Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Diets
2.2. Test Ingredients
2.3. Sampling and Analyses
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tufarelli, V.; Passantino, L.; Zupa, R.; Crupi, P.; Laudadio, V. Suitability of dried olive pulp in slow-growing broilers: Performance, meat quality, oxidation products, and intestinal mucosa features. Poult. Sci. 2022, 101, 102230. [Google Scholar] [CrossRef] [PubMed]
- Grigore, D.-M.; Mironeasa, S.; Ciurescu, G.; Ungureanu-Iuga, M.; Batariuc, A.; Babeanu, N.E.E. Carcass Yield and Meat Quality of Broiler Chicks Supplemented with Yeasts Bioproducts. Appl. Sci. 2023, 13, 1607. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; De Marzo, D.; Dimuccio, M.M.; Bozzo, G.; Tufarelli, V.; Losacco, C.; Ragni, M. Aloe vera: A Sustainable Green Alternative to Exclude Antibiotics in Modern Poultry Production. Antibiotics 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Suitability of Amaranthus species for alleviating human dietary deficiencies. South Afr. J. Bot. 2018, 115, 65–73. [Google Scholar] [CrossRef]
- Dizyee, K.; Baker, D.; Herrero, M.; Burrow, H.; McMillan, L.; Sila, D.N.; Rich, K.; Csiro, S.L. The promotion of amaranth value chains for livelihood enhancement in East Africa: A systems modelling approach. Afr. J. Agric. Resour. Econ. 2020, 15, 81–94. [Google Scholar] [CrossRef]
- World Health Organization. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition, Box 14: Enhancing the Contribution of Neglected and Underutilized Species (NUS) to Food Security and Income; FAO: Rome, Italy, 2018; p. 99. [Google Scholar]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [CrossRef]
- Janmohammadi, H.; Hosseintabar-Ghasemabad, B.; Amirdahri, S.; Gorlov, I.F.; Vladimirovna, K.E.; Slozhenkina, M.I.; Bilal, R.M.; Seidavi, A.; Phillips, C.J.C. The Energy Value for Broiler Chickens of Heat-Treated and Untreated Amaranth Grain, with and without Enzyme Addition. Agriculture 2022, 12, 1810. [Google Scholar] [CrossRef]
- Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P. Ccharacterization of amaranth seed oils. J. Food Lipids 2007, 14, 323–334. [Google Scholar] [CrossRef]
- Ghahremaninejad, F.; Hoseini, E. Identification of Medicinal and Aromatic Plants of Iran, Valiollah Mozaffarian; Farhang Moaser Publishers: Tehran, Iran; ISBN 978-600-1050-31-2.
- Mozaffarian, V. Medicinal and Aromatic Plants of Gilan; Farhang Ilia Publishers: Gilan (Rasht), Iran, 2020. [Google Scholar]
- Tang, Y.; Tsao, R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Mol. Nutr. Food Res. 2017, 61, 1600767. [Google Scholar] [CrossRef]
- Coelho, L.M.; Silva, P.M.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 2018, 9, 5499–5512. [Google Scholar] [CrossRef]
- Singh, N.; Singh, P.; Shevkani, K.; Virdi, A.S. Amaranth: Potential source for flour enrichment. In Flour and Breads and Their Fortification in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2019; pp. 123–135. [Google Scholar]
- Cai, Y.; Corke, H.; Wu, H. Amaranth. In Encyclopedia of Grain Science; Wrigley, C.W., Corke, H., Walker, C.E., Eds.; Elsevier; Academic Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Corke, H.; Cai, Y.Z.; Wu, H.X. Amaranth: Overview. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 287–296. [Google Scholar]
- Alegbejo, J.O. Nutritional Value and Utilization of Amaranthus (Amaranthus spp.)–A Review. Bayero J. Pure Appl. Sci. 2014, 6, 136–143. [Google Scholar] [CrossRef]
