Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Data Collection
2.3. Data Analyses
2.4. Content Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pyati, S.A.; Naveen Kumar, R.; Kumar, V.; Praveen Kumar, N.H.; Reddy, K.M.P. Salivary Flow Rate, pH, Buffering Capacity, Total Protein, Oxidative Stress and Antioxidant Capacity in Children with and without Dental Caries. J. Clin. Pediatr. Dent. 2018, 42, 445–449. [Google Scholar] [CrossRef]
- Kirschvink, N.; de Moffarts, B.; Lekeux, P. The oxidant/antioxidant equilibrium in horses. Vet. J. 2008, 177, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Tunez, I.; Feijoo, M.; Huerta, G.; Montilla, P.; Munoz, E.; Ruiz, A.; Collantes, E. The effect of infliximab on oxidative stress in chronic inflammatory joint disease. Curr. Med. Res. Opin. 2007, 23, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, M.; Bouhafs, R.K.; Hammarström, K.J.; Jarstrand, C. Lipid peroxidation caused by oxygen radicals from Fusobacterium-stimulated neutrophils as a possible model for the emergence of periodontitis. Oral Dis. 2001, 7, 41–46. [Google Scholar] [PubMed]
- Baltacioglu, E.; Akalin, F.A.; Alver, A.; Balaban, F.; Unsal, M.; Karabulut, E. Total antioxidant capacity and superoxide dismutase activity levels in serum and gingival crevicular fluid in post-menopausal women with chronic periodontitis. J. Clin. Periodontol. 2006, 33, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Canakci, V.; Yildirim, A.; Canakci, C.F.; Eltas, A.; Cicek, Y.; Canakci, H. Total antioxidant capacity and antioxidant enzymes in serum, saliva, and gingival crevicular fluid of preeclamptic women with and without periodontal disease. J. Periodontol. 2007, 78, 1602–1611. [Google Scholar] [CrossRef]
- Ahmadi-Motamayel, F.; Goodarzi, M.T.; Mahdavinezhad, A.; Jamshidi, Z.; Darvishi, M. Salivary and Serum Antioxidant and Oxidative Stress Markers in Dental Caries. Caries Res. 2018, 52, 565–569. [Google Scholar] [CrossRef]
- Morris, S.M.; Billiar, T.R. New insights into regulation of inducible nitric oxide synthesis. Am. J. Physiol. 1994, 266, E829–E839. [Google Scholar] [CrossRef]
- Maxwell, S.R.; Dietrich, T.; Chapple, I.L. Prediction of serum total antioxidant activity from the concentration of individual serum antioxidants. Clin. Chim. Acta 2006, 372, 188–194. [Google Scholar] [CrossRef]
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef]
- Halliwell, B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic. Res. 1999, 31, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Regulation of glutathione synthesis. Curr. Top. Cell. Regul. 2000, 36, 95–116. [Google Scholar] [PubMed]
- Buzalaf, M.A.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafer, W.G.; Hine, M.K.; Levy, B.M.E.D. A Text Book of Oral Pathology, 5th ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1993; pp. 567–658. [Google Scholar]
- Edgar, M.; Dawes, C.; O’Mullane, D. Saliva and Oral Health; British Dental Association: London, UK, 2004; 146p. [Google Scholar]
- Lee, Y.H.; Wong, D.T. Saliva: An emerging biofluid for early detection of diseases. Am. J. Dent. 2009, 22, 241–248. [Google Scholar] [PubMed]
- Araujo, H.C.; Nakamune, A.C.M.S.; Garcia, W.G.; Pessan, J.P.; Antoniali, C. Carious Lesion Severity Induces Higher Antioxidant System Activity and Consequently Reduces Oxidative Damage in Children’s Saliva. Oxid. Med. Cell. Longev. 2020, 28, 3695683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóthová, L.U.; Kamodyová, N.; Červenka, T.; Celec, P. Salivary markers of oxidative stress in oral diseases. Front. Cell. Infect. Microbiol. 2015, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, P.V.; Troiano, J.A.; Nakamune, A.C.M.S.; Pessan, J.P.; Antoniali, C. Increased activity of the antioxidants systems modulate the oxidative stress in saliva of toddlers with early childhood caries. Arch. Oral Biol. 2016, 70, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Mc-Donald, R.E.; Avery, D.R.; Stookey, G.K. Dental caries in the child and adolescent. In Dentistry for the Child and Adolescent, 8th ed.; Mc-Donald, R.E., Avery, D.R., Dean, J.A., Eds.; Elsevier: New Delhi, India, 2005; pp. 203–235. [Google Scholar]
