The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Human Cell Lines
2.2. Diatoxanthin Cytotoxicity Assay
2.3. Morphogenesis on Matrigel
2.4. RNA Extraction and Gene Expression Analysis
2.5. Protein Expression Analysis
2.6. Antibody Array
2.7. Target Fishing and Docking Analysis
3. Results
3.1. Dt as an Oxidative Stress-Related Cell Death Inducer in Prostate Carcinoma PC3 and DU145 Cells
3.2. Dt Modulation of Lymphangiogenic-Mediators Release
3.3. Dt Inhibition of Vascular Mimicry and Capillary-like Morphogenesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACSL4 | acyl-coA synthetase long chain family member 4 |
ACTB | actin-β |
Akt | AKT serine/threonine kinases |
ANG | angiogenin |
ANGPT-1 | angiopoietin 1 |
ANGPT-2 | angiopoietin 2 |
ATOX1 | antioxidant 1 copper chaperone |
B2M | β-2-microglobulin |
BSA | bovine serum albumin |
CD2 | CD2 molecule |
CD3E | CD3 epsilon subunit of T-cell receptor complex |
CD86 | CD86 molecule |
CD163 | CD163 molecule |
DAMPs | damage-associated molecular patterns |
DC | dendritic cell(s) |
DHCR24 | 24-dehydrocholesterol reductase |
Dt | diatoxanthin |
DU145 | human prostate carcinoma cell line |
ERK1/2 | extracellular signal-regulated kinase 1/2 |
FBS | fetal bovine serum |
FCGR1A | Fc gamma receptor 1a |
FTH1 | ferritin heavy chain 1 |
GAPDH | glyceraldehyde-3-Phosphate Dehydrogenase |
GPX1 | glutathione peroxidase 1 |
GPX4 | glutathione peroxidase 4 |
GSH | glutathione |
GSTP1 | glutathione S-transferase Pi 1 |
GSS | glutathione synthetase |
GSTs | glutathione S-transferases |
GSTZ1 | glutathione S-transferase Zeta 1 |
HIF1α | hypoxia inducible factor 1 subunit α |
HLA-DPB1 | major histocompatibility complex, class II, DP β 1 |
HLA-DRA | major histocompatibility complex, class II, DR α |
HLA-DPA1 | major histocompatibility complex, class II, DP α 1 |
HPRT1 | hypoxanthin phosphoribosyl transferase 1 |
HUVEC | human umbilical vein endothelial cells |
I309 (CCL1) | C-C motif chemokine ligand 1 |
ICD | immunogenic cell death |
IFN-γ (IFNG) | interferon gamma |
IL1α | interleukin 1-α |
IL1β | interleukin 1-β |
IL6 | interleukin 6 |
IL8 | interleukin 8 |
IL10 | interleukin 10 |
ITGAX | integrin subunit α-X |
KDR | kinase insert domain receptor |
MCP3 (CCL7) | C-C motif chemokine ligand 7 |
MCP4 (CCL13) | C-C motif chemokine ligand 13 |
MIP-1-α (CCL3) | C-C motif chemokine ligand 3 |
MIP-1-β (CCL4) | C-C motif chemokine ligand 4 |
MIP-1-δ (CCL15) | C-C motif chemokine ligand 15 |
MMP-1 | matrix metallopeptidase 1 |
MMP-9 | matrix metallopeptidase 9 |
MPO | myeloperoxidase |
MS4A4A | membrane spanning 4-domains A4A |
MT3 | metallothionein 3 |
MTOR | mechanistic target of rapamycin kinase |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
PC3 | human prostate adenocarcinoma cell line |
PECAM-1 | platelet and endothelial cell adhesion molecule 1 |
PI3K | phosphoinositide 3-kinases |
PNT2 | human normal prostate epithelium cell line |
PRDXs | peroxiredoxins |
PUFAs | polyunsaturated fatty acids |
RAG2 | recombination activating 2 |
RCD | regulated cell death |
RMSD | root-mean-square deviation of atomic positions |
ROS | reactive oxygen species |
RPLP0 | ribosomal protein large P0 |
SIRT2 | sirtuin 2 |
SLC3A2 | solute carrier family 3 member 2 |
SLC7A11 | solute carrier family 7 member 11 |
SLC9A1 | solute carrier family 9 member A1 |
SLC25A12 | solute carrier family 25 member 12 |
SODs | superoxide dismutases |
SQSTM1 | sequestosome 1 |
SRXN1 | sulfiredoxin 1 |
SV40 | Simian virus 40 |
TH1 | human T helper 1 lymphocytes |
TIM3 (HAVCR2) | hepatitis A virus cellular receptor 2 |
TIMP2 | TIMP metallopeptidase inhibitor 2 |
TLR4 | toll like receptor 4 |
TNF-α | tumor necrosis factor α |
TNFR1 | TNF receptor superfamily member 1A |
TP53 | tumor protein 53 |
VEGFA | vascular endothelial growth factor A |
VEGFC | vascular endothelial growth factor C |
VEGFD | vascular endothelial growth factor D |
