google Scholar] [CrossRef]
- Sae-Teaw, M.; Johns, J.; Johns, N.P.; Subongkot, S. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J. Pineal Res. 2013, 55, 58–64. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Aguilera, Y.; Herrera, T.; Cayuelas, L.T.; Dueñas, M.; Rodriguez-Rodriguez, P.; Ramiro-Cortijo, D.; Arribas, S.M.; Martin-Cabrejas, M.A. Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods 2020, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.H.; Chen, Y.C.; Ou, T.H.; Chien, Y.W. Dietary supplement of tomato can accelerate urinary aMT6s level and improve sleep quality in obese postmenopausal women. Clin. Nutr. 2020, 39, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.M.; Paroni, R.; Antognetti, J.; Lodi, G.; Sardella, A.; Carrassi, A.; Iritri, M. Effect of red wine intake on serum and salivary melatonin levels: A randomized, placebo-controlled clinical trial. Molecules 2018, 23, 2474. [Google Scholar] [CrossRef] [PubMed]
- Johns, N.P.; Johns, J.; Porasuphatana, S.; Plaimee, P.; Sae-Teaw, M. Dietary Intake of Melatonin from Tropical Fruit Altered Urinary Excretion of 6-sulfatoxymelatonin in Healthy Volunteers. J. Agric. Food Chem. 2013, 61, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Latre, A.; del Bas, J.M.; Baselga-Escudero, L.; Casanova, E.; Arola-Arnal, A.; Salvado, M.J.; Arola, L.; Blade, C. Dietary proanthocyanidins modulate melatonin levels in plasma and the expression pattern of clock genes in the hypothalamus of rats. Mol. Nutr. Food Res. 2015, 59, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.P.; Lamarque, A.L.; Comba, A.; Berra, M.A.; Silva, R.A.; Labuckas, D.O.; Das, U.N.; Eynard, A.R.; Pasqualini, M.E. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model. Nutrition 2015, 31, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Rebollo-Hernanz, M.; Herrera, T.; Cayuelas, L.T.; Rodriguez-Rodriguez, P.; Lopez de Pablo, A.L.; Arribas, S.M.; Martin-Cabrejas, M.A. Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food Funct. 2016, 7, 1438–1445. [Google Scholar] [CrossRef] [Green Version]
- Rzepka-Migut, B.; Paprocka, J. Melatonin-Measurement Methods and the Factors Modifying the Results. A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2020, 17, 1916. [Google Scholar] [CrossRef] [Green Version]
- Bal, E. Physicochemical changes in ‘Santa Rosa’ plum fruit treated with melatonin during cold storage. J. Food Meas. Charact. 2019, 13, 1713–1720. [Google Scholar] [CrossRef]
- Bal, E. Effect of melatonin treatments on biochemical quality and postharvest life of nectarines. J. Food Meas. Charact. 2021, 15, 288–295. [Google Scholar] [CrossRef]
- Bose, S.K.; Howlader, P. Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environ. Exp. Bot. 2020, 176, 104063. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Mascio, P.D.; Martinez, G.R.; Prado, F.M.; Reiter, R.J. Novel rhythms of N 1-acetyl-N 2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: Importance of phytoremediation. FASEB J. 2007, 21, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Gardana, C.; Zanzotto, A.; Simonetti, P.; Faoro, R.; Fico, G.; Iritri, M. The presence of melatonin in grapevine (Vitis vinifera L.) Berry tissues. J. Pineal Res. 2001, 51, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Murch, S.J.; Hall, B.A.; Le, C.H.; Saxena, P.K. Changes in the levels of indoleamine phytochemicals during veraison and ripening of wine grapes. J. Pineal Res. 2010, 49, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Boccalandro, H.E.; Gonzalez, C.V.; Wunderlin, D.A.; Silva, M.F. