Oxidative Stress Markers in Urine and Serum of Patients with Bladder Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Study Group
2.3. Materials
2.4. Blood and Urine Collection
2.5. Laboratory Measurements
2.6. Biochemical Procedures
2.6.1. Protein Assay
2.6.2. Creatinine Assay
2.6.3. AOPP Assay
2.6.4. Characterization of Amadori Product by the NBT Assay
2.6.5. Total Antioxidant Capacity (TAC) Measured by Method with FRAP
2.6.6. TAC Measured by Method with ABTS
2.6.7. Total Oxidant Status (TOS)
2.6.8. Oxidative Stress Index (OSI)
2.6.9. Malondialdehyde (MDA)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer Today. Available online: http://gco.iarc.fr/today/home (accessed on 9 January 2023).
- Safiri, S.; Kolahi, A.-A.; Naghavi, M. Global, Regional and National Burden of Bladder Cancer and Its Attributable Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. BMJ Glob. Health 2021, 6, e004128. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.A.; Hurst, C.D. Molecular Biology of Bladder Cancer: New Insights into Pathogenesis and Clinical Diversity. Nat. Rev. Cancer 2015, 15, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.J.; Schulz, W.A. Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers 2021, 13, 6040. [Google Scholar] [CrossRef]
- Teoh, J.Y.-C.; Huang, J.; Ko, W.Y.-K.; Lok, V.; Choi, P.; Ng, C.-F.; Sengupta, S.; Mostafid, H.; Kamat, A.M.; Black, P.C.; et al. Global Trends of Bladder Cancer Incidence and Mortality, and Their Associations with Tobacco Use and Gross Domestic Product Per Capita. Eur. Urol. 2020, 78, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Caballero, J.M.; Gili, J.M.; Pereira, J.C.; Gomáriz, A.; Castillo, C.; Martín-Baranera, M. Risk Factors Involved in the High Incidence of Bladder Cancer in an Industrialized Area in North-Eastern Spain: A Case–Control Study. J. Clin. Med. 2023, 12, 728. [Google Scholar] [CrossRef]
- Nieder, A.M.; Porter, M.P.; Soloway, M.S. Radiation Therapy for Prostate Cancer Increases Subsequent Risk of Bladder and Rectal Cancer: A Population Based Cohort Study. J. Urol. 2008, 180, 2005–2009, discussion 2009–2010. [Google Scholar] [CrossRef]
- Peng, X.-F.; Meng, X.-Y.; Wei, C.; Xing, Z.-H.; Huang, J.-B.; Fang, Z.-F.; Hu, X.-Q.; Liu, Q.-M.; Zhu, Z.-W.; Zhou, S.-H. The Association between Metabolic Syndrome and Bladder Cancer Susceptibility and Prognosis: An Updated Comprehensive Evidence Synthesis of 95 Observational Studies Involving 97,795,299 Subjects. Cancer Manag. Res. 2018, 10, 6263–6274. [Google Scholar] [CrossRef] [Green Version]
- Teleka, S.; Häggström, C.; Nagel, G.; Bjørge, T.; Manjer, J.; Ulmer, H.; Liedberg, F.; Ghaderi, S.; Lang, A.; Jonsson, H.; et al. Risk of Bladder Cancer by Disease Severity in Relation to Metabolic Factors and Smoking: A Prospective Pooled Cohort Study of 800,000 Men and Women. Int. J. Cancer 2018, 143, 3071–3082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, M.; Srigley, J.R.; Brimo, F.; Compérat, E.; Delahunt, B.; Koch, M.; Lopez-Beltran, A.; Reuter, V.; Samaratunga, H.; Shanks, J.H.; et al. Dataset for the Reporting of Urinary Tract Carcinoma-Biopsy and Transurethral Resection Specimen: Recommendations from the International Collaboration on Cancer Reporting (ICCR). Mod. Pathol. 2020, 33, 700–712. [Google Scholar] [CrossRef]
- Wigner, P.; Grębowski, R.; Bijak, M.; Saluk-Bijak, J.; Szemraj, J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int. J. Mol. Sci. 2021, 22, 4483. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in Cancer Therapy: The Bright Side of the Moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, G.-Y.; Storz, P. Reactive Oxygen Species in Cancer. Free. Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.O.; Bacchetti, T.; Ferretti, G. Alterations of Antioxidant Enzymes and Biomarkers of Nitro-Oxidative Stress in Tissues of Bladder Cancer. Oxid. Med. Cell. Longev. 2019, 2019, e2730896. [Google Scholar] [CrossRef] [Green Version]
- 8th Edition of the UICC TNM Classification of Malignant Tumors Published | UICC. Available online: https://www.uicc.org/news/8th-edition-uicc-tnm-classification-malignant-tumors-published (accessed on 9 January 2023).
