Anti-Inflammatory, Neurotrophic, and Cytotoxic Oxylipins Isolated from Chaenomeles sinensis Twigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Compounds Extraction and Isolation
Pos. | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
δC | δH, multi., (J in Hz) | δC | δH, multi., (J in Hz) | δC | δH, multi., (J in Hz) | δC | δH, multi., (J in Hz) | |
1 | 175.8 | 175.8 | 174.1 | 174.1 | ||||
2 | 34.7 | 2.35, t (7.4) | 34.7 | 2.35, t (7.4) | 34.4 | 2.28, t (7.4) | 34.4 | 2.28, t (7.4) |
3 | 22.1 | 1.66, m; 1.71, m | 22.2 | 1.66, m; 1.72, m | 25.0 | 1.61, quin (7.4) | 25.0 | 1.61, m |
4 | 37.6 | 1.54, m | 37.6 | 1.53, m | 29.2 | 1.30 * | 29.2 | 1.30 * |
5 | 72.7 | 4.07, m | 72.6 | 4.06, m | 29.3 | 1.30 * | 29.3 | 1.30 * |
6 | 136.3 | 5.72, dd (15.5, 5.4) | 136.2 | 5.72 * | 29.1 | 1.30 * | 29.1 | 1.30 * |
7 | 131.4 | 5.69, dd (15.5, 5.5) | 131.4 | 5.72 * | 25.3 | 1.32 *; 1.39 * | 25.3 | 1.32 *; 1.39 * |
8 | 75.8 | 3.90, t (5.5) | 75.7 | 3.95, m | 37.3 | 1.53 * | 37.3 | 1.54 * |
9 | 76.5 | 3.41, m | 75.9 | 3.45, m | 72.2 | 4.15, q (5.9) | 72.2 | 4.15, q (5.8) |
10 | 33.6 | 1.35 *; 1.53 * | 31.6 | 2.12, m; 2.35 * | 136.4 | 5.82, dd (15.6, 5.9) | 136.4 | 5.84, dd (15.5, 5.8) |
11 | 26.7 | 1.34 *; 1.52 * | 126.4 | 5.44, m | 129.8 | 5.71, dd (15.6, 6.2) | 129.7 | 5.73, dd (15.5, 6.0) |
12 | 33.1 | 1.53 * | 134.4 | 5.46, m | 75.4 | 3.92, m | 74.7 | 4.01, t (6.0) |
13 | 23.8 | 1.33 * | 21.7 | 2.06, quin (7.5) | 74.7 | 3.47, m | 74.2 | 3.53, m |
14 | 14.5 | 0.91, t (7.1) | 14.6 | 0.96, t (7.5) | 33.1 | 1.42 *; 1.51 * | 31.1 | 2.30, t (7.5) |
15 | 52.0 | 3.65, s | 52.0 | 3.65, s | 25.4 | 1.38 *; 1.50 * | 123.9 | 5.40, m |
16 | 31.9 | 1.29 * | 135.5 | 5.58, m | ||||
17 | 22.7 | 1.31 * | 20.8 | 2.07, quin (7.5) | ||||
18 | 14.2 | 0.89, t (7.0) | 14.3 | 0.97, t (7.5) | ||||
19 | 60.3 | 4.12, q (7.1) | 60.3 | 4.12, q (7.1) | ||||
20 | 14.4 | 1.25, t (7.1) | 14.4 | 1.25, t (7.1) |
2.4. Nitric Oxide (NO) Assay
2.5. Nerve Growth Factor (NGF) Assay
2.6. Cytotoxicity Assignment
3. Results and Discussion
3.1. Structure Elucidation of Compounds 1–5
3.2. Biosynthetic Proposal
3.3. Anti-Neuroinflammatory Activity of the Isolated Compounds (1–5)
3.4. Neurotrophic Activity of the Isolated Compounds (1–5)
3.5. Cytotoxic Activity of the Isolated Compounds (1–5)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spite, M.; Clària, J.; Serhan, C.N. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 2014, 19, 21–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, C.K.; Park, H.-J.; Kang, P.; Moon, S.; Lee, Y.J.; Bae, J.W.; Jang, C.-G.; Lee, S.-Y. Physiologically based pharmacokinetic (PBPK) modeling of meloxicam in different CYP2C9 genotypes. Arch. Pharm. Res. 2021, 44, 1076–1090. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kang, P.; Cho, C.K.; Jung, E.H.; Park, H.-J.; Lee, Y.J.; Bae, J.W.; Jang, C.-G.; Lee, S.-Y. Physiologically based pharmacokinetic (PBPK) modeling for prediction of celecoxib pharmacokinetics according to CYP2C9 genetic polymorphism. Arch. Pharm. Res. 2021, 44, 713–724. [Google Scholar] [CrossRef]
- Cho, C.K.; Kang, P.; Park, H.-J.; Ko, E.; Mu, C.Y.; Lee, Y.J.; Choi, C.-I.; Kim, H.S.; Jang, C.-G.; Bae, J.W. Physiologically based pharmacokinetic (PBPK) modeling of piroxicam with regard to CYP2C9 genetic polymorphism. Arch. Pharm. Res. 2022, 45, 352–366. [Google Scholar] [CrossRef]
- Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C. Jasmonate biosynthesis in Arabidopsis thaliana-enzymes, products, regulation. Plant Biol. 2006, 8, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.S.; Kwon, O.W.; Kim, S.Y.; Choi, S.U.; Kim, K.H.; Lee, K.R. Five new oxylipins from Chaenomeles sinensis. Lipids 2014, 49, 1151–1159. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, T.H.; Ham, S.L.; Subedi, L.; Hong, S.M.; Kim, S.Y.; Choi, S.U.; Kim, C.S.; Lee, K.R. Anticancer and anti-neuroinflammatory constituents isolated from the roots of Wasabia japonica. Antioxidants 2022, 11, 482. [Google Scholar] [CrossRef]