- Kurek, M.A.; Karp, S.; Wyrwisz, J.; Niu, Y. Physicochemical properties of dietary fibres extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocoll. 2018, 85, 321–330. [Google Scholar] [CrossRef]
- Peiretti, P.G. Amaranth in animal nutrition: A review. Livest. Res. Rural Dev. 2018, 30, 88. [Google Scholar]
- Ravindran, V.; Hood, R.L.; Gill, R.J.; Kneale, C.R.; Bryden, W.L. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed Sci. Technol. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Jacob, J.P.; Noll, S.L.; Brannon, J.A. Comparison of Metabolic Energy Content of Organic Cereal Grains for Chickens and Turkeys. J. Appl. Poult. Res. 2008, 17, 540–544. [Google Scholar] [CrossRef]
- Jakubowska, M.; Gardzielewska, J.; Tarasewicz, Z.; Szczerbinska, D.; Karamucki, T.; Rybak, K.; Polawska, E.; Garczewska, J. The effect of amaranth seed added to the standard diet upon selected meat quality traits in the quail. Anim. Sci. Rep. 2013, 31, 355–362. [Google Scholar]
- Popiela, E.; Króliczewska, B.; Zawadzki, W.; Opaliński, S.; Skiba, T. Effect of extruded amaranth grains on performance, egg traits, fatty acids composition, and selected blood characteristics of laying hens. Livest. Sci. 2013, 155, 308–315. [Google Scholar] [CrossRef]
- Szczerbinska, D.; Pyka, B.; Szabelska, E.; Ligocki, M.; Majewska DRomaniszyn, K.; Sulik, M. The effect of diet with amaranth (Amaranthus cruentus) seeds on Japanese quail (Coturnix coturnix japonica) performance, somatic development, hatching results and selected blood biochemical parameters. Vet. Med. Zootech. 2015, 70, 67–72. [Google Scholar]
- Peiretti, P.G.; Meineri, G.; Gai, F.; Longato, E.; Amarowicz, R. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Nat. Prod. Res. 2017, 31, 2178–2182. [Google Scholar] [CrossRef]
- Rodríguez-Ríos, H.; Campos-Parra, J.; Astudillo-Neira, R.; Grande-Cano, J.; Carrillo-Domínguez, S.; Pérez Gil-Romo, F. Amaranthus cruentus L. as a food alternative in laying hens to reduce cholesterol in eggsamaranthus cruentus L. como alternativa alimentaria en gallina sponedoras para disminuir el colesterol en huevos. Chil. J. Agric. Anim. Sci. 2020, 36, 78–85. [Google Scholar] [CrossRef]
- Qureshi, A.; Lehmann, J.W.; Peterson, D.M. Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J. Nutr. 1996, 126, 1972–1978. [Google Scholar] [PubMed]
- Mendonça, S.; Saldiva, P.H.; Cruz, R.J.; Arêas, J.A. Amaranth protein presents cholesterol-lowering effect. Food Chem. 2009, 116, 738–742. [Google Scholar] [CrossRef]
- Soares, R.A.M.; Mendonça, S.; De Castro, L.Í.A.; Menezes, A.C.C.C.C.; Arêas, J.A.G. Major Peptides from Amaranth (Amaranthus cruentus) Protein Inhibit HMG-CoA Reductase Activity. Int. J. Mol. Sci. 2015, 16, 4150–4160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Liu, R.; Hernandez, M.; Draves, J.; Marcone, M.F.; Tsao, R. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. J. Agric. Food Chem. 2016, 64, 1103–1110. [Google Scholar] [CrossRef]
- Sánchez-Urdaneta, A.B.; Montero-Quintero, K.C.; González-Redondo, P.; Molina, E.A.; Bracho-Bravo, B.; Moreno-Rojas, R. Hypolipidemic and Hypoglycaemic Effect of Wholemeal Bread with Amaranth (Amaranthus dubius Mart. ex Thell.) on Sprague Dawley Rats. Foods 2020, 9, 707. [Google Scholar] [CrossRef]