- MacLennan, G.T.; Kirkali, Z.; Cheng, L. Histologic Grading of Noninvasive Papillary Urothelial Neoplasms. Eur. Urol. 2007, 51, 889–897, discussion 897–898. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Badiou, S.; Dupuy, A.M.; Descomps, B.; Cristolead, J.P. Comparison between the Enzymatic Vitros Assay for Creatinine Determination and Three Other Methods Adapted on the Olympus Analyzer. J. Clin. Lab. Anal. 2003, 17, 235–240. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Khoa, T.N.; Capeillère-Blandin, C.; Nguyen, A.T.; Canteloup, S.; Dayer, J.-M.; Jungers, P.; Drüeke, T.; Descamps-Latscha, B. Advanced Oxidation Protein Products as Novel Mediators of Inflammation and Monocyte Activation in Chronic Renal Failure. J. Immunol. 1998, 161, 2524–2532. [Google Scholar] [CrossRef]
- Johnson, R.N.; Metcalf, P.A.; Baker, J.R. Fructosamine: A New Approach to the Estimation of Serum Glycosylprotein. An Index of Diabetic Control. Clin. Chim. Acta 1983, 127, 87–95. [Google Scholar] [CrossRef]
- Mironova, R.; Niwa, T.; Handzhiyski, Y.; Sredovska, A.; Ivanov, I. Evidence for Non-Enzymatic Glycosylation of Escherichia Coli Chromosomal DNA. Mol. Microbiol. 2005, 55, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A New Automated Colorimetric Method for Measuring Total Oxidant Status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid. Med. Cell. Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K. Assay for Blood Plasma or Serum. Methods Enzymol. 1984, 105, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Paschos, A.; Pandya, R.; Duivenvoorden, W.C.M.; Pinthus, J.H. Oxidative Stress in Prostate Cancer: Changing Research Concepts towards a Novel Paradigm for Prevention and Therapeutics. Prostate Cancer Prostatic Dis. 2013, 16, 217–225. [Google Scholar] [CrossRef]
- Shukla, S.; Srivastava, J.K.; Shankar, E.; Kanwal, R.; Nawab, A.; Sharma, H.; Bhaskaran, N.; Ponsky, L.E.; Fu, P.; MacLennan, G.T.; et al. Oxidative Stress and Antioxidant Status in High-Risk Prostate Cancer Subjects. Diagnostics 2020, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Pavlović, I.; Pejić, S.; Radojević-Škodrić, S.; Todorović, A.; Stojiljković, V.; Gavrilović, L.; Popović, N.; Basta-Jovanović, G.; Džamić, Z.; Pajović, S.B. The Effect of Antioxidant Status on Overall Survival in Renal Cell Carcinoma. Arch. Med. Sci. 2019, 16, 94–101. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among Smoking, Oxidative Stress, Inflammation, Macromolecular Damage, and Cancer. Mutat. Res. - Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Whongsiri, P.; Pimratana, C.; Wijitsettakul, U.; Jindatip, D.; Sanpavat, A.; Schulz, W.A.; Hoffmann, M.J.; Goering, W.; Boonla, C. LINE-1 ORF1 Protein Is Up-Regulated by Reactive Oxygen Species and Associated with Bladder Urothelial Carcinoma Progression. Cancer Genom. Proteom. 2018, 15, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Du, G.; Li, Z.; Li, D.; Li, W.; Li, H.; Gao, X.; Tang, Z. An Oxidative Stress-Related Genes Signature for Predicting Survival in Bladder Cancer: Based on TCGA Database and Bioinformatics. IJGM 2022, 15, 2645–2667. [Google Scholar] [CrossRef]