- Kim, C.S.; Suh, W.S.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Neuroprotective fatty acids from the stem bark of Sorbus commixta. Lipids 2016, 51, 989–995. [Google Scholar] [CrossRef]
- Kim, C.S.; Kim, K.H.; Lee, K.R. Phytochemical constituents of the leaves of Hosta longipes. Nat. Prod. Sci. 2014, 20, 86–90. [Google Scholar]
- Kim, D.H.; Subedi, L.; Kim, H.R.; Choi, S.U.; Kim, S.Y.; Kim, C.S. Phenolic constituents of chinese quince twigs (Chaenomeles sinensis Koehne) and their anti-neuroinflammatory, neurotrophic, and cytotoxic activities. Antioxidants 2021, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Blasi, E.; Barluzzi, R.; Bocchini, V.; Mazzolla, R.; Bistoni, E.F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 1990, 27, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Son, D.; Lee, P.; Lee, K.J.; Kim, H.; Kim, S.Y. Ethyl acetate soluble fraction of cnidium officinale MAKINO Inhibits neuronal cell death by reduction of excessive nitric oxide production in lipopolysaccharide-treated rat hippocampal slice culturesand microglia cells. J. Pharmacol. Sci. 2003, 92, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Miura, A.; Kuwahara, S. A concise synthesis of pinellic acid using a cross-metathesis approach. Tetrahedron 2009, 65, 3364–3368. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Xu, D.-F.; Wang, Y.-Y.; Ma, R.-F.; Zhang, H. Clerodane furanoditerpenoids from the stems of Tinospora sinensis. Arch. Pharm. Res. 2022, 45, 328–339. [Google Scholar] [CrossRef]
- Nagai, T.; Kiyohara, H.; Munakata, K.; Shirahata, T.; Sunazuka, T.; Harigaya, Y.; Yamada, H. Pinellic acid from the tuber of Pinellia ternata Breitenbach as an effective oral adjuvant for nasal influenza vaccine. Int. Immunopharmacol. 2002, 2, 1183–1193. [Google Scholar] [CrossRef]
- Shirahata, T.; Sunazuka, T.; Yoshida, K.; Yamamoto, D.; Harigaya, Y.; Kuwajima, I.; Nagai, T.; Kiyohara, H.; Yamada, H.; Ōmura, S. Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acids. Tetrahedron 2006, 62, 9483–9496. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Murakami, T.; Shimada, H.; Yoshizumi, S.; Saka, M.; Yamahara, J.; Matsuda, H. Medicinal foodstuffs. XIV. On the bioactive constituents of moroheiya.(2): New fatty acids, corchorifatty acids A, B, C, D, E, and F, from the leaves of Corchorus olitorius L.(Tiliaceae): Structures and inhibitory effect on NO production in mouse peritoneal macrophages. Chem. Pharm. Bull. 1998, 46, 1008–1014. [Google Scholar]
- Chang, C.-H.; Lee, Y.-C.; Hsiao, G.; Chang, L.-K.; Chi, W.-C.; Cheng, Y.-C.; Huang, S.-J.; Wang, T.-C.; Lu, Y.-S.; Lee, T.-H. Anti-epstein–barr viral agents from the medicinal herb-derived fungus Alternaria alstroemeriae Km2286. J. Nat. Prod. 2022, 85, 2667–2674. [Google Scholar] [CrossRef]
- Stierle, A.A.; Stierle, D.B.; Decato, D.; Alverson, J.; Apedaile, L. Cryptic biosynthesis of the berkeleypenostatins from coculture of extremophilic Penicillium sp. J. Nat. Prod. 2021, 84, 1656–1665. [Google Scholar] [CrossRef]
- Kim, C.; Ha, H.; Kim, J.S.; Kim, Y.T.; Kwon, S.-C.; Park, S.W. Induction of growth hormone by the roots of Astragalus membranaceus in pituitary cell culture. Arch. Pharm. Res. 2003, 26, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Hamberg, M.; Olsson, U. Efficient and specific conversion of 9-lipoxygenase hydroperoxides in the beetroot. Formation of pinellic acid. Lipids 2011, 46, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Hay, R.; Porter, L.; Morris, P. The basic hydrolysis of amino acid esters. Aust. J. Chem. 1966, 19, 1197–1205. [Google Scholar] [CrossRef]