- Punita, A.; Chaturvedi, A. Effect of feeding crude red palm oil (Elaeis guineensis) and grain amaranth (Amaranthus paniculatus) to hens on total lipids, cholesterol, PUFA levels and acceptability of eggs. Plant Food Hum. Nutr. 2000, 55, 147–157. [Google Scholar] [CrossRef]
- Reyes, M.F.; Chávez-Servín, J.L.; Gonzalez-Coria, C.; Mercado-Luna, A.; Carbot, K.; Aguilera-Barreyro, A.; Ferriz-Martinez, R.; Serrano-Arellano, J.; Garcia-Gasca, T. Comparative account of phenolics, antioxidant capacity, α-tocopherol and anti-nutritional factors of Amaranth (Amaranthus hypochondriacus) grown in the greenhouse and open field. Int. J. Agric. Biol. 2018, 20, 2428–2436. [Google Scholar]
- Baghban-Kanani, P.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Seidavi, A.; Ayaşan, T.; Laudadio, V.; Tufarelli, V. Effect of different levels of sunflower meal and multi-enzyme complex on performance, biochemical parameters and antioxidant status of laying hens. South Afr. J. Anim. Sci. 2018, 48, 390. [Google Scholar] [CrossRef]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) during Plant Growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Seidavi, A.; Ayaşan, T.; Laudadio, V. Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status. Animals 2021, 11, 335. [Google Scholar] [CrossRef]
- Jabbar, A.; Tahir, M.; Alhidary, I.A.; Abdelrahman, M.A.; Albadani, H.; Khan, R.U.; Selvaggi, M.; Laudadio, V.; Tufarelli, V. Impact of Microbial Protease Enzyme and Dietary Crude Protein Levels on Growth and Nutrients Digestibility in Broilers over 15–28 Days. Animals 2021, 11, 2499. [Google Scholar] [CrossRef] [PubMed]
- Baghban-Kanani, P.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Seidavi, A.; Laudadio, V.; Mazzei, D.; Tufarelli, V. Effect of dietary sesame (Sesame indicum L) seed meal level supplemented with lysine and phytase on performance traits and antioxidant status of late-phase laying hens. Asian Australas. J. Anim. Sci. 2020, 33, 277. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Viktoronova, F.M.; Seidavi, A.; Laudadio, V. Effect of dietary flaxseed meal supplemented with dried tomato and grape pomace on performance traits and antioxidant status of laying hens. Anim. Biotechnol. 2022, 33, 1525–1532. [Google Scholar] [CrossRef]
- Hosseintabar-Ghasemabad, B.; Janmohammadi, H.; Hosseinkhani, A.; Amirdahri, S.; Baghban-Kanani, P.; Gorlov, I.F.; Slozhenkina, M.I.; Mosolov, A.A.; Ramirez, L.S.; Seidavi, A. Effects of Using Processed Amaranth Grain with and without Enzyme on Performance, Egg Quality, Antioxidant Status and Lipid Profile of Blood and Yolk Cholesterol in Laying Hens. Animals 2022, 12, 3123. [Google Scholar] [CrossRef]
- Hosseintabar-Ghasemabad, B.; Janmohammadi, H.; Hosseinkhani, A.; Alijani, S.; Oliyai, M. Determination of Chemical Composition and Apparent Metabolizable Energy Corrected for Nitrogen (AMEn) Content of Amaranth Grain with and without Enzyme in Adult Leghorn Roosters by Regression Method. Iran J. Appl. Anim. Sci. 2020, 10, 705–716. [Google Scholar]
- Takatsuto, S.; Abe, H. Sterol Composition of the Strobilus of Equisetum arvense L. Biosci. Biotechnol. Biochem. 1992, 56, 834–835. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Park, S.-K.; Cho, Y.-C.; Lee, Y.-S. Evaluation of phytonutrients in Adlay (Coix lacrymajobi L.) seeds. Afr. J. Biotechnol. 2012, 11, 1872–1878. [Google Scholar]