- Mendes, F.; Pereira, E.; Martins, D.; Tavares-Silva, E.; Pires, A.S.; Abrantes, A.M.; Figueiredo, A.; Botelho, M.F. Oxidative Stress in Bladder Cancer: An Ally or an Enemy? Mol. Biol. Rep. 2021, 48, 2791–2802. [Google Scholar] [CrossRef]
- Sawicka, E.; Kratz, E.M.; Szymańska, B.; Guzik, A.; Wesołowski, A.; Kowal, P.; Pawlik-Sobecka, L.; Piwowar, A. Preliminary Study on Selected Markers of Oxidative Stress, Inflammation and Angiogenesis in Patients with Bladder Cancer. Pathol. Oncol. Res. 2020, 26, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, I.A.; Akçay, T.; Cakatay, U.; Telci, A.; Ataus, S.; Yalçin, V. Relation between Bladder Cancer and Protein Oxidation. Int. Urol. Nephrol. 2003, 35, 345–350. [Google Scholar] [CrossRef]
- Wigner, P.; Szymańska, B.; Bijak, M.; Sawicka, E.; Kowal, P.; Marchewka, Z.; Saluk-Bijak, J. Oxidative Stress Parameters as Biomarkers of Bladder Cancer Development and Progression. Sci. Rep. 2021, 11, 15134. [Google Scholar] [CrossRef]
- Demir, M. Oxidative Stress Has a Negative Effect on the Development and Progression of Bladder Cancer. Turk. J. Oncol. 2022, 37, 158–162. [Google Scholar] [CrossRef]
- Nakashima, T.; Ōmura, S.; Takahashi, Y. Generation of Superoxide Anions by a Glycation Reaction in Conventional Laboratory Media. J. Biosci. Bioeng. 2012, 114, 275–280. [Google Scholar] [CrossRef]
- Gecit, I.; Aslan, M.; Gunes, M.; Pirincci, N.; Esen, R.; Demir, H.; Ceylan, K. Serum Prolidase Activity, Oxidative Stress, and Nitric Oxide Levels in Patients with Bladder Cancer. J. Cancer Res. Clin. Oncol. 2012, 138, 739–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utanğaç, M.M.; Yeni, E.; Savaş, M.; Altunkol, A.; Çiftçi, H.; Gümüş, K.; Demir, M. Paraoxonase and Arylesterase Activity in Bladder Cancer. Turk. J. Urol. 2017, 43, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günes, M.; Eryilmaz, R.; Aslan, R.; Taken, K.; Demir, H.; Demir, C. Oxidant-Antioxidant Levels in Patients with Bladder Tumours. Aging Male 2020, 23, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, Y.; Habuchi, T.; Tsuchiya, N.; Wang, L.; Oyama, C.; Sato, K.; Nishiyama, H.; Ogawa, O.; Kato, T. Increased Risk of Bladder Cancer Associated with a Glutathione Peroxidase 1 Codon 198 Variant. J. Urol. 2004, 172, 728–732. [Google Scholar] [CrossRef]
- Toto, A.; Wild, P.; Graille, M.; Turcu, V.; Crézé, C.; Hemmendinger, M.; Sauvain, J.-J.; Bergamaschi, E.; Guseva Canu, I.; Hopf, N.B. Urinary Malondialdehyde (MDA) Concentrations in the General Population—A Systematic Literature Review and Meta-Analysis. Toxics 2022, 10, 160. [Google Scholar] [CrossRef]