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: Evidence of its antioxidant role in fruits. J. Pineal Res. 2011, 31, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Somers, V.K.; Xu, H.; Lopez-Jimenez, F.; Covassin, N. Trends in Use of Melatonin Supplements Among US Adults, 1999-2018. JAMA 2022, 327, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, G.; Tan, D.X.; Li, F.; Ma, X. A novel enzyme-dependent melatonin metabolite in humans. J. Pineal Res. 2013, 54, 100–106. [Google Scholar] [CrossRef]
- Di Domenico, M.; Feola, A.; Ambrosio, P.; Pinto, F.; Galasso, G.; Zarrelli, A.; Di Fabio, G.; Porcelli, M.; Scacco, S.; Inchingolo, F.; et al. Antioxidant Effect of Beer Polyphenols and Their Bioavailability in Dental-Derived Stem Cells (D-dSCs) and Human Intestinal Epithelial Lines (Caco-2) Cells. Stem Cells Int. 2020, 2020, 8835813. [Google Scholar] [CrossRef]
- Habschied, K.; Loncaric, A.; Mastanjevic, K. Screening of Polyphenols and Antioxidative Activity in Industrial Beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Paterniti, I.; Impellizzeri, D.; Cordaro, M.; Siracusa, R.; Bisignano, C.; Gugliandolo, E.; Carughi, A.; Esposito, E.; Mandalari, G.; Cuzzocrea, S. The Anti-Inflammatory and Antioxidant Potential of Pistachios (Pistacia vera L.) In Vitro and In Vivo. Nutrients 2017, 9, 915. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative Effects and Mechanism of Study of Bioactive Peptides from Defatted Walnut (Junglans regia L.) Meal Hydrolysate. J. Agric. Food Chem. 2019, 67, 3305–3312. [Google Scholar] [CrossRef]
- Hong, M.Y.; Groven, S.; Marx, A.; Rasmussen, C.; Beidler, J. Anti-Inflammatory, Antioxidant, and hypolipidemic Effects of Mixed Nuts in Atherogenic Diet-Fed Rats. Molecules 2018, 23, 3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhonova, M.A.; Tikhonova, N.G.; Tendinik, M.V.; Ovsyukova, M.V.; Akopyan, A.A.; Dubrovina, N.I.; Amstislavskaya, T.G.; Khlestkina, E.K. Effects of Grape Polyphenols on the Life Span and Neuroinflammatory Alterations Related to Neurodegenerative Partkinson Disease-Like Disturbances in Mice. Molecules 2020, 25, 5339. [Google Scholar] [CrossRef] [PubMed]
- Legua, P.; Modica, G.; Porras, I.; Conesa, A.; Continella, A. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. J. Sci. Food Agric. 2022, 102, 2960–2971. [Google Scholar] [CrossRef] [PubMed]
- Ghanavati, M.; Clark, C.C.T.; Bahrami, A.; Teymoori, F.; Movahed, M.; Sohrab, G.; Hejazi, E. Dietary intake of polyphenols and total antioxidant capacity and risk of prostate cancer: A case-control study in Iranian men. Eur. J. Cancer Care 2021, 30, e13364. [Google Scholar] [CrossRef] [PubMed]
- Rickards, L.; Lynn, A.; Harrop, D.; Barker, M.E.; Russel, M.; Ranchordas, M.K. Effect of Polyphenol-Rich Foods, juices, and Concentrates on Recovery from Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2988. [Google Scholar] [CrossRef]
Variety | Melatonin (ng/g; ng/mL) | Melatonin Extraction | Melatonin Measure | Reference | |
---|---|---|---|---|---|
Grape | Sangiovese grape | 1.5 | MEPS with methanol | HPLC-FLD | [55] |
Albana grape | 1.2 | ||||
Albana must | 1.1 | ||||
Albana grape juice | 0.5 | ||||
White wine | Albana | 0.6 | MEPS with methanol | HPLC-FLD | [55] |
Multivarietal | 0.63 | DLLME with acetonitrile, chloroform and NaCl | HPLC-FLD | [56] | |
Moscatel Graudo | 3.93 | ||||