- Mash, P.; Martin, M. Dental plaque. In Oral Microbiology; Springer: Boston, MA, USA, 1992; pp. 98–132. [Google Scholar]
- Krawczyk, D.; Sikorska-Jaroszyńska, M.H.; Mielnik-Błaszczak, M.; Pasternak, K.; Kapeć, E.; Sztanke, M. Dental caries and total antioxidant status of unstimulated mixed whole saliva in patients aged 16-23 years. Adv. Med. Sci. 2012, 57, 163–168. [Google Scholar] [CrossRef]
- Nascimento, P.C.; Ferreira, M.K.M.; Bittencourt, L.O.; Martins-Júnior, P.A.; Lima, R.R. Global research trends on maternal exposure to methylmercury and offspring health outcomes. Front. Pharmacol. 2022, 13, 973118. [Google Scholar] [CrossRef]
- De Lima, W.F.; Né, Y.G.S.; Aragão, W.A.B.; Eiró-Quirino, L.; Baia-da-Silva, D.C.; Cirovic, A.; Lima, R.R. Global Scientific Research Landscape on Aluminum Toxicology. Biol. Trace Elem. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eck, N.J.; Waltman, L.; van Raan, A.F.; Klautz, R.J.; Peul, W.C. Citation analysis may severely underestimate the impact of clinical research as compared to basic research. PLoS ONE 2013, 8, e62395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochrane Collaboration Glossary. 2019. Available online: https://community.cochrane.org/glossary (accessed on 15 April 2019).
- Bayindir, Y.Z.; Polat, M.F.; Seven, N. Nitric oxide concentrations in saliva and dental plaque in relation to caries experience and oral hygiene. Caries Res. 2005, 39, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.R.; Diaz-Fabregat, B.; Ramirez-Carmona, W.; Monteiro, D.R.; Pessan, J.P.; Antoniali, C. Salivary biomarkers of oxidative stress in children with dental caries: Systematic review and meta-analysis. Arch. Oral Biol. 2022, 139, 105432. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Né, Y.G.; Frazão, D.R.; Bittencourt, L.O.; Fagundes, N.C.F.; Marañón-Vásquez, G.; Crespo-Lopez, M.E.; Maia, L.C.; Lima, R.R. Are Dental Caries Associated with Oxidative Stress in Saliva in Children and Adolescents? A Systematic Review. Metabolites 2022, 12, 858. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarpour, F.; Mahjoub, S.; Masrour-Roudsari, J.; Seyedmajidi, S.; Ghasempour, M. Evaluation of salivary thiobarbituric acid reactive substances, total protein, and pH in children with various degrees of early childhood caries: A case-control study. Eur. Arch. Paediatr. Dent. 2021, 22, 1095–1099. [Google Scholar] [CrossRef]
- Salman, B.N.; Darvish, S.; Goriuc, A.; Mazloomzadeh, S.; Tehrani, M.H.P.; Luchian, I. Salivary Oxidative Stress Markers’ Relation to Oral Diseases in Children and Adolescents. Antioxidants 2021, 10, 1540. [Google Scholar] [CrossRef]
- Wagle, M.; Basnet, P.; Vartun, A.; Acharya, G. Nitric Oxide, Oxidative Stress and Streptococcus mutans and Lactobacillus Bacterial Loads in Saliva during the Different Stages of Pregnancy: A Longitudinal Study. Int. J. Environ. Res. Public Health 2021, 18, 9330. [Google Scholar] [CrossRef]
- Amrollahi, N.; Enshaei, Z.; Kavousi, F. Salivary Malondialdehyde Level as a Lipid Peroxidation Marker in Early Childhood Caries. Iran. J. Pediatr. 2021, 31, 67–70. [Google Scholar] [CrossRef]
- Karthika, G.; Avula, S.S.J.; Sridevi, E.; Pranitha, K.; Sankar, K.S.; Nayak, P. Assessing Vitamin E and Glutathione Peroxidase Levels in Salivary Samples of Children with and without Dental Caries. J. Clin. Diagn. Res. 2021, 15, 4. [Google Scholar] [CrossRef]
- Gorji, N.E.; Shafaroudi, A.M.; Nasiri, P.; Moosazadeh, M.; Nahvi, A. Relationship Between Salivary Nitric Oxide Concentration and Dental Caries in Children: A Systematic Review and Meta-analysis. Iran. J. Pediatr. 2021, 31, e107050. [Google Scholar]