- Opanuraks, J.; Boonla, C.; Saelim, C.; Kittikowit, W.; Sumpatanukul, P.; Honglertsakul, C.; Tosukhowong, P. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian. Biomed. 2010, 4, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Lepara, Z.; Lepara, O.; Fajkić, A.; Rebić, D.; Alić, J.; Spahović, H. Serum Malondialdehyde (MDA) Level as a Potential Biomarker of Cancer Progression for Patients with Bladder Cancer. Rom. J. Intern. Med. 2020, 58, 146–152. [Google Scholar] [CrossRef]
- Lepara, Z.; Alić, J.; Lepara, O.; Spahović, H.; Fajkić, A. Antioxidant Status in Patients with Bladder Cancer Regarding Cancer Stage and Grade. Asian J. Urol. 2022, in press. [Google Scholar] [CrossRef]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Il’yasova, D.; Scarbrough, P.; Spasojevic, I. Urinary Biomarkers of Oxidative Status. Clin. Chim. Acta 2012, 413, 1446–1453. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, H.; Szili, E.J.; Oh, J.-S.; Chiaki, K.; Yamamoto, S.; Kurabayashi, A.; Furihata, M.; Tsuda, M.; Furuta, H.; Lindsay, H.D.; et al. Oxidative Stress Pathways Linked to Apoptosis Induction by Low-Temperature Plasma Jet Activated Media in Bladder Cancer Cells: An In Vitro and In Vivo Study. Plasma 2022, 5, 233–246. [Google Scholar] [CrossRef]
- Mertens, L.S.; Claps, F.; Mayr, R.; Bostrom, P.J.; Shariat, S.F.; Zwarthoff, E.C.; Boormans, J.L.; Abas, C.; van Leenders, G.J.L.H.; Götz, S.; et al. Prognostic Markers in Invasive Bladder Cancer: FGFR3 Mutation Status versus P53 and KI-67 Expression: A Multi-Center, Multi-Laboratory Analysis in 1058 Radical Cystectomy Patients. Urol. Oncol. 2022, 40, 110.e1–110.e9. [Google Scholar] [CrossRef] [PubMed]
- Barone, B.; Napolitano, L.; Reccia, P.; De Luca, L.; Morra, S.; Turco, C.; Melchionna, A.; Caputo, V.F.; Cirillo, L.; Fusco, G.M.; et al. Preoperative Fibrinogen-to-Albumin Ratio as Potential Predictor of Bladder Cancer: A Monocentric Retrospective Study. Medicina 2022, 58, 1490. [Google Scholar] [CrossRef] [PubMed]
- Psutka, S.P.; Barocas, D.A.; Catto, J.W.F.; Gore, J.L.; Lee, C.T.; Morgan, T.M.; Master, V.A.; Necchi, A.; Rouprêt, M.; Boorjian, S.A. Staging the Host: Personalizing Risk Assessment for Radical Cystectomy Patients. Eur. Urol. Oncol. 2018, 1, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Claps, F.; Mir, M.C.; van Rhijn, B.W.G.; Mazzon, G.; Soria, F.; D’Andrea, D.; Marra, G.; Boltri, M.; Traunero, F.; Massanova, M.; et al. Impact of the Controlling Nutritional Status (CONUT) Score on Perioperative Morbidity and Oncological Outcomes in Patients with Bladder Cancer Treated with Radical Cystectomy. Urol. Oncol. 2023, 41, 49.e13–49.e22. [Google Scholar] [CrossRef]