- Baghban-Kanani, P.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Seidavi, A.; Ragni, M.; Laudadio, V.; Tufarelli, V. Effects of Using Artemisia annua Leaves, Probiotic Blend, and Organic Acids on Performance, Egg Quality, Blood Biochemistry, and Antioxidant Status of Laying Hens. J. Poult. Sci. 2019, 56, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Deeg, R.; Ziegenhorn, J. Kinetic enzymic method for automated determination of total cholesterol in serum. Clin. Chem. 1983, 29, 1798–1802. [Google Scholar] [CrossRef]
- Baghban-Kanani, P.; Janmohammadi, H.; Ostadrahimi, A. Effect of different levels of sunflower meal and niacin on performance, biochemical parameters, antioxidant status, and egg yolk cholesterol of laying hens. Iran J. Appl. Anim. Sci. 2019, 9, 737–746. [Google Scholar]
- Kei, S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta 1978, 90, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Feshanghchi, M.; Baghban-Kanani, P.; Kashefi-Motlagh, B.; Adib, F.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Zangeronimo, M.G.; Swelum, A.A.; et al. Milk Thistle (Silybum marianum), Marine Algae (Spirulina platensis) and Toxin Binder Powders in the Diets of Broiler Chickens Exposed to Aflatoxin-B1: Growth Performance, Humoral Immune Response and Cecal Microbiota. Agriculture 2022, 12, 805. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Zadernowski, R.; Czaplicki, S.; Derewiaka, D.; Wronowska, B. Amaranth Seeds and Products–The Source of Bioactive Compounds. Pol. J. Food Nutr. Sci. 2014, 64, 165–170. [Google Scholar] [CrossRef]
- Iftikhar, M.; Khan, M. Amaranth. In Bioactive Factors and Processing Technology for Cereal Foods; Springer: Berlin/Heidelberg, Germany, 2019; pp. 217–232. [Google Scholar]
- Waisundara, V.Y. Nutritional Value of Amaranth. BoD–Books on Demand: Norderstedt, Germany, 2020. [Google Scholar]
- Tillman, P.; Waldroup, P. Effects of Feeding Extruded Grain Amaranth to Laying Hens. Poult. Sci. 1987, 66, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Tillman, P.; Waldroup, P. Performance and Yields of Broilers Fed Extruded Grain Amaranth and Grown to Market Weight. Poult. Sci. 1988, 67, 743–749. [Google Scholar] [CrossRef]
- Pedersen, B.; Knudsen, K.E.B.; Eggum, B.O. The nutritive value of amaranth grain (Amaranthus caudatus). Plant Foods Hum. Nutr. 1990, 40, 61–71. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Br. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef]
- Kiarie, E.; Romero, L.; Ravindran, V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 2014, 93, 1186–1196. [Google Scholar] [CrossRef]
- Bedford, M.R.; Classen, H.L. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is affected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr. 1992, 122, 560–569. [Google Scholar]
- Crouch, A.N.; Grimes, J.L.; Ferket, P.R.; Thomas, L.N.; Sefton, A.E. Enzyme Supplementation to Enhance Wheat Utilization in Starter Diets for Broilers and Turkeys. J. Appl. Poult. Res. 1997, 6, 147–154. [Google Scholar] [CrossRef]
- Reklewska, B.; Nalecz-Tarwacka, T.; Niemiec, J.; Karaszewska, A. Yolk triacylglycerol composition and egg quality following the diet containing amaranth meal. Anim. Sci. Pap. Rep. 1995, 13, 73–80. [Google Scholar]