- Ravikumar, D.; Ramani, P.; Gayathri, R. Comparative Evaluation of Salivary Malondialdehyde Levels in Children with Different Caries Status- A Cross-Sectional Observational Study. J. Pharm. Res. Int. 2021, 33, 147–154. [Google Scholar] [CrossRef]
- Vahabzadeh, Z.; Hashemi, Z.M.; Nouri, B.; Zamani, F.; Shafiee, F. Salivary enzymatic antioxidant activity and dental caries: A cross-sectional study. Dent. Med. Probl. 2020, 57, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Skutnik-Radziszewska, A.; Zalewska, A. Salivary Redox Biomarkers in the Course of Caries and Periodontal Disease. Appl. Sci. 2020, 10, 6240. [Google Scholar] [CrossRef]
- Shaki, F.; Arab-Nozari, M.; Maleki, F.; Charati, J.Y.; Nahvi, A. Evaluation of Some Caries-Related Factors in the Saliva of 3-5 Year Old Children in Sari, Northern Iran. Int. J. Pediatr. 2020, 8, 11115–11123. [Google Scholar]
- Malta, C.P.; Barcelos, R.C.S.; Rosa, H.Z.; Burger, M.E.; Bento, L.W. Effect of cerebral palsy and dental caries on dental plaque index, salivary parameters and oxidative stress in children and adolescents. Eur. Arch. Paediatr. Dent. 2021, 22, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Aksit-Bicak, D.; Emekli-Alturfan, E.; Ustundag, U.V.; Akyuz, S. Assessment of dental caries and salivary nitric oxide levels in children with dyspepsia. BMC Oral Health 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, S.; Yassin, S.M.; Dawasaz, A.A.; Amanullah, M.; Alshahrani, I.; Togoo, R.A. Salivary 1,5-Anhydroglucitol and Vitamin Levels in Relation to Caries Risk in Children. Biomed. Res. Int. 2019, 2019, 4503450. [Google Scholar] [CrossRef]
- Rahman, M.T.; Hossain, A.; Pin, C.H.; Yahya, N.A. Zinc and Metallothionein in the Development and Progression of Dental Caries. Biol. Trace Elem. Res. 2019, 187, 51–58. [Google Scholar] [CrossRef]
- Alanazi, G.S.; Pani, S.C.; AlKabbaz, H.J. Salivary antioxidant capacity of children with severe early childhood caries before and after complete dental rehabilitation. Arch. Oral Biol. 2018, 95, 165–169. [Google Scholar] [CrossRef]
- Pani, S.C. The Relationship between Salivary Total Antioxidant Capacity and Dental Caries in Children: A Meta-Analysis with Assessment of Moderators. J. Int. Soc. Prev. Community Dent. 2018, 8, 381–385. [Google Scholar] [CrossRef]
- Mohammed, H.K.; Anjana, G.; Zareena, M.A.; Sunil, E.A. Antioxidant Capacity of Saliva: Effect on Onset and Progression of Dental Caries. Oral Maxillofac. Pathol. J. 2017, 8, 19–22. [Google Scholar]
- Jurczak, A.; Koscielniak, D.; Skalniak, A.; Papiez, M.; Vyhouskaya, P.; Krzysciak, W. The role of the saliva antioxidant barrier to reactive oxygen species with regard to caries development. Redox Rep. 2017, 22, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, P.; Das, L.M.; Babu, K.L.G. Assessment of Salivary Total Antioxidant Levels and Oral Health Status in Children with Cerebral Palsy. J. Clin. Pediatr. Dent. 2014, 38, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, D.; Blaszczak, J.; Borowicz, J.; Mielnik-Blaszczak, M. Life style and risk of development of dental caries in a population of adolescents. Ann. Agric. Environ. Med. 2014, 21, 576–580. [Google Scholar] [CrossRef] [Green Version]
- Hegde, M.N.; Hegde, N.D.; Ashok, A.; Shetty, S. Biochemical Indicators of Dental Caries in Saliva: An in vivo Study. Caries Res. 2014, 48, 170–173. [Google Scholar] [CrossRef]
- Mahjoub, S.; Ghasempour, M.; Gharage, A.; Bijani, A.; Masrourroudsari, J. Comparison of Total Antioxidant Capacity in Saliva of Children with Severe Early Childhood Caries and Caries-Free Children. Caries Res. 2014, 48, 271–275. [Google Scholar] [CrossRef]
- Ahmadi-Motamayel, F.; Goodarzi, M.T.; Hendi, S.S.; Kasraei, S.; Moghimbeigi, A. Total antioxidant capacity of saliva and dental caries. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, E553–E600. [Google Scholar] [CrossRef]
- Han, D.H.; Kim, M.J.; Jun, E.J.; Kim, J.B. The role of glutathione metabolism in cariogenic bacterial growth and caries in Korean children. Arch. Oral Biol. 2013, 58, 493–499. [Google Scholar] [CrossRef]