VEGFR2 | vascular endothelial growth factor receptor 2 |
VEGFR3 | vascular endothelial growth factor receptor 3 |
VSIG4 | V-set and immunoglobulin domain containing 4 |
µPAR | plasminogen activator, urokinase receptor |
References
- Leslie, S.W.; Soon-Sutton, T.L.; Sajjad, H.; Anu, R.I.; Siref, L.E. Prostate Cancer; StatPearls: Treasure Island, FL, USA, 2022; PMID: 29261872. [Google Scholar] [PubMed]
- Golubnitschaja, O.; Kubatka, P.; Mazurakova, A.; Samec, M.; Alajati, A.; Giordano, F.A.; Costigliola, V.; Ellinger, J.; Ritter, M. Systemic Effects Reflected in Specific Biomarker Patterns Are Instrumental for the Paradigm Change in Prostate Cancer Management: A Strategic Paper. Cancers 2022, 14, 675. [Google Scholar] [CrossRef]
- George, B.P.; Chandran, R.; Abrahamse, H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, Y.; Jiang, K. The role of ferroptosis in prostate cancer: A novel therapeutic strategy. Prostate Cancer Prostatic Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Basuli, D.; Tesfay, L.; Deng, Z.; Paul, B.; Yamamoto, Y.; Ning, G.; Xian, W.; McKeon, F.; Lynch, M.; Crum, C.P.; et al. Iron addiction: A novel therapeutic target in ovarian cancer. Oncogene 2017, 36, 4089–4099. [Google Scholar] [CrossRef]
- Cao, J.Y.; Dixon, S.J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 2016, 73, 2195–2209. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, Z.; Yang, Y.; Gu, C. Iron metabolism and its contribution to cancer (Review). Int. J. Oncol. 2019, 54, 1143–1154. [Google Scholar] [CrossRef]
- Müller, T.; Dewitz, C.; Schmitz, J.; Schröder, A.S.; Bräsen, J.H.; Stockwell, B.R.; Murphy, J.; Kunzendorf, U.; Krautwald, S. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell. Mol. Life Sci. 2017, 74, 3631–3645. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Kimb, K.J.; Gaschlerc, M.M.; Pateld, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 2016, 113, E4966–E4975. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, X.; Xie, F.; Zhang, L.; Yan, H.; Huang, J.; Zhang, C.; Zhou, F.; Chen, J.; Zhang, L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 2022, 42, 88–116. [Google Scholar]
- Saeed, A.F.; Su, J.; Ouyang, S. Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed. Pharmacother. 2021, 134, 111091. [Google Scholar] [CrossRef]
- Fabris, M.; Abbriano, R.; Pernice, M.; Sutherland, D.L.; Commault, A.S.; Hall, C.C.; Labeeuw, L.; McCauley, J.I.; Kuzhiumparambil, U.; Ray, P.; et al. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Front. Plant Sci. 2020, 11, 279. [Google Scholar] [CrossRef]
- Sansone, C.; Nuzzo, G.; Galasso, C.; Casotti, R.; Fontana, A.; Romano, G.; Ianora, A. The Marine Dinoflagellate Alexandrium andersoni Induces Cell Death in Lung and Colorectal Tumor Cell Lines. Mar. Biotechnol. 2018, 20, 343–352. [Google Scholar] [CrossRef]
- Sansone, C.; Brunet, C.; Noonan, D.M.; Albini, A. Marine Algal Antioxidants as Potential Vectors for Controlling Viral Diseases. Antioxidants 2020, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Bruno, A.; Piscitelli, C.; Baci, D.; Fontana, A.; Brunet, C.; Noonan, D.; Albini, A. Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy. Cells 2021, 10, 231. [Google Scholar] [CrossRef]
- Sansone, C.; Brunet, C. Promises and Challenges of Microalgal Antioxidant Production. Antioxidants 2019, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.; Kapoore, R.V.; Vaidyanathan, S. Phaeodactylum tricornutum: A Diatom Cell Factory. Trends Biotechnol. 2020, 38, 606–622. [Google Scholar] [CrossRef]
- Orefice, I.; Chandrasekaran, R.; Smerilli, A.; Corato, F.; Caruso, T.; Casillo, A.; Corsaro, M.M.; Piaz, F.D.; Ruban, A.V.; Brunet, C. Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res. 2016, 17, 1–13. [Google Scholar] [CrossRef]