- Escudero, N.L.; De Arellano, M.L.; Luco, J.; Giménez, M.S.; Mucciarelli, S.I. Comparison of the Chemical Composition and Nutritional Value of Amaranthus cruentus Flour and Its Protein Concentrate. Plant Foods Hum. Nutr. 2004, 59, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Mine, Y. Egg Bioscience and Biotechnology; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hilou, A.; Nacoulma, O.; Guiguemde, T. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J. Ethnopharmacol. 2006, 103, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sadhana, P.; Begum, M.; Kumar, S.; Lodha, M.; Kapoor, H. Purification, characterization and cloning of antiviral/ribosome inactivating protein from Amaranthus tricolor leaves. Phytochemistry 2006, 67, 1865–1873. [Google Scholar] [CrossRef]
- Lehmann, J.W.; Putnam, D.H.; Qureshi, A.A. Vitamin E isomers in grain amaranths (Amaranthus spp.). Lipids 1994, 29, 177–181. [Google Scholar] [CrossRef]
- Janevski, M.; McGlynn, M.; Lewandowski, P. Squalene supplementation alters genes associated with liver cholesterol metabolism. Asia Pac. J. Clin. Nutr. 2006, 15, S105. [Google Scholar]
- Farvin, K.; Surendrara, A.; Anandan, R. Protective Effect of Squalene on Endogenous Antioxidant Vitamins in Experimentally Induced Myocardial Infarction in Rats. Asian J. Biochem. 2009, 4, 133–139. [Google Scholar] [CrossRef]
- Leukebandara, I.K.; Premaratne, S.; Sivakanesan, R.; Madugith, T.; Wimalasiri, S.; Sivananthawerl, P. Effect of Feeding Amaranth (Amaranthus hypochondriacus) Seeds on Blood Serum Parameters and Body Weights in Lactating Saanen Goats. Int. J. Agric. Sci. 2019, 4, 57–65. [Google Scholar]
- Min, Y.; Liu, F.; Qi, X.; Ji, S.; Ma, S.; Liu, X.; Wang, Z.; Gao, Y. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poult. Sci. 2018, 97, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Schnetzler, K.A.; Breene, W. Food uses and amaranth product research: A comprehensive review. In Amaranth Biology, Chemistry and Technology; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- León-Camacho, M.; González, D.G.; Aparicio, R. A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. Eur. Food Res. Technol. 2001, 213, 349–355. [Google Scholar] [CrossRef]
- Santiago, P.; Tenbergen, K.; Vélez-Jiménez, E.; Cardador-Martínez, M. Functional attributes of amaranth. Austin J. Nutr. Food Sci. 2014, 2, 6. [Google Scholar]
- Foucault, A.-S.; Mathé, V.; Lafont, R.; Even, P.; Dioh, W.; Veillet, S.; Tomé, D.; Huneau, J.-F.; Hermier, D.; Quignard-Boulangé, A. Quinoa Extract Enriched in 20-Hydroxyecdysone Protects Mice From Diet-Induced Obesity and Modulates Adipokines Expression. Obesity 2012, 20, 270–277. [Google Scholar] [CrossRef]
- Króliczewska, B.; Zawadzki, W.; Bartkowiak, A.; Skiba, T. The level of selected blood indicators of laying hens fed with addition of amaranth grain. Electron. J. Pol. Agric. Univ. 2008, 11, 18–22. [Google Scholar]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Longato, E.; Meineri, G.; Peiretti, P.G. The effect of Amaranthus caudatus supplementation to diets containing linseed oil on oxidative status, blood serum metabolites, growth performance and meat quality characteristics in broilers. Anim. Sci. Pap. Rep. 2017, 35, 71–86. [Google Scholar]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Ju, J.; Picinich, S.C.; Yang, Z.; Zhao, Y.; Suh, N.; Kong, A.-N.; Yang, C.S. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis 2010, 31, 533–542. [Google Scholar] [CrossRef]