- Celecová, V.; Kamodyova, N.; Tothova, L.; Kudela, M.; Celec, P. Salivary markers of oxidative stress are related to age and oral health in adult non-smokers. J. Oral Pathol. Med. 2013, 42, 263–266. [Google Scholar] [CrossRef]
- Tóthová, L.; Celecová, V.; Celec, P. Salivary markers of oxidative stress and their relation to periodontal and dental status in children. Dis. Markers 2013, 34, 9–15. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, R.K.; Agrawal, D.; Agrawal, D. An estimation and evaluation of total antioxidant capacity of saliva in children with severe early childhood caries. Int. J. Paediatr. Dent. 2011, 21, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.M.; Joshi, S.; Rai, K.; Shetty, S. Evaluation of Oral Hygiene Status, Salivary Characteristics and Dental Caries Experience in Acute Lymphoblastic Leukemic (ALL) Children. J. Clin. Pediatr. Dent. 2011, 35, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Preethi, B.P.; Pyati, A.; Dodawad, R. Evaluation of flow rate, ph, buffering capacity, calcium, total protein and total antioxidant levels of saliva in caries free and caries active children-An in vivo study. Biomed. Res. 2010, 21, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Hegde, A.M.; Rai, K.; Padmanabhan, V. Total Antioxidant Capacity of Saliva and its Relation with Early Childhood Caries and Rampant Caries. J. Clin. Pediatr. Dent. 2009, 33, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, L.K.; Furuncuoglu, H.; Atala, M.H.; Ulukoylu, O.; Akyuz, S.; Yarat, A. Association between dental-oral health in young adults and salivary glutathione, lipid peroxidation and sialic acid levels and carbonic anhydrase activity. Braz. J. Med. Biol. Res. 2008, 41, 956–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uberos, J.; Alarcon, J.A.; Penãlver, M.A.; Molina-Carballo, A.; Ruiz, M.; Gonzalez, E.; Castejon, J.; Muñoz-Hoyos, A. Influence of the antioxidant content of saliva on dental caries in an at-risk community. Br. Dent. J. 2008, 205, E5. [Google Scholar] [CrossRef] [Green Version]
- Hegde, A.M.; Neekhra, V.; Shetty, S. Evaluation of Levels of Nitric Oxide in Saliva of Children with Rampant Caries and Early Childhood Caries: A Comparative Study. J. Clin. Pediatr. Dent. 2008, 32, 283–286. [Google Scholar] [CrossRef]
- Tulunoglui, O.; Demirtas, S.; Tulunoglu, I. Total antioxidant levels of saliva in children related to caries, age, and gender. Int. J. Paediatr. Dent. 2006, 16, 186–191. [Google Scholar] [CrossRef]
- Chen, Y.S.; Leimkuhler, F.F. A relationship between Lotka’s law, Bradford’s law, and Zipf’s law. JASIST 1986, 37, 307–314. [Google Scholar] [CrossRef]
- Van Noorden, R.; Maher, B.; Nuzzo, R. The top 100 papers. Nature 2014, 514, 550–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadgan, B.; Roig, M.; HajGhanbari, B.; Reid, W.D. Top-cited articles in rehabilitation. Arch. Phys. Med. Rehabil. 2010, 91, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Volgenant, C.M.; Zaura, E.; Brandt, B.W.; Buijs, M.J.; Tellez, M.; Malik, G.; Ismail, A.I.; Ten Cate, J.M.; van der Veen, M.H. Red fluorescence of dental plaque in children -A cross-sectional study. J. Dent. 2017, 58, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
Authors/Year | Abstract | DOI | Number of Citations | ||
---|---|---|---|---|---|
WoS-CC (Average Per Year a) | Google Scholar | Scopus | |||
de Sousa Né et al., 2022 [30] | A systematic review that sought to evaluate the association between biochemical parameters of salivary oxidative stress and dental caries. | 10.3390/metabo12090858 | 0 (0.00) | 0 | 0 |
Martins et al., 2022 [29] | A systematic review assessed the relationship between salivary biomarkers of oxidative stress and dental caries in children. | 10.1016/j.archoralbio.2022.105432 | 1 (1.00) | 1 | 1 |
Aliakbarpour et al., 2021 [31] | Compared children with various levels of early childhood caries to children without caries to evaluate thiobarbituric acid reactive substances as an indicator of lipid peroxidation, total protein, and pH of saliva. | 10.1007/s40368-021-00672-9 | 1 (0.50) | 1 | 1 |