- Brunet, C.; Casotti, R.; Aronne, B.; Vantrepotte, V. Measured photophysiological parameters used as tools to estimate vertical water movements in the coastal Mediterranean. J. Plankton Res. 2003, 25, 1413–1425. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Halsey, K.H.; Boss, E.; Karp-Boss, L.; Milligan, A.J.; Peers, G. Thoughts on the evolution and ecological niche of diatoms. Ecol. Monogr. 2021, 91, e01457. [Google Scholar] [CrossRef]
- Serôdio, J.; Lavaud, J. Diatoms and Their Ecological Importance. In Life Below Water Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–9. [Google Scholar]
- Smerilli, A.; Orefice, I.; Corato, F.; Ruban, A.; Brunet, C. Photoprotective and antioxidant responses to light spectrum and intensity variations on a coastal diatom. Environ. Microbiol. 2017, 19, 611–627. [Google Scholar] [CrossRef]
- Smerilli, A.; Balzano, S.; Maselli, M.; Blasio, M.; Orefice, I.; Galasso, C.; Sansone, C.; Brunet, C. Antioxidant and photoprotection networking in the coastal diatom Skeletonema marinoi. Antioxidants 2019, 8, 154. [Google Scholar] [CrossRef]
- Beer, A.; Juhas, M.; Büchel, C. Influence of Different Light Intensities and Different Iron Nutrition on The Photosynthetic Apparatus In The Diatom Cyclotella meneghiniana (Bacillariophyceae). J. Phycol. 2011, 47, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Bowler, C.; Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 2021, 72, 2165–2180. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Sansone, C.; Smerilli, A.; Festa, M.; Noonan, D.; Albini, A.; Brunet, C. MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Mar. Drugs 2021, 19, 354. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Pistelli, L.; Del Mondo, A.; Calabrone, L.; Fontana, A.; Noonan, D.M.; Albini, A.; Brunet, C. The microalgal diatoxanthin inflects the cytokine storm in Sars-Cov2 stimulated ACE2 overexpressing lung cells. Antioxidants 2022, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.-F.; Jiang, W.; Ye, Y.-N.; Wu, F.-X.; Zhu, X.-L.; Guo, F.-B.; Yang, G.-F. ACFIS: A web server for fragment-based drug discovery. Nucleic Acids Res. 2016, 44, W550–W556. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Iida, Y.; Okamoto-Κatsuyama, M.; Maruoka, S.; Mizumura, K.; Shimizu, T.; Shikano, S.; Hikichi, M.; Takahashi, M.; Tsuya, K.; Okamoto, S.; et al. Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol. Lett. 2021, 21, 71. [Google Scholar] [CrossRef]
- Kis, E.A.; Saharinen, P. Anti-angiogenic Targets: Angiopoietin and Angiopoietin Receptors. In Tumor Angiogenesis; Marmé, D., Ed.; Springer: Cham, Switzerland, 2019; pp. 227–250. [Google Scholar]
- Zhou, J.; Wang, G.; Chen, Y.; Wang, H.; Hua, Y.; Cai, Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J. Cell. Mol. Med. 2019, 23, 4854–4865. [Google Scholar] [CrossRef]
- Bishop, E.T.; Bell, G.T.; Bloor, S.; Broom, I.; Hendry, N.F.; Wheatley, D.N. An in vitro model of angiogenesis: Basic features. Angiogenesis 1999, 3, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Huang, Z.; Huang, Y.; Chen, Y.; Huang, M.; Liu, H.; Ye, Q.A.; Zhao, J.; Jia, B. Ferroptosis: The Silver Lining of Cancer Therapy. Front. Cell Dev. Biol. 2021, 9, 765859. [Google Scholar] [CrossRef]
- Lima, A.R.; Araújo, A.M.; Pinto, J.; Jerónimo, C.; Henrique, R.; De Bastos, M.L.; Carvalho, M.; De Pinho, P.G. Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Sci. Rep. 2018, 8, 5539. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Y.; Zhang, R.; Wang, F.; Wang, T.; Jiao, Y. The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. OncoTargets Ther. 2020, 13, 5429–5441. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell. 2020, 38, 167–197. [Google Scholar]
- Shi, H.; Almutairi, M.; Moskovitz, J.; Xu, Y.G. Recent Advances in Iron Homeostasis and Regulation- a Focus on Epigenetic Regulation and Stroke. Free Radic. Res. 2021, 55, 375–383. [Google Scholar] [CrossRef]
- Sato, H.; Tamba, M.; Ishii, T.; Bannai, S. Cloning and Expression of a Plasma Membrane Cystine/Glutamate Exchange Transporter Composed of Two Distinct Proteins. J. Biol. Chem. 1999, 274, 11455–11458. [Google Scholar] [CrossRef]