Palomino fino | 390.82 | SPE with methanol and water | LC-ESI-MS/MS | [57] | |
Sauvignon blanc | 0.32 | Methanol and sonication | Electrochromatography | [58] | |
Chardonnay | 0.16 | ||||
Red wine | Malbec | 0.24 | Methanol and sonication | Electrochromatography | [58] |
Cabernet Sauvignon | 0.23 | SPE with methanol and water | ELISA | [59] | |
Jaen tinto | 0.16 | ||||
Merlot | 0.21 | ||||
Palomino negro | 0.28 | ||||
Petit verlot | 0.22 | ||||
Prieto picudo | 0.19 | ||||
Syrah | 0.22 | ||||
Tempranillo | 0.14 | ||||
Castelao | 7.44 | DLLME with acetonitrile, chloroform and NaCl | HPLC-FLD [28] | [56] | |
Syrah | 4.29–2.61 | ||||
Trincadeira | 1.90 | ||||
Aragonez | 4.27 | ||||
Touriga Nacional | 2.71–2.81 | ||||
Touriga Franca | 1.05 | ||||
Alicante Bouschet | 1.92 | ||||
Cabernet Sauvignon | 2.85–3.06 | ||||
Syrah | 423.01 | Methanol and sonication | LC-ESI-MS/MS | [57] | |
Cabernet Sauvignon | 74.13 | ||||
Merlot | 245.46 | ||||
Tempranillo | 306.86 | ||||
Tintilla de Rota | 322.68 | ||||
Beer | Volt-Damm | 0.1697 | NS | ELISA | [60] |
Murphy’s | 0.1427 | ||||
Mahou Negra | 0.1386 | ||||
Amstel | 0.1281 | ||||
Coronita | 0.1276 | ||||
Budweisser | 0.1198 | ||||
Guiness | 0.1181 | ||||
Cruzcampo | 0.1119 | ||||
Calsberg | 0.1044 | ||||
Mahou 5 estrellas | 0.1019 | ||||
Heineken | 0.0981 | ||||
San Miguel Sp | 0.0976 | ||||
Mahou Clasica | 0.0846 | ||||
Laiker Sin | 0.0686 | ||||
San Miguel 0.0 | 0.0616 | ||||
Buckler Sin | 0.0616 | ||||
Kaliber Sin | 0.0527 | ||||
Buckler 0.0 | 0.0518 | ||||
Olive oil | D.O Sierra Magina | 0.107 | Liquid–liquid extraction with methanol and chloroform | ELISA | [61] |
D.O. Siurana | 0.095 | ||||
D.O. Bajo Aragon | 0.071 | ||||
D.O Montes de Toledo | 0.108 | ||||
D.O. Baena | 0.119 | ||||
D.O. Sierra de Segura | 0.089 | ||||
D.O. Les Garrigues | 0.098 | ||||
D.O. Toscano | 0.109 | ||||
Refined olive oil | 0.053–0.075 |
Food | Melatonin ng/g | Melatonin Extraction | Melatonin Measure | Reference | |||
---|---|---|---|---|---|---|---|
Species | Variety | ||||||
Tomato | L. esculentum | Bond | 23.87 | Methanol and water | LC-FL | [62] | |
Borsalina | 8.2 | ||||||
Catalina | 4.1 | ||||||
Gordal | 17.10 | ||||||
Lucinda | 4.45 | ||||||
Marbone | 18.13–114.5 | ||||||
Myriade | 8.0 | ||||||
Pitenza | 14.0–14.2 | ||||||
Santonio | ND | ||||||
Perlino | ND | ||||||
Platero | 13.6 | ||||||
Raf | 50.1 | ||||||
NS | 0.9821 | Na2CO3 ether | HPLC-PD | [63] | |||
1.0685 | ELISA | [63] | |||||
0.6169 | SPE with PCA | HPLC-PD | [63] | ||||
0.5984 | ELISA | [63] | |||||
0.8963 | SPE with acetone | HPLC-PD | [63] | ||||
0.9363 | ELISA | [63] | |||||
Mill. Cultivar Sweet 100 | 0.506 | Na2CO3 and diethyl ether | Radioimmunoassay | [64] | |||
Mill. Cultivar Rutgers California supreme | 0.166 | ||||||
NS | Crystal | 0.029 | Initial extraction with ethyl acetate, followed by SPE with methanol and water | UHPLC-q-Orbitrap MS | [65] | ||
Raspberry | 0.0323 | ||||||
Oxheart | 0.0151 | ||||||
GiantPaste | 0.0493 | ||||||
Beorange | 0.0232 | ||||||
Hurma | 0.0181 | ||||||
Lemon | 0.0299 | ||||||
Raspberry | 0.0492 | ||||||
Yellow plum | 0.0324 | ||||||
Azoycka | <0.01 | ||||||
Giant | <0.01 | ||||||
Better Boy | 0.0174 | ||||||
Ox’s Forehead | 0.0418 | ||||||
Yellow Plum | 0.0157 | ||||||
Roma | 0.0594 | ||||||
Mini Plums | 0.0219 | ||||||
Cherry | 0.0788 | ||||||
Cherry Red | 0.0149 | ||||||
Kiwi | 0.024 | ||||||
Green Pepper | 0.0141 | ||||||
Black Moor | 0.0242 | ||||||
Black Broken Heart | 0.0141 | ||||||