Salman et al., 2021 [32] | Evaluated the association between oral dental caries and periodontal issues in a pediatric population and markers of oxidative stress. | 10.3390/antiox10101540 | 1 (0.50) | 1 | 1 |
Wagle et al., 2021 [33] | Search into the long-term changes in salivary nitric oxide, oxidative stress, and antioxidant capacity during pregnancy and correlate them with different stages of streptococcus mutans and lactobacillus colonization. | 10.3390/ijerph18179330 | 1 (0.50) | 3 | 1 |
Amrollahi et al., 2021 [34] | In this study, salivary malondialdehyde levels were compared between children who had early childhood caries and those who did not. | 10.5812/ijp.113824 | 1 (0.50) | 1 | 1 |
Karthika et al., 2021 [35] | Compared the levels of glutathione peroxidase and tocopherol with the incidence of dental caries in a sample of school-age children. | 10.7860/JCDR/2021/47199.14986 | 1 (0.50) | 1 | * |
Gorji et al., 2021 [36] | This meta-analysis study ascertains the association between salivary nitrous oxide concentration and pediatric dental caries. | 10.5812/ijp.107050 | 0 (0.00) | 2 | 1 |
Ravikumar et al., 2021 [37] | Measured the amounts of malondialdehyde in the saliva and to compare them to those of the three groups of kids who had different types of caries. | 10.9734/JPRI/2021/v33i42A32395 | 1 (0.50) | * | * |
Vahabzadeh et al., 2020 [38] | Assessed the relationship between various degrees of pediatric dental caries and salivary enzymatic antioxidant activity. | 10.17219/dmp/126179 | 1 (0.33) | 3 | 1 |
Skutnik-Radziszewska et al., 2020 [39] | A review of the literature to address the role of salivary redox biomarkers during caries and periodontal disease. | 10.3390/app10186240 | 4 (1.33) | 4 | 4 |
Shaki et al., 2020 [40] | Compared some of the chemical features of saliva, such as total antioxidant capacity, total protein, pH, and nitric oxide level, in children who were caries free and caries active. | 10.22038/ijp.2019.42952.3598 | 3 (1.00) | 4 | * |
Malta et al., 2021 [41] | Search how cerebral palsy and dental caries affected dental plaque index, salivary parameters, and oxidative stress in children and adolescents. | 10.1007/s40368-020-00509-x | 2 (0.67) | 5 | 3 |
Araujo et al., 2020 [17] | Assessed the effect of dental caries severity (as determined by the ICCMS (TM) criteria) on the levels of oxidative stress biomarkers in children’s saliva. | 10.1155/2020/3695683 | 6 (2.00) | 16 | 7 |
Aksit-Bicak et al., 2019 [42] | Measured and compared the salivary nitric oxide levels of healthy dyspeptic and non-dyspeptic youngsters, as well as to evaluate its relationship to dental caries. | 10.1186/s12903-018-0707-z | 2 (0.50) | 6 | 4 |
Syed et al., 2019 [43] | Assessed the relationship between children’s caries risk and salivary 1,5-anhydroglucitol, retinol, ascorbic acid, and tocopherol. | 10.1155/2019/4503450 | 3 (0.75) | 4 | 4 |
Rahman et al., 2019 [44] | A review of the literature to address the role of zinc and metallothionein in the development and progression of dental caries. | 10.1007/s12011-018-1369-z | 9 (2.25) | 10 | 7 |
Alanazi et al., 2018 [45] | Total antioxidant capacity levels in children with severe early childhood caries were measured before and after dental therapy, and the results were compared to those of caries-free children. | 10.1016/j.archoralbio.2018.08.002 | 5 (1.00) | 11 | 4 |
Pani, 2018 [46] | Comprehensively examine the literature and do a meta-analysis on the relationship between pediatric dental caries and total antioxidant capacity. | 10.4103/jispcd.JISPCD_203_18 | 3 (0.60) | 7 | * |
Pyati et al., 2018 [1] | Measured and compared the levels of salivary flow, pH, buffer capacity, total protein, malondialdehyde and total antioxidant capacity between active and caries-free children. | 10.17796/1053-4625-42.6.7 | 25 (5.00) | 67 | 24 |