- Joana Gil-Chávez, G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G. A Technologies for Extraction and Production of Bioactive Compounds to be Used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Tufarelli, V.; Ceci, E.; Laudadio, V. 2-Hydroxy-4-methylselenobutanoic acid as new organic selenium dietary supplement to produce selenium-enriched eggs. Biol. Trace Elem. Res. 2016, 171, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Ragni, M.; Laudadio, V. Feeding Forage in Poultry: A Promising Alternative for the Future of Production Systems. Agriculture 2018, 8, 81. [Google Scholar] [CrossRef] [Green Version]
Treatment | Raw Amaranth Level (RAG, %) | Enzyme (E) | Factorial Method (RAG × E) | Summarized |
---|---|---|---|---|
T1 | 0 | − | 0 × 0 | 0 RAG −E |
T2 | 10 | − | 10 × 0 | 10 RAG −E |
T3 | 20 | − | 20 × 0 | 20 RAG −E |
T4 | 30 | − | 30 × 0 | 30 RAG −E |
T5 | 40 | − | 40 × 0 | 40 RAG −E |
T6 | 0 | + | 0 × 0.025 | 0 RAG +E |
T7 | 10 | + | 10 × 0.025 | 10 RAG +E |
T8 | 20 | + | 20 × 0.025 | 20 RAG +E |
T9 | 30 | + | 30 × 0.025 | 30 RAG +E |
T10 | 40 | + | 40 × 0.025 | 40 RAG +E |
Treatments 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ingredient (%) | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 |
Corn | 61.49 | 54.79 | 48.15 | 41.56 | 32.67 | 61.24 | 54.48 | 47.89 | 41.30 | 32.81 |
Soybean meal | 23.56 | 21.71 | 19.82 | 17.86 | 16.22 | 23.59 | 21.84 | 19.91 | 17.95 | 16.24 |
Raw amaranth grain | 0 | 10.00 | 20.00 | 30.00 | 40.00 | 0 | 10.00 | 20.00 | 30.00 | 40.00 |
Oyster mineral | 9.67 | 9.11 | 8.54 | 7.98 | 8.55 | 9.71 | 9.11 | 8.54 | 7.97 | 8.39 |
Vegetable oil | 2.40 | 1.62 | 0.84 | 0.03 | 0.00 | 2.58 | 1.80 | 1.01 | 0.21 | 0.00 |
Dicalcium phosphate | 1.88 | 1.88 | 1.88 | 1.87 | 1.86 | 1.88 | 1.88 | 1.88 | 1.87 | 1.86 |
Vitamin premix 2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Mineral premix 3 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Salt | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
DL-Methionine | 0.30 | 0.19 | 0.07 | 0.00 | 0.00 | 0.30 | 0.19 | 0.07 | 0.00 | 0.00 |
Natuzyme P50 3 Enzyme | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 |
Calculated nutrient content (%) | ||||||||||
AMEn (kcal/kg) | 2830 | 2830 | 2830 | 2830 | 2830 | 2830 | 2830 | 2830 | 2830 | 2830 |
Crude protein | 15.25 | 15.25 | 15.25 | 15.25 | 15.25 | 15.25 | 15.25 | 15.25 | 15.25 | 15.25 |
Ether extract | 5.02 | 4.64 | 4.25 | 3.85 | 4.14 | 5.18 | 4.80 | 4.41 | 3.87 | 4.14 |
Crude fiber | 2.78 | 3.83 | 4.88 | 5.92 | 6.94 | 2.78 | 3.82 | 4.87 | 5.92 | 6.94 |
Linoleic acid | 1.58 | 3.95 | 4.31 | 5.06 | 5.86 | 1.58 | 3.95 | 4.31 | 5.06 | 5.86 |
Ca | 4.35 | 4.35 | 4.35 | 4.35 | 4.45 | 4.35 | 4.35 | 4.35 | 4.35 | 4.35 |
P available | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
Meth | 0.37 | 0.41 | 0.42 | 0.42 | 0.42 | 0.37 | 0.41 | 0.42 | 0.42 | 0.42 |
Meth + Cyst | 0.67 | 0.67 | 0.67 | 0.72 | 0.72 | 0.67 | 0.67 | 0.67 | 0.72 | 0.72 |
Lys | 0.78 | 0.79 | 0.81 | 0.81 | 0.82 | 0.78 | 0.79 | 0.81 | 0.81 | 0.82 |
Arg | 0.81 | 0.82 | 0.82 | 0.85 | 0.86 | 0.81 | 0.82 | 0.82 | 0.85 | 0.86 |
Thr | 0.57 | 0.58 | 0.59 | 0.61 | 0.61 | 0.57 | 0.58 | 0.59 | 0.61 | 0.61 |
Item | Value |
---|---|
Total phytosterols (mg/kg) | 3254.28 |
β-Sitosterol (%) | 38.49 |
Δ-5-Avena sterol (%) | 27.32 |
Stigmasterol (%) | 19.56 |
Total tocopherols (ppm) | 550.86 |
α-Tocopherol (ppm) | 18.61 |
β- and γ-Tocopherols (ppm) | 293.18 |
Δ-Tocopherol (ppm) | 239.07 |
Squalene (ppm) | 2173.40 |
Item | Feed Intake (g/day) | HDP (%) | EW (g) | EM (g/day) | FCR (kg feed:kg egg) |
---|---|---|---|---|---|