Kumato | 0.0242 | ||||||
Mojito | 0.0209 | ||||||
Acrobat Tom | 0.0453 | ||||||
Beauty Lottringa | 0.0138 | ||||||
Raspberry | 0.0246 | ||||||
Plum | 0.0251 | ||||||
Solanum lycopersicum | Cerasiforme | 1.618 | SPE and methanol | HPLC-FLD | [66] | ||
Micro-Tom | 0.001–0.003 | SPE with acetone and methanol | ELISA | [67] | |||
Ciliegia | 0.64 | Methanol | UHPLC-QqQ-MS/MS | [68] | |||
Isis | 1.5 | ||||||
Jack | 1.5 | ||||||
Prico | 3 | ||||||
Jesus | 4 | ||||||
NKT 072 | 6 | ||||||
Optima | 14.77 | ||||||
L. pimpinellifolium | 0.112 | Na2CO3 and diethyl ether | Radioimmunoassay | [64] | |||
Sweet cherry | Prunus avium L. | 60 | Methanol and ultrasonication | HPLC-FLD | [69] | ||
Strawberries | Fragaria ananassa | Camarosa | 1.4–5.58 | SPE with methanol and acetone | LC-FL | [62] | |
Candonga | 2.1–5.5 | ||||||
Festival | 3.28–11.26 | ||||||
Primoris | 4.2–8.5 | ||||||
Fragaria magna | 0.136 | Na2CO3 and diethyl ether | GC/MS | [70] | |||
Banana | Musa ensete | 0.655 | Na2CO3 and diethyl ether | GC/MS | [70] | ||
Musa sapitentum | 0.41 | Diethyl ether | Radioimmuno assay | [64] | |||
1.741 | SPE with methanol | HPLC-FLD | [66] | ||||
Pineapple | Ananas comosus | 1.693 | SPE with methanol | HPLC-FLD | [66] | ||
0.278 | Na2CO3 and diethyl ether | GC/MS | [70] | ||||
Apple | Malus domestia | 0.161 | Na2CO3 and diethyl ether | GC/MS | [70] | ||
Pomegranate | Punica granatum | 0.16.8 | Na2CO3 and diethyl ether | GC/MS | [70] | ||
Watermelon | Cirtullus lanatus | ND | SPE with methanol | HPLC-FLD | [66] | ||
Orange | Citrus sinensis | 1.704 | SPE with methanol | HPLC-FLD | [66] | ||
Bell pepper | NS | Green | 0.0255–0.5214 | Methanol and ethyl acetate | HPLC-FLD | [71] | |
Orange | 0.045– 0.0495 | Ethyl acetate | HPLC-FLD | [71] | |||
0.5811 | Methanol | HPLC-FLD | [71] | ||||
Red | 0.0243–0.0664 | Ethyl acetate | HPLC-FLD | [71] | |||
0.1795 | Methanol | HPLC-FLD | [71] | ||||
C. anuum | Barranca | Green | 2 | Methanol | UHPLC-QqQ-MS/MS | [68] | |
Red | 4 | ||||||
Derio | Green | 3.5 | |||||
Red | 6 | ||||||
Velero | Green | 10 | |||||
Red | 4 | ||||||
F26 | Green | 2 | |||||
Red | 11 | ||||||
NC9 | Green | 2.5 | |||||
Red | 4 | ||||||
Cucumber | NS | 0.009 | Diethyl ether | Radioimmuno assay | [64] | ||
Cucumis sativus | 0.592 | Na2CO3 and diethyl ether | GS/MS | [70] | |||
Onion | Allium cepa | 29.9 | Na2CO3 and diethyl ether | GS/MS | [70] | ||
Garlic | Allium sativum | 58.7 | Na2CO3 and diethyl ether | GS/MS | [70] | ||
Cabbage | Brassica oleraceae | Capitata | 30.9 | Na2CO3 and diethyl ether | GS/MS | [70] | |
Cauliflower | Brassica oleraceae | Botrytis | 82.4 | Na2CO3 and diethyl ether | GS/MS | [70] | |
Turnip | Brassica rapa | 50.1 | Na2CO3 and diethyl ether | GS/MS | [70] | ||
Carrot | Daucus carota | 49.2 | Na2CO3 and diethyl ether | GS/MS | [70] | ||
Barley | Hordeum vulgare | 87.3 | Na2CO3 and diethyl ether | GS/MS | [70] | ||
Radish | Raphnus sativus | 75.8 | Na2CO3 and diethyl ether | GS/MS | [70] | ||
Beetroot | 0.0001 | Diethyl ether | Radioimmuno assay | [64] | |||
Potato | ND | Diethyl ether | Radioimmuno assay | [64] | |||
ND | Na2CO3 and diethyl ether | GC/MS | [70] |
Food | Melatonin pg/g | Melatonin Extraction | Melatonin Measure | Reference | ||
---|---|---|---|---|---|---|
Species | Variety | |||||
Walnut Junglans regia L. | Bulk | 3500 | Liquid–liquid extraction with methanol and chloroform | HPLC | [72] | |
Pizarro | 1191 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | ||
Franquette | 1600 | |||||