Ahmadi-Motamayel et al., 2018 [7] | Assessed salivary and serum total antioxidant capacity and malondialdehyde levels in dental caries patients. | 10.1159/000488213 | 13 (2.60) | 25 | 15 |
Mohammed et al., 2017 [47] | A literature review that shows the use of salivary biomarkers to diagnostic a lot of oral diseases including dental caries. | 10.5005/jp-journals-10037-1093 | 0 (0.00) | 2 | * |
Jurczak et al., 2017 [48] | Assessed the antioxidant barrier in the saliva of children with caries and how it affects the colonization of cariogenic bacteria. | 10.1080/13510002.2017.1301625 | 12 (2.00) | 23 | 12 |
da Silva et al., 2016 [19] | Evaluated oxidative stress levels and enzymatic and non-enzymatic antioxidant systems in the saliva of children with severe early childhood caries. | 10.1016/j.archoralbio.2016.06.003 | 18 (2.57) | 38 | 19 |
Tóthová et al., 2015 [18] | A literature review that sought to evaluate the salivary markers of oxidative stress in oral diseases, among them dental caries. | 10.3389/fcimb.2015.00073 | 104 (13.00) | 195 | 105 |
Subramaniam et al., 2014 [49] | Sought to assess total antioxidant capacity, nitric oxide, and sialic acid levels in the saliva of cerebral palsied toddlers. | 10.17796/jcpd.38.3.tv26g158q7343287 | 12 (1.33) | 30 | 14 |
Krawczyk et al., 2014 [50] | Examined the total antioxidant status in stimulated and unstimulated saliva in usually healthy non-smokers aged 15 to 17 in relation to the frequency of active carious lesions. | 10.5604/12321966.1120605 | 5 (0.56) | 17 | 6 |
Hegde et al., 2014 [51] | Evaluated superoxide dismutase activity, copper and zinc levels in the saliva of subjects with and without caries. | 10.1159/000355580 | 18 (2.00) | 43 | 22 |
Mahjoub et al., 2014 [52] | Compared the levels of total antioxidant capacity in the total unstimulated saliva of children with severe early childhood caries and caries-free children. | 10.1159/000355581 | 21 (2.33) | 45 | 21 |
Ahmadi-Motamayel et al., 2013 [53] | Evaluated the relationship between total antioxidant capacity of saliva and dental caries. | 10.4317/medoral.18762 | 37 (3.70) | 93 | 45 |
Han et al., 2013 [54] | Examine the relationship between salivary glutathione and tooth caries and cariogenic microorganisms. | 10.1016/j.archoralbio.2012.09.021 | 4 (0.40) | 10 | 5 |
Celecová et al., 2013 [55] | Verified if salivary markers of oxidative stress are related to age and oral health in non-smoking adults, observing the relationship with diseases such as dental caries. | 10.1111/jop.12008 | 27 (2.70) | 44 | 30 |
Tóthová et al., 2013 [56] | Analyzed salivary markers of oxidative stress in relation to periodontal and dental status in children. | 10.1155/2013/591765 | 35 (3.50) | 78 | 38 |
Krawczyk et al., 2012 [22] | Seed if there was a link between total antioxidant status of unstimulated whole saliva, patients’ ages, oral hygiene level, and dental caries. | 10.2478/v10039-012-0015-9 | 8 (0.73) | 15 | 8 |
Kumar et al., 2011 [57] | Estimated the total antioxidant capacity in the unstimulated saliva of healthy children with and without severe early childhood caries and to correlate the individual total antioxidant capacity level with ceo-d score and age. | 10.1111/j.1365-263X.2011.01154.x | 28 (2.33) | 75 | 30 |
Hegde et al., 2011 [58] | Evaluated the oral hygiene status, salivary characteristics, and dental caries experience in children with acute lymphoblastic leukemia. | 10.17796/jcpd.35.3.u5kx28q33m760834 | 28 (2.33) | 75 | 35 |
Preethi et al., 2010 [59] | Evaluated the relationship between saliva physicochemical properties such as flow rate, pH, buffer capacity, calcium, total protein, and total antioxidant capacity in children with and without caries. | 10.1007/s12291-010-0062-6 | 12 (0.92) | 57 | 17 |
Hegde et al., 2009 [60] | Evaluated the total antioxidant capacity of saliva and its relationship with early childhood caries and rampant caries. | 10.17796/jcpd.33.3.c730518021m56077 | 34 (2.43) | 83 | 38 |