Raw Amaranth Grain (RAG, %) | |||||
0 | 109.17 b | 81.80 a | 60.56 a | 49.54 a | 2.20 d |
10 | 109.47 a | 80.35 b | 59.05 b | 47.46 b | 2.31 c |
20 | 109.43 ab | 79.52 c | 56.65 c | 45.05 c | 2.43 b |
30 | 108.75 c | 78.61 d | 55.51 d | 43.64 d | 2.49 a |
40 | 108.86 c | 77.64 e | 56.20 cd | 43.63 d | 2.49 a |
SEM | 0.091 | 0.255 | 0.333 | 0.273 | 0.014 |
Enzyme (E, %) | |||||
0 (−E) | 109.03 b | 79.46 | 56.76 b | 44.92 b | 2.42 a |
0.025 (+E) | 109.25 a | 79.71 | 58.42 a | 46.81 a | 2.35 b |
SEM | 0.057 | 0.161 | 0.211 | 0.173 | 0.008 |
RAG × E | |||||
0 × 0 | 109.03 cd | 81.45 ab | 60.20 a | 49.04 a | 2.23 de |
10 × 0 | 109.27 bc | 79.91 cd | 57.55 b | 45.99 b | 2.34 c |
20 × 0 | 109.64 ab | 79.01def | 55.77 cd | 44.07 c | 2.45 b |
30 × 0 | 108.44 e | 77.98 fg | 54.75 d | 42.69 d | 2.54 a |
40 × 0 | 108.75 de | 77.05 g | 55.56 cd | 42.81 d | 2.55 a |
0 × 0.025 | 109.31 abc | 82.14 a | 60.91 a | 50.03 a | 2.18 e |
10 × 0.025 | 109.67 a | 80.80 bc | 60.55 a | 48.92 a | 2.26 d |
20 × 0.025 | 109.22 c | 80.02 cd | 57.54 b | 46.04 d | 2.40 bc |
30 × 0.025 | 109.06 cd | 79.24 de | 56.27 bc | 44.58 c | 2.44 b |
40 × 0.025 | 108.97 cd | 78.23 ef | 56.84 bc | 44.46 c | 2.45 b |
SEM | 0.129 | 0.361 | 0.471 | 0.387 | 0.019 |
p-value | |||||
RAG | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
E | 0.011 | 0.291 | 0.001 | 0.001 | 0.001 |
RAG × E | 0.005 | 0.005 | 0.001 | 0.001 | 0.003 |
Item | Shell Thickness (mm) | Shell Strength (kg/cm2) | Shape Index (%) | Egg Specific (g/cm3) | Haugh Unit | Yolk Cholesterol (mg/g) | Yolk Cholesterol (mg/egg) |
---|---|---|---|---|---|---|---|
Raw Amaranth Grain (RAG, %) | |||||||
0 | 0.306 | 3.323 | 74.50 | 1.083 | 79.66 | 12.59 a | 218.26 a |
10 | 0.307 | 3.310 | 74.39 | 1.080 | 79.84 | 11.66 b | 201.87 b |
20 | 0.302 | 3.293 | 74.35 | 1.078 | 80.32 | 11..39 b | 196.85 b |
30 | 0.305 | 3.330 | 74.26 | 1.080 | 80.30 | 11.27 b | 193.77 b |
40 | 0.303 | 3.333 | 74.80 | 1.082 | 80.15 | 11.24 b | 193.03 b |
SEM | 0.005 | 0.032 | 0.694 | 0.001 | 1.011 | 0.235 | 4.010 |
Enzyme (E, %) | |||||||
0 (−E) | 0.304 | 3.314 | 74.79 | 1.080 | 79.72 | 11.69 | 201.22 |
0.025 (+E) | 0.306 | 3.322 | 74.13 | 1.081 | 80.39 | 11.57 | 200.28 |
SEM | 0.003 | 0.020 | 0.439 | 0.001 | 1.063 | 0.148 | 2.536 |
RAG × E | |||||||
0 × 0 | 0.307 | 3.317 | 73.64 | 1.083 | 79.73 | 12.77 a | 220.99 a |
10 × 0 | 0.305 | 3.305 | 73.96 | 1.081 | 79.5 | 11.72 bc | 201.92 bc |
20 × 0 | 0.300 | 3.287 | 74.43 | 1.077 | 79.74 | 11.42 bc | 196.64 c |
30 × 0 | 0.302 | 3.327 | 74.37 | 1.081 | 79.92 | 11.29 c | 193.74 c |
40 × 0 | 0.306 | 3.332 | 74.75 | 1.081 | 79.71 | 11.25 c | 192.84 c |
0 × 0.025 | 0.305 | 3.330 | 74.75 | 1.083 | 79.58 | 12.42 ab | 215.53 ab |
10 × 0.025 | 0.310 | 3.315 | 75.15 | 1.080 | 80.19 | 11.60 bc | 201.82 bc |
20 × 0.025 | 0.305 | 3.300 | 74.74 | 1.079 | 80.90 | 11.36 bc | 197.06 c |
30 × 0.025 | 0.307 | 3.332 | 74.10 | 1.080 | 80.69 | 11.25 c | 193.79 c |
40 × 0.025 | 0.302 | 3.335 | 75.23 | 1.083 | 80.58 | 11.24 c | 193.21 c |
SEM | 0.008 | 0.046 | 0.982 | 0.002 | 1.430 | 0.332 | 5.672 |
p-value | |||||||
RAG | 0.975 | 0.908 | 0.985 | 0.381 | 0.987 | 0.001 | 0.001 |
E | 0.699 | 0.775 | 0.295 | 0.768 | 0.467 | 0.577 | 0.794 |
RAG × E | 0.971 | 1.00 | 0.920 | 0.899 | 0.993 | 0.001 | 0.001 |
Item | TG | TC | LDL | HDL | Atherogenic Index | ALT (U/l) | AST (U/l) | MDA (nmol/mL) | TAC (U/mL) |
---|---|---|---|---|---|---|---|---|---|