- Bazan, N.G.; Eady, T.N.; Khoutorova, L.; Atkins, K.D.; Hong, S.; Lu, Y.; Zhang, C.; Jun, B.; Obenaus, A.; Fredman, G. Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Exp. Neurol. 2012, 236, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Marcheselli, V.L.; Hong, S.; Lukiw, W.J.; Tian, X.H.; Gronert, K.; Musto, A.; Hardy, M.; Gimenez, J.M.; Chiang, N.; Serhan, C.N. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 2003, 278, 43807–43817. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, M.; Yuan, L.; Xiang, Y.; Zheng, R.; Zhu, S. 14, 15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis. Biochem. Biophys. Res. Commun. 2014, 450, 604–609. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Y.; Fang, Y.; Yao, E.; Xu, S.; Ning, Q.; Zhang, G.; Wang, W.; Huang, X.; Xie, M. Epoxyeicosanoid signaling provides multi-target protective effects on neurovascular unit in rats after focal ischemia. J. Mol. Neurosci. 2016, 58, 254–265. [Google Scholar] [CrossRef]
- Zhang, W.; Otsuka, T.; Sugo, N.; Ardeshiri, A.; Alhadid, Y.K.; Iliff, J.J.; DeBarber, A.E.; Koop, D.R.; Alkayed, N.J. Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 2008, 39, 2073–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Normalized NO production (µM) 1 | Cell viability (%) 2 |
---|---|---|
DMSO | 2.33 ± 0.58 | 117.52 ± 1.04 |
LPS-treated | 39.95 ± 1.17 ### | 100.00 ± 0.88 |
1 | 38.56 ± 1.61 | 105.36 ± 3.55 |
2 | 38.69 ± 1.41 | 97.39 ± 7.89 |
3 | 30.70 ± 1.38 *** | 121.17 ± 8.80 |
4 | 8.46 ± 0.68 *** | 97.77 ± 1.23 |
5 | 24.09 ± 1.11 *** | 109.15 ± 1.81 |
L-NMMA 3 | 22.37 ± 0.69 *** | 104.56 ± 4.21 |
Compound | Normalized NGF secretion (%) 1 | Cell viability (%) 2 |
---|---|---|
DMSO | 100.0 ± 0.6 | 100.0 ± 1.1 |
1 | 79.6 ± 3.4 | 98.5 ± 0.8 |
2 | 86.0 ± 4.4 | 109.9 ± 9.3 |
3 | 126.7 ± 2.4 * | 105.3 ± 1.6 |
4 | 157.7 ± 2.4 *** | 107.7 ± 11.2 |
5 | 123.8 ± 11.0 * | 101.6 ± 1.4 |
6-shogaol 3 | 154.0 ± 5.6 ** | 97.1 ± 0.2 |
Compound | IC50 (μM) 1 | |||
---|---|---|---|---|
A549 | SK-OV-3 | SK-MEL-2 | MKN-1 | |
1 | >30 | >30 | >30 | >30 |
2 | >30 | >30 | >30 | >30 |
3 | >30 | >30 | >30 | >30 |
4 | 27.4 | >30 | >30 | >30 |
5 | 17.5 | 18.9 | 15.1 | 26.6 |
Etoposide 2 | 1.0 | 2.2 | 1.8 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.Y.; Park, K.J.; Subedi, L.; Lee, G.S.; Lee, J.-H.; Lee, W.-M.; Choi, S.U.; Hong, S.-M.; Kim, S.Y.; Kim, C.S. Anti-Inflammatory, Neurotrophic, and Cytotoxic Oxylipins Isolated from Chaenomeles sinensis Twigs. Antioxidants 2023, 12, 284. https://doi.org/10.3390/antiox12020284
Lee DY, Park KJ, Subedi L, Lee GS, Lee J-H, Lee W-M, Choi SU, Hong S-M, Kim SY, Kim CS. Anti-Inflammatory, Neurotrophic, and Cytotoxic Oxylipins Isolated from Chaenomeles sinensis Twigs. Antioxidants. 2023; 12(2):284. https://doi.org/10.3390/antiox12020284
Chicago/Turabian StyleLee, Da Yeong, Kyoung Jin Park, Lalita Subedi, Gyu Sung Lee, Ji-Hyeok Lee, Won-Min Lee, Sang Un Choi, Seong-Min Hong, Sun Yeou Kim, and Chung Sub Kim. 2023. "Anti-Inflammatory, Neurotrophic, and Cytotoxic Oxylipins Isolated from Chaenomeles sinensis Twigs" Antioxidants 12, no. 2: 284. https://doi.org/10.3390/antiox12020284
APA StyleLee, D. Y., Park, K. J., Subedi, L., Lee, G. S., Lee, J. -H., Lee, W. -M., Choi, S. U., Hong, S. -M., Kim, S. Y., & Kim, C. S. (2023). Anti-Inflammatory, Neurotrophic, and Cytotoxic Oxylipins Isolated from Chaenomeles sinensis Twigs. Antioxidants, 12(2), 284. https://doi.org/10.3390/antiox12020284