Ozturk et al., 2008 [61] | Evaluated the association between oral and dental health in young adults and salivary glutathione, lipid peroxidation and sialic acid levels and carbonic anhydrase activity. | 10.1590/S0100-879X2008005000048 | 25 (1.67) | 58 | 33 |
Uberos et al., 2008 [62] | Evaluated the relationship between total antioxidant capacity of saliva and the presence of dental caries in deciduous and permanent teeth, in a group of children from the Sahara. | 10.1038/sj.bdj.2008.520 | 16 (1.07) | 57 | 24 |
Hegde et al., 2008 [63] | Determined the levels of nitric oxide in the saliva of children with rampant caries and early childhood caries. | 10.17796/jcpd.32.4.4010kl5262687528 | 14 (0.93) | 36 | 16 |
Tulunoglui et al., 2006 [64] | Evaluated the relationship between saliva physicochemical properties such as flow rate, buffer capacity, pH, calcium level, total protein, total antioxidant status and dental caries, age, and sex. | 10.1111/j.1365-263X.2006.00733.x | 72 (4.24) | 202 | 92 |
Bayindir YZ et al., 2005 [28] | Determined the correlation of the antibacterial substance nitric oxide with dental caries. | 10.1159/000083158 | 31 (1.72) | 66 | 34 |
Characteristic | Number of Papers | Number of Citations |
---|---|---|
Publication period | ||
2005–2010 | 7 | 204 |
2011–2016 | 13 | 345 |
2017–2022 | 23 | 95 |
Characteristic | Number of Papers | Number of Citations |
---|---|---|
Study design | ||
Cross-sectional | 19 | 352 |
Case–control | 14 | 152 |
Literature review | 4 | 117 |
Systematic review | 4 | 4 |
Experimental in vivo | 1 | 18 |
Longitudinal study | 1 | 1 |
Authors/Year | Saliva Collection | Stages of Caries Disease | Age (Years) | Caries Criterion | Salivary Oxidative Biochemistry (Assessment Method) | ||
---|---|---|---|---|---|---|---|
Antioxidants | Pro-Oxidants | Biomarker of Oxidative Damage | |||||
Aliakbarpour et al., 2021 [31] | Unstimulated whole saliva | Severe early childhood caries | 3–5 | DMFS | - | - | LPO (TBARS) |
Salman et al., 2021 [32] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 3–18 | Caries Index | TAC (not informed) | - | LPO (TBARS), AOPP |
Wagle et al., 2021 [33] | Stimulated whole saliva | - | 30.81 ± 4.32 | Not informed | TAC (ABTS) | NO | LPO (TBARS) |
Amrollahi et al., 2021 [34] | Unstimulated whole saliva | Early childhood caries | 4–6 | DMFT | - | - | LPO (MDA) |
Karthika et al., 2021 [35] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 6–12 | DMFT | Vitamin E, GPx | - | - |
Ravikumar et al., 2021 [37] | Unstimulated whole saliva | Severe early childhood caries | 3–6 | DMFS | - | - | LPO (TBARS) |
Vahabzadeh et al., 2020 [38] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 7–12 | DMFT | SOD, CAT, GPx activity | - | - |
Shaki et al., 2020 [40] | Unstimulated whole saliva | five decayed tooth surfaces requiring restoration | 3–5 | DMFT | TAC (FRAP) | NO | - |
Malta et al., 2021 [41] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 2–20 | DMFT | GSH, Vitamin C | Levels of reactive species | LPO (TBARS) |
Araujo et al., 2020 [17] | Unstimulated whole saliva | Severe early childhood caries | 1–3 | ICCMS™ index | SOD, UA, TAC (FRAP) | - | LPO (TBARS) |
Aksit-Bicak et al., 2019 [42] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 6–16 | DMFT | - | NO | - |
Syed et al., 2019 [43] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 6–12 | DMFT | Vitamin A, Vitamin C, Vitamin E | - | - |
Alanazi et al., 2018 [45] | Unstimulated whole saliva | Severe early childhood caries | 5.13 ± 0.79 | Not informed | TAC (ORAC) | - | - |
Pyati et al., 2018 [1] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 6–12 | DMFS | TAC (Capacity to inhibit lipid peroxidation) | - | LPO (TBARS) |
Ahmadi-Motamayel et al., 2018 [7] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 15–19 | DMFT | TAC (FRAP) | - | LPO (TBARS) |
Jurczak et al., 2017 [48] | Unstimulated whole saliva | Early childhood caries | 2–5 | ICDAS | GSH, GSSG, GSH/GSSG, TAC (FRAP) | - | - |