- Claps, F.; Rai, S.; Mir, M.C.; van Rhijn, B.W.G.; Mazzon, G.; Davis, L.E.; Valadon, C.L.; Silvestri, T.; Rizzo, M.; Ankem, M.; et al. Prognostic Value of Preoperative Albumin-to-Fibrinogen Ratio (AFR) in Patients with Bladder Cancer Treated with Radical Cystectomy. Urol. Oncol. 2021, 39, 835.e9–835.e17. [Google Scholar] [CrossRef]
— | Healthy Control | Bladder Cancer | p | |
---|---|---|---|---|
n | 50 | 61 | ||
F/M | wrz.41 | 16/45 | ||
Age (years) | mean ± SD | 63.28 ± 11.74 | 71.75 ± 9.2 | <0.001 |
range | 44–90 | 40–91 | ||
BMI (kg/m2) | mean ± SD | 26.39 ± 3 | 26.22 ± 3.06 | 0.904 |
range | 19.05–29.66 | 19.72–29.91 | ||
WBC (103/µL) | mean ± SD | 7.05 ± 1.5 | 7.21 ± 2.48 | 0.518 |
range | 4.2–10 | 2.8–17.5 | ||
LYM (%) | mean ± SD | 29.58 ± 4.36 | 24.79 ± 8.32 | <0.001 |
range | 25.1–38.9 | 5.7–42.2 | ||
MONO (%) | mean ± SD | 7.49 ± 1.78 | 8.56 ± 3.58 | 0.561 |
range | 3.3–10 | 2.3–24.7 | ||
NEU (%) | mean ± SD | 63.12 ± 6.44 | 64.24 ± 9.79 | 0.895 |
range | 50.3–70 | 42.8–86.8 | ||
EOS (%) | mean ± SD | 1.98 ± 1.25 | 1.47 ± 1.4 | <0.001 |
range | 1–4.9 | 0–7.8 | ||
BASO (%) | mean ± SD | 0.57 ± 0.31 | 0.5 ± 0.29 | 0.091 |
range | 0.2–1.7 | 0.1–1.6 | ||
Prothrombin time (s) | mean ± SD | 11.75 ± 0.53 | 12.15 ± 1 | 0.694 |
range | 10.4–12.5 | 10.4–14.9 | ||
Prothrombin time (%) | mean ± SD | 94.52 ± 10.58 | 93.86 ± 11.37 | 0.777 |
range | 80–119 | 68–119 | ||
INR | mean ± SD | 1.05 ± 0.08 | 1.05 ± 0.08 | 0.435 |
range | 0.9–1.2 | 0.9–1.3 | ||
APTT (s) | mean ± SD | 29.6 ± 3.47 | 30.84 ± 6.71 | 0.784 |
range | 25.4–36.8 | 22.7–57.8 | ||
Creatinine (mg/dL) | mean ± SD | 0.88 ± 0.17 | 1.04 ± 0.5 | 0.938 |
range | 0.6–1.17 | 0.52–3.39 | ||
Glucose (mg/dL) | mean ± SD | 96.81 ± 6.58 | 100.07 ± 5.79 | 0.077 |
range | 85–106 | 84–109 | ||
Urea (mg/dL) | mean ± SD | 33.09 ± 8.85 | 41.07 ± 16.98 | 0.045 |
range | 16–49 | 16–114 | ||
K+ (mmol/L) | mean ± SD | 4.33 ± 0.28 | 4.37 ± 0.44 | 0.747 |
range | 3.7–5 | 3.4–5.8 | ||
Types of cancer | ||||
non-invasive urothelial carcinoma | n (%) | - | 36 (59) | - |
invasive urothelial carcinoma | n (%) | - | 22 (36) | - |
urothelial carcinoma in situ | n (%) | - | 3 (5) | - |
Clinical stage (TNM) | ||||
Ta | n (%) | - | 36 (59) | - |
T1 | n (%) | - | 14 (23) | - |
T2 | n (%) | - | 8 (13) | - |
TiS | n (%) | - | 3 (5) | - |
Clinical grade | ||||
G1 | n (%) | - | 24 (39.3) | - |
G2 | n (%) | - | 25 (41) | - |
G3 | n (%) | - | 9 (14.7) | - |
Non-Invasive Urothelial Carcinoma | Invasive Urothelial Carcinoma | Urothelial Carcinoma In Situ | p | ||
---|---|---|---|---|---|
Serum | AOPP (nmol/mg protein) | 232.89 ± 71.53 | 246.35 ± 69.22 | 259.21 ± 46.01 | 0.787 |
Amadori products (nmol/mg protein) | 1683.4 ± 191.07 | 1833.98 ± 374.58 | 1826.09 ± 342.45 | 0.736 | |