Raw Amaranth Grain (RAG, %) | |||||||||
0 | 99.98 | 105.86 a | 97.8 | 40.38 c | 2.42 a | 5.30 | 215.63 | 5.29 | 6.20 |
10 | 94.99 | 102.34 b | 96.19 | 47.07 ab | 2.04 bc | 5.14 | 215.07 | 5.05 | 6.36 |
20 | 94.65 | 100.91 bc | 96.46 | 47.12 ab | 2.04 bc | 5.01 | 214.45 | 5.09 | 6.39 |
30 | 96.29 | 99.43 c | 96.42 | 46.77 b | 2.06 b | 4.88 | 213.54 | 4.72 | 6.38 |
40 | 93.37 | 99.90 bc | 95.93 | 48.59 a | 1.98 c | 4.83 | 213.82 | 4.94 | 6.37 |
SEM | 2.051 | 0.821 | 0.66 | 0.562 | 0.028 | 0.182 | 1.196 | 0.204 | 0.088 |
Enzyme (E, %) | |||||||||
0 (−E) | 96.75 | 102.85 a | 96.68 | 46.12 | 2.11 | 5.11 | 214.95 | 4.98 | 6.33 |
0.025 (+E) | 96.96 | 100.52 b | 96.44 | 45.85 | 2.11 | 4.96 | 214.05 | 5.06 | 6.35 |
SEM | 1.297 | 0.019 | 0.417 | 0.355 | 0.017 | 0.115 | 0.756 | 0.129 | 0.056 |
RAG × E | |||||||||
0 × 0 | 100.23 | 106.73 a | 98.55 a | 40.23 c | 2.45 a | 5.45 | 216.36 | 5.11 | 6.17 |
10 × 0 | 95.35 | 103.51 ab | 96.56 ab | 46.29 b | 2.08 b | 5.22 | 215.68 | 4.99 | 6.33 |
20 × 0 | 95.23 | 102.68 bc | 96.78 ab | 46.86 b | 2.06 b | 5.12 | 214.81 | 4.84 | 6.38 |
30 × 0 | 96.44 | 100.58 cd | 96.20 ab | 46.78 b | 2.05 b | 4.89 | 213.74 | 4.83 | 6.39 |
40 × 0 | 96.52 | 100.74 cd | 95.33 b | 50.45 a | 1.89 c | 4.88 | 214.16 | 5.11 | 6.37 |
0 × 0.025 | 99.73 | 104.98 ab | 97.05 ab | 40.53 c | 2.39 a | 5.15 | 214.89 | 5.47 | 6.23 |
10 × 0.025 | 94.63 | 101.17 cd | 95.82 ab | 47.86 b | 2.00 bc | 5.07 | 214.47 | 5.10 | 6.38 |
20 × 0.025 | 94.06 | 99.15 d | 96.14 ab | 47.39 b | 2.03 b | 4.9 | 214.09 | 5.34 | 6.41 |
30 × 0.025 | 96.15 | 98.27 d | 96.65 ab | 46.76 b | 2.07 b | 4.88 | 213.34 | 4.6 | 6.35 |
40 × 0.025 | 100.22 | 99.06 d | 96.52 ab | 46.73 b | 2.06 b | 4.79 | 213.48 | 4.77 | 6.38 |
SEM | 2.900 | 1.161 | 0.933 | 0.795 | 0.040 | 0.258 | 1.691 | 0.289 | 0.125 |
p-value | |||||||||
RAG | 0.319 | 0.001 | 0.329 | 0.001 | 0.001 | 0.380 | 0.720 | 0.394 | 0.539 |
E | 0.912 | 0.003 | 0.680 | 0.598 | 0.964 | 0.356 | 0.407 | 0.659 | 0.797 |
RAG × E | 0.917 | 0.033 | 0.034 | 0.026 | 0.025 | 0.985 | 0.998 | 0.545 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janmohammadi, H.; Hosseintabar-Ghasemabad, B.; Oliyai, M.; Alijani, S.; Gorlov, I.F.; Slozhenkina, M.I.; Mosolov, A.A.; Suarez Ramirez, L.; Seidavi, A.; Laudadio, V.; et al. Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens. Antioxidants 2023, 12, 456. https://doi.org/10.3390/antiox12020456
Janmohammadi H, Hosseintabar-Ghasemabad B, Oliyai M, Alijani S, Gorlov IF, Slozhenkina MI, Mosolov AA, Suarez Ramirez L, Seidavi A, Laudadio V, et al. Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens. Antioxidants. 2023; 12(2):456. https://doi.org/10.3390/antiox12020456
Chicago/Turabian StyleJanmohammadi, Hossein, Babak Hosseintabar-Ghasemabad, Majid Oliyai, Sadegh Alijani, Ivan Fedorovich Gorlov, Marina Ivanovna Slozhenkina, Aleksandr Anatolievich Mosolov, Lourdes Suarez Ramirez, Alireza Seidavi, Vito Laudadio, and et al. 2023. "Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens" Antioxidants 12, no. 2: 456. https://doi.org/10.3390/antiox12020456
APA StyleJanmohammadi, H., Hosseintabar-Ghasemabad, B., Oliyai, M., Alijani, S., Gorlov, I. F., Slozhenkina, M. I., Mosolov, A. A., Suarez Ramirez, L., Seidavi, A., Laudadio, V., Tufarelli, V., & Ragni, M. (2023). Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens. Antioxidants, 12(2), 456. https://doi.org/10.3390/antiox12020456