da Silva et al., 2016 [19] | Unstimulated whole saliva | Severe early childhood caries | 0–3 | DMFS | SOD, UA, TAC (FRAP) | - | LPO (TBARS) |
Subramaniam et al., 2014 [49] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 7–12 | DMFT | TAC (Reduction of phosphomolybdenum) | NO | - |
Krawczyk et al., 2014 [50] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 15–17 | DMFT | TAC (ABTS) | - | - |
Hegde et al., 2014 [51] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 25–50 | DMFT | SOD, copper, and zinc levels | - | - |
Mahjoub et al., 2014 [52] | Unstimulated whole saliva | Severe early childhood caries | 3–5 | DMFS | TAC (FRAP) | - | - |
Ahmadi-Motamayel et al., 2013 [53] | Unstimulated whole saliva | At least five decayed tooth surfaces | 15–17 | DMFT | TAC (ABTS) | - | - |
Han et al., 2013 [54] | Stimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 6–14 | DMFT | GSH, GSSG | - | - |
Celecová et al., 2013 [55] | Unstimulated whole saliva | Lesion affecting the dentin | 19–83 | Modified oral index | TAC (FRAP) | - | LPO (TBARS), AOPP, AGE |
Tóthová et al., 2013 [56] | Unstimulated whole saliva | Lesion affecting the dentin | 4–18 | Modified oral index | TAC (FRAP) | - | LPO (TBARS) AOPP, AGE |
Krawczyk et al., 2012 [22] | Not informed | Not informed | 16–23 | DMFT and DMFS | TAC (ABTS) | - | - |
Kumar et al., 2011 [57] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 3–5 | DMFT | TAC (ABTS) | - | - |
Hegde et al., 2011 [58] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 4–10 | DMFT | TAC (Reduction of phosphomolybdenum) | - | - |
Preethi et al., 2010 [59] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 7–14 | DMFS | TAC (Capacity to inhibit lipid peroxidation) | - | - |
Hegde et al., 2009 [60] | Unstimulated whole saliva | Early Childhood Caries, and Rampant Caries | 6–12 | WHO Oral Assessment Form. | TAC (Capacity to inhibit lipid peroxidation) | - | - |
Ozturk et al., 2008 [61] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 19–25 | DMFT | GSH | - | LPO (TBARS) |
Uberos et al., 2008 [62] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 4–14 | DMFT | TAC (inhibition of crocin bleaching) | - | - |
Hegde et al., 2008 [63] | Unstimulated whole saliva | Early childhood caries | 6–12 | DMFT | - | NO | - |
Tulunoglui et al., 2006 [64] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 7–15 | DMFS | TAC (ABTS) | - | - |
Bayindir et al., 2005 [28] | Unstimulated whole saliva | At least five decayed tooth surfaces requiring restoration | 18–25 | DMFT | - | NO | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sousa Né, Y.G.; Lima, W.F.; Mendes, P.F.S.; Baia-da-Silva, D.C.; Bittencourt, L.O.; Nascimento, P.C.; de Souza-Rodrigues, R.D.; Paranhos, L.R.; Martins-Júnior, P.A.; Lima, R.R. Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape. Antioxidants 2023, 12, 330. https://doi.org/10.3390/antiox12020330
de Sousa Né YG, Lima WF, Mendes PFS, Baia-da-Silva DC, Bittencourt LO, Nascimento PC, de Souza-Rodrigues RD, Paranhos LR, Martins-Júnior PA, Lima RR. Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape. Antioxidants. 2023; 12(2):330. https://doi.org/10.3390/antiox12020330
Chicago/Turabian Stylede Sousa Né, Yago Gecy, Weslley Ferreira Lima, Paulo Fernando Santos Mendes, Daiane Claydes Baia-da-Silva, Leonardo Oliveira Bittencourt, Priscila Cunha Nascimento, Renata Duarte de Souza-Rodrigues, Luiz Renato Paranhos, Paulo Antônio Martins-Júnior, and Rafael Rodrigues Lima. 2023. "Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape" Antioxidants 12, no. 2: 330. https://doi.org/10.3390/antiox12020330
APA Stylede Sousa Né, Y. G., Lima, W. F., Mendes, P. F. S., Baia-da-Silva, D. C., Bittencourt, L. O., Nascimento, P. C., de Souza-Rodrigues, R. D., Paranhos, L. R., Martins-Júnior, P. A., & Lima, R. R. (2023). Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape. Antioxidants, 12(2), 330. https://doi.org/10.3390/antiox12020330