FRAP (μmol TE/L) | 175.61 ± 8.26 | 176.39 ± 18.85 | 167.34 ± 23.44 | 0.718 | |
ABTS (μmol TE/L) | 291.96 ± 15.27 | 293.99 ± 18.49 | 296.71 ± 11.27 | 0.354 | |
TOS (μmol H2O2 equiv./L) | 37.12 ± 6.1 | 44.19 ± 10.39 | 50.99 ± 19.78 | 0.171 | |
OSI | 1.06 ± 0.15 | 1.07 ± 0.16 | 1.16 ± 0.03 | 0.337 | |
MDA (μmol/L) | 3.2 ± 0.32 | 3.77 ± 0.74 | 3.97 ± 0.82 | 0.165 | |
Urine | AOPP (μmol/mmol creatinine) | 28.51 ± 12.41 | 29.23 ± 12.71 | 35.19 ± 18.72 | 0.643 |
Amadori products (mmol/mmol creatinine) | 0.53 ± 0.17 | 0.49 ± 0.21 | 0.53 ± 0.08 | 0.169 | |
FRAP (μmol TE/mmol creatinine) | 573.1 ± 169.08 | 492.59 ± 136.78 | 666.24 ± 173.53 | 0.253 | |
ABTS (μmol TE/mmol creatinine) | 830.71 ± 281.73 | 788.73 ± 294.05 | 883.72 ± 185.12 | 0.806 | |
TOS (μmol H2O2 equiv./L) | 67.19 ± 93.11 | 72.86 ± 95.04 | 26.16 ± 7.13 | 0.285 | |
OSI | 2.06 ± 1.66 | 2.16 ± 1.12 | 2.65 ± 1.65 | 0.388 | |
MDA (μmol/mmol creatinine) | 0.89 ± 0.31 | 1.08 ± 0.44 | 1.17 ± 0.5 | 0.495 |
Ta | T1 | T2 | TiS | p | ||
---|---|---|---|---|---|---|
Serum | AOPP (nmol/mg protein) | 232.89 ± 71.53 | 246.85 ± 67.02 | 248.77 ± 67.76 | 259.21 ± 46.01 | 0.752 |
Amadori products (nmol/mg protein) | 1683.4 ± 191.07 | 1717.01 ± 189.5 | 1817.82 ± 308.1 | 1826.09 ± 342.45 | 0.69 | |
FRAP (μmol TE/L) | 175.61 ± 8.26 | 177.6 ± 20.65 | 173.46 ± 18.11 | 167.34 ± 23.44 | 0.857 | |
ABTS (μmol TE/L) | 291.96 ± 15.27 | 296.09 ± 14.79 | 286.65 ± 24.75 | 296.71 ± 11.27 | 0.734 | |
TOS (μmol H2O2 equiv./L) | 37.12 ± 6.1 | 48.52 ± 11.85 | 48.11 ± 9.1 | 50.99 ± 19.78 | 0.017 | |
OSI | 1.06 ± 0.15 | 1.11 ± 0.18 | 1.09 ± 0.2 | 1.16 ± 0.03 | 0.504 | |
MDA (μmol/L) | 3.2 ± 0.32 | 4.18 ± 0.91 | 3.63 ± 0.41 | 3.97 ± 0.82 | 0.22 | |
Urine | AOPP (μmol/mmol creatinine) | 28.51 ± 12.41 | 31.08 ± 13.7 | 30.61 ± 15.58 | 35.19 ± 18.72 | 0.728 |
Amadori products (mmol/mmol creatinine) | 0.53 ± 0.17 | 0.61 ± 0.25 | 0.4 ± 0.05 | 0.53 ± 0.08 | 0.381 | |
FRAP (μmol TE/mmol creatinine) | 573.1 ± 169.08 | 585.23 ± 176.33 | 430.01 ± 31.11 | 666.24 ± 173.53 | 0.127 | |
ABTS (μmol TE/mmol creatinine) | 830.71 ± 281.73 | 921.35 ± 385.57 | 751.94 ± 225.08 | 883.72 ± 185.12 | 0.722 | |
TOS (μmol H2O2 equiv./L) | 67.19 ± 93.11 | 38.97 ± 23.19 | 119.81 ± 148.98 | 26.16 ± 7.13 | 0.345 | |
OSI | 2.06 ± 1.66 | 2.1 ± 1.35 | 2.49 ± 1.7 | 2.65 ± 1.65 | 0.52 | |
MDA (μmol/mmol creatinine) | 0.89 ± 0.31 | 1.12 ± 0.43 | 1.1 ± 0.26 | 1.17 ± 0.5 | 0.703 |
G1 | G2 | G3 | p | ||
---|---|---|---|---|---|
Serum | AOPP (nmol/mg protein) | 247.21 ± 66.23 | 262.72 ± 74.84 | 244.14 ± 67.17 | 0.974 |
Amadori products (nmol/mg protein) | 1788.16 ± 221.48 | 1828.79 ± 411.54 | 1788.16 ± 221.48 | 0.381 | |
FRAP (μmol TE/L) | 181.1 ± 16.62 | 169.74 ± 23.17 | 166.51 ± 21.96 | 0.177 | |
ABTS (μmol TE/L) | 291.84 ± 14.89 | 290.05 ± 17.98 | 293.27 ± 15.61 | 0.707 | |