Hartley | 3301 | |||||
Native | 2000 | |||||
Pistachio Pistacia vera L. | NS | 1000 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | |
Bronte DOP | 12,000 | First extraction with ethanol, followed by SPE with water and methanol | LC-MS/MS | [74] | ||
Noberasco | 1000 | |||||
Italy | 1000 | |||||
Italy | 1000 | |||||
Ahmed Aghaes | 233,000,000 | UASLE with methanol | GC/MS | [75] | ||
230,700,000 | Spectrofluorometry | [75] | ||||
Akbari | 226,900,000 | GC/MS | [75] | |||
229,200,000 | Spectrofluorometry | [75] | ||||
Karle Qouchi | 231,400,000 | GC/MS | [75] | |||
229,100,000 | Spectrofluorometry | [75] | ||||
Fandoghi | 130,700,000 | GC/MS | [75] | |||
228,400,000 | Spectrofluorometry | [75] | ||||
Hazelnut Corylus avellana L. | 350 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | ||
Almond | Prunus dulcis L. | NS | 1100 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] |
cv. Palo | 2000 | First extraction with ethanol, followed by SPE with water and methanol | LC-MS/MS | [74] | ||
cv. Collepasso | 600 | |||||
cv. Barletta | 1500 | |||||
cv. Cassano | 1300 | |||||
cv. Minervino | 600 | |||||
Prunus amygdalus | 39,000 | Ethanol | HPLC | [76] | ||
Peanut Arachis hypogaea L. | 83 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | ||
39,430 | Organic solvents and sonication | HPLC-FD | [77] | |||
Pine nuts Pinus pinea L. | 1000 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | ||
Pumpkin seed Cucurbita pepo L. | 500 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | ||
Sunflower Helianthus annuus L. | Seed | 500 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | |
NS | 67,450 | First extraction with ethanol, followed by water and dichloromethane | HPLC-FD | [77] | ||
Cashew nut Anacardium occidentale L. | 200 (roasted) | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | ||
Macadamia nut Macadamia intergriogolia | Maiden y Betche | 300 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | |
Brazil nut Bertholleita excels | Humb and Bonpl | 100 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] | |
Chestnut Castanea sativa | Miller | 1417 | First extraction with hexane–methanol–water, followed by SPE with acetonitrile and 0.1 % formic acid | HPLC-FLD | [73] |
Food | Melatonin ng/g | Melatonin Extraction | Melatonin Measure | Reference | |
---|---|---|---|---|---|
Chicken | 2.3 | First extraction with PB and chloroform, followed by SPE with methanol | HPLC | [78] | |
Lamb | 1.6 | First extraction with PB and chloroform, followed by SPE with methanol | HPLC | [78] | |
Beef | 2.1 | First extraction with PB and chloroform, followed by SPE with methanol | HPLC | [78] | |
Pork | 2.5 | First extraction with PB and chloroform, followed by SPE with methanol | HPLC | [78] | |
Salmon | 3.7 | First extraction with PB and chloroform, followed by SPE with methanol | HPLC | [78] | |
Eggs | 6.1 | First extraction with PB and chloroform, followed by SPE with methanol | HPLC | [78] | |
Corn | Whole yellow corn | 1.3 | First extraction with PB and chloroform, followed by SPE with methanol | HPLC | [78] |
Corn germ meal | 1.0 | ||||
Waxy corn | 2.704 | First extraction with ethanol, followed by water and dichloromethane | HPLC-FD | [79] | |
Waxy berry corn | 2.797 | ||||
Red bean | 54.79 | First extraction with ethanol, followed by water and dichloromethane | HPLC-FD | [79] | |
Soybean | 56.49 | First extraction with ethanol, followed by water and dichloromethane | HPLC-FD | [79] | |