- Vela, D. Iron Metabolism in Prostate Cancer; From Basic Science to New Therapeutic Strategies. Front. Oncol. 2018, 8, 547. [Google Scholar] [CrossRef]
- Wu, X.; Deng, F.; Li, Y.; Daniels, G.; Du, X.; Ren, Q.; Wang, J.; Wang, L.H.; Yang, Y.; Zhang, V.; et al. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget 2015, 6, 44849–44863. [Google Scholar] [CrossRef]
- Yuan, Z.-H.; Tong, L.; Hao, W.; Xue, L.-X.; Wang, J.-J. Fatty Acids Metabolism: The Bridge Between Ferroptosis and Ionizing Radiation. Front. Cell Dev. Biol. 2021, 9, 675617. [Google Scholar] [CrossRef]
- Zhang, X.; Song, T.; Zhao, M.; Tao, X.; Zhang, B.; Sun, C.; Wang, P.; Wang, K.; Zhao, L. Sirtuin 2 Alleviates Chronic Neuropathic Pain by Suppressing Ferroptosis in Rats. Front. Pharmacol. 2022, 13, 827016. [Google Scholar] [CrossRef]
- Lei, P.; Bai, T.; Sun, Y. Mechanisms of Ferroptosis and Relations with Regulated Cell Death: A Review. Front. Physiol. 2019, 10, 139. [Google Scholar] [CrossRef]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021, 12, 599–620. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, A.; Detmar, M. Lymphangiogenesis and cancer. Genes Cancer 2011, 2, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, F.; Wei, F.; Ren, X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget 2017, 8, 66656–66667. [Google Scholar] [CrossRef]
- Xu, J.L.; Guo, Y. FCGR1A Serves as a Novel Biomarker and Correlates with Immune Infiltration in Four Cancer Types. Front. Mol. Biosci. 2020, 3, 581615. [Google Scholar] [CrossRef] [PubMed]
- Siveen, K.S.; Prabhu, K.; Krishnankutty, R.; Kuttikrishnan, S.; Tsakou, M.; Alali, F.; Dermime, S.; Mohammad, R.M.; Uddin, S. Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Curr. Vasc. Pharmacol. 2017, 15, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; You, L.; Sun, M.; Qu, C.; Dong, X.; Yin, X.; Ni, J. Inhibitory effects of Paris saponin I, II, and on HUVEC cells through regulation of VEGFR2, PI3K/AKT/mTOR, Src/eNOS, PLCgamma/ERK/MERK, and JAK2-STAT3 pathways. Biomed. Pharmacother. 2020, 131, 110750. [Google Scholar] [CrossRef] [PubMed]
- Cordani, M.; Resines-Urien, E.; Gamonal, A.; Milán-Rois, P.; Salmon, L.; Bousseksou, A.; Costa, J.; Somoza, Á. Water Soluble Iron-Based Coordination Trimers as Synergistic Adjuvants for Pancreatic Cancer. Antioxidants 2021, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Del Mondo, A.; Smerilli, A.; Sané, E.; Sansone, C.; Brunet, C. Challenging microalgal vitamins for human health. Microb. Cell. Fact. 2020, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Manfellotto, F.; Stella, G.R.; Falciatore, A.; Brunet, C.; Ferrante, M.I. Engineering the unicellular alga Phaeodactylum tricornutum for enhancing carotenoid production. Antioxidants 2020, 9, 757. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansone, C.; Pistelli, L.; Calabrone, L.; Del Mondo, A.; Fontana, A.; Festa, M.; Noonan, D.M.; Albini, A.; Brunet, C. The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells. Antioxidants 2023, 12, 359. https://doi.org/10.3390/antiox12020359
Sansone C, Pistelli L, Calabrone L, Del Mondo A, Fontana A, Festa M, Noonan DM, Albini A, Brunet C. The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells. Antioxidants. 2023; 12(2):359. https://doi.org/10.3390/antiox12020359
Chicago/Turabian StyleSansone, Clementina, Luigi Pistelli, Luana Calabrone, Angelo Del Mondo, Angelo Fontana, Marco Festa, Douglas M. Noonan, Adriana Albini, and Christophe Brunet. 2023. "The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells" Antioxidants 12, no. 2: 359. https://doi.org/10.3390/antiox12020359
APA StyleSansone, C., Pistelli, L., Calabrone, L., Del Mondo, A., Fontana, A., Festa, M., Noonan, D. M., Albini, A., & Brunet, C. (2023). The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells. Antioxidants, 12(2), 359. https://doi.org/10.3390/antiox12020359