TOS (μmol H2O2 equiv./L) | 42 ± 14.2 | 47.27 ± 8.14 | 47.93 ± 8.87 | 0.518 | |
OSI | 1.09 ± 0.16 | 1.1 ± 0.2 | 1.18 ± 0.18 | 0.745 | |
MDA (μmol/L) | 3.76 ± 0.68 | 3.93 ± 0.82 | 3.93 ± 0.86 | 0.883 | |
Urine | AOPP (μmol/mmol creatinine) | 30.26 ± 13.87 | 27.04 ± 7.58 | 33.73 ± 20.41 | 0.893 |
Amadori products (mmol/mmol creatinine) | 0.47 ± 0.16 | 0.56 ± 0.19 | 0.52 ± 0.25 | 0.235 | |
FRAP (μmol TE/mmol creatinine) | 619.49 ± 163.97 | 525.79 ± 135.3 | 479.77 ± 151.18 | 0.022 | |
ABTS (μmol TE/mmol creatinine) | 856.56 ± 288.46 | 802.9 ± 296.94 | 774.74 ± 320.23 | 0.583 | |
TOS (μmol H2O2 equiv./L) | 66.91 ± 76.25 | 68.28 ± 96.73 | 97.7 ± 144.72 | 0.865 | |
OSI | 1.8 ± 1.48 | 2.1 ± 1.41 | 3.03 ± 1.5 | 0.075 | |
MDA (μmol/mmol creatinine) | 1.15 ± 0.4 | 1.15 ± 0.5 | 1.16 ± 0.61 | 0.754 |
Serum | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOPP | Amadori Products | FRAP | ABTS | TOS | OSI | MDA | |||||||||
R | p | R | p | R | p | R | p | R | p | R | p | R | p | ||
Urine | AOPP | 0.272 | 0.038 | 0.231 | 0.081 | −0.032 | 0.811 | −0.078 | 0.556 | 0.146 | 0.274 | −0.032 | 0.0492 | 0.072 | 0.591 |
Amadori products | −0.03 | 0.827 | 0.152 | 0.262 | 0.094 | 0.49 | 0.068 | 0.617 | 0.258 | 0.054 | 0.091 | 0.507 | −0.001 | 0.992 | |
FRAP | 0.088 | 0.52 | 0.26 | 0.052 | 0.286 | 0.036 | 0.173 | 0.201 | −0.294 | 0.027 | −0.365 | 0.006 | 0.115 | 0.398 | |
ABTS | −0.107 | 0.431 | 0.046 | 0.737 | −0.118 | 0.386 | 0.231 | 0.067 | −0.0383 | 0.003 | −0.285 | 0.036 | 0.053 | 0.697 | |
TOS | −0.001 | 0.994 | −0.086 | 0.515 | 0.156 | 0.231 | −0.073 | 0.583 | 0.418 | 0.001 | 0.45 | 0.001 | 0.045 | 0.748 | |
OSI | −0.065 | 0.637 | −0.246 | 0.073 | 0.023 | 0.866 | −0.208 | 0.13 | 0.291 | 0.032 | 0.339 | 0.012 | 0.042 | 0.754 | |
MDA | −0.085 | 0.532 | −0.084 | 0.539 | 0.001 | 0.997 | 0.072 | 0.597 | 0.271 | 0.048 | 0.182 | 0.179 | 0.165 | 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiniak, S.; Mołoń, M.; Biesiadecki, M.; Mokrzyńska, A.; Balawender, K. Oxidative Stress Markers in Urine and Serum of Patients with Bladder Cancer. Antioxidants 2023, 12, 277. https://doi.org/10.3390/antiox12020277
Galiniak S, Mołoń M, Biesiadecki M, Mokrzyńska A, Balawender K. Oxidative Stress Markers in Urine and Serum of Patients with Bladder Cancer. Antioxidants. 2023; 12(2):277. https://doi.org/10.3390/antiox12020277
Chicago/Turabian StyleGaliniak, Sabina, Mateusz Mołoń, Marek Biesiadecki, Agnieszka Mokrzyńska, and Krzysztof Balawender. 2023. "Oxidative Stress Markers in Urine and Serum of Patients with Bladder Cancer" Antioxidants 12, no. 2: 277. https://doi.org/10.3390/antiox12020277
APA StyleGaliniak, S., Mołoń, M., Biesiadecki, M., Mokrzyńska, A., & Balawender, K. (2023). Oxidative Stress Markers in Urine and Serum of Patients with Bladder Cancer. Antioxidants, 12(2), 277. https://doi.org/10.3390/antiox12020277