Lentils | Raw | 460 | Ethanol and sonication | HPLC-ESI-MS/MS | [80] |
Sprouts | 1020 |
Scheme | Sample | N | Age | Food | Design | Duration | Melatonin-Related Measure | Outcome |
---|---|---|---|---|---|---|---|---|
Yang [81] | Obese post-menopausal women | 36 | 50–70 years old | Tomato | Intake of tomato before bed time | 8 weeks | ELISA of aMT6 in urine | Beefsteak tomato showed a high quantity of MT and produced an increase in the MT levels and an improvement of sleep quality |
Varoni [82] | Healthy volunteers | 12 | 20–30 years old | Red wine enriched with melatonin | Morning wine intake after 12 h of fasting | 1 intake | HPLC-LC/MS of melatonin in blood and saliva | MT-enriched wine and wine increased MT levels The matrix of the wine could contribute to the increased MT levels It counteracted the decrease in MT in the morning |
Sae-Teaw [79] | Healthy male volunteers | 12 | 18–25 years old | Pineapple Orange Banana | Morning fruit or fruit juice intake after 12 of fasting | 1 intake | ELISA for blood melatonin | Fruit and fruit juice consumption increased blood MT and antioxidant capacity |
Johns [83] | Healthy volunteers (both genders) | 30 | 18–25 years old | Banana Pineapple Orange Papaya Makmao Mango | Morning intake after 12 h of fasting | 1 intake | ELISA for a6MT in urine | Fruit consumption increased MT levels |
Maldonado [60] | Healthy volunteers (both genders) | 7 | 20–30 years old | Beer | Morning intake after 12 h of fasting | 1 intake | ELISA and HPLC for blood melatonin | Beer consumption increased serological melatonin content compared to baseline |
Ribas-Latre [84] | Male rats | 24 | 11 weeks old | Grape seed proanthocyanidin extract | Intake of the diet | 1 intake | ELISA for blood melatonin | Proanthocyanidin consumption increased MT levels and regulated the expression of circadian rhythm-related genes |
Rebollo-Hernanz [80] | Male rats | 48 | 6 weeks old | Lentis sprouts | Intake after 12 h of fasting | 1 intake | ELISA for a6MT in urine and melatonin in blood | Lentils sprouts increased blood MT levels more than synthetic MT Lentils sprouts increased antioxidant capacity |
Reiter [72] | Male rats | 16 | 8 weeks old | Bulk walnuts | Intake after 12 h of fasting | 1 intake | Radioimmunoassay for melatonin in blood | MT content was 20-times higher in the group fed with walnuts |
Garcia [85] | Murine mammary adenocarcinoma model | 60 | 16 weeks old | Nut oil | Intake of the diet | 3 months | HPLC for blood melatonin | Blood MT was higher after nut consumption |
Aguilera [86] | Rat | 32 | 6 weeks old | Bean sprouts | Intake after 12 and 24 h of fasting | 1 intake | ELISA for blood melatonin and a6MT in urine | Bean sprouts increased blood MT levels more than synthetic MT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grao-Cruces, E.; Calvo, J.R.; Maldonado-Aibar, M.D.; Millan-Linares, M.d.C.; Montserrat-de la Paz, S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants 2023, 12, 264. https://doi.org/10.3390/antiox12020264
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MdC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants. 2023; 12(2):264. https://doi.org/10.3390/antiox12020264
Chicago/Turabian StyleGrao-Cruces, Elena, Juan Ramon Calvo, Maria Dolores Maldonado-Aibar, Maria del Carmen Millan-Linares, and Sergio Montserrat-de la Paz. 2023. "Mediterranean Diet and Melatonin: A Systematic Review" Antioxidants 12, no. 2: 264. https://doi.org/10.3390/antiox12020264