Association of Funisitis with Short-Term Outcomes of Prematurity: A Frequentist and Bayesian Meta-Analysis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Sources and Search Strategy
2.2. Study Selection
2.3. Data Extraction, Definitions, and Risk of Bias Assessment
2.4. Statistical Analysis
2.4.1. Frequentist Meta-Analysis
2.4.2. Bayesian Model Average Meta-Analysis
3. Results
3.1. Description of Studies and Quality Assessment
3.2. Main Meta-Analyses
3.3. Additional Meta-Analyses and Meta-Regression
Control Group | Meta-Analysis | K | Effect Size | 95% CI | p | Heterogeneity | ||
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | I2 (%) | p | |||||
Absence of funisitis (Fun−) | GA (MD in weeks) | 20 | −1.608 | −2.631 | −0.586 | 0.002 | 99.0 | <0.001 |
Birth weight (MD in grams) | 20 | −101.6 | −164.6 | −38.6 | 0.002 | 87.8 | <0.001 | |
Male sex (OR) | 19 | 0.822 | 0.727 | 0.928 | 0.002 | 4.1 | 0.407 | |
Antenatal corticosteroids (OR) | 17 | 1.190 | 0.905 | 1.563 | 0.213 | 57.7 | 0.002 | |
Caesarean delivery (OR) | 12 | 0.506 | 0.346 | 0.739 | <0.001 | 81.0 | <0.001 | |
HDP (OR) | 11 | 0.077 | 0.035 | 0.168 | <0.001 | 76.2 | <0.001 | |
SGA/IUGR (OR) | 8 | 0.195 | 0.067 | 0.564 | 0.003 | 86.3 | <0.001 | |
Absence of funisitis and chorioamnionitis (Fun−/CA−) | GA (MD in weeks) | 17 | −1.374 | −1.931 | −0.817 | <0.001 | 95.5 | <0.001 |
Birth weight (MD in grams) | 15 | −76.2 | −163.6 | 11.2 | 0.087 | 91.1 | <0.001 | |
Male sex (OR) | 17 | 0.825 | 0.723 | 0.942 | 0.005 | 4.1 | 0.406 | |
Antenatal corticosteroids (OR) | 14 | 1.420 | 1.098 | 1.837 | 0.008 | 44.2 | 0.038 | |
Caesarean delivery (OR) | 12 | 0.378 | 0.232 | 0.616 | <0.001 | 87.1 | <0.001 | |
HDP (OR) | 10 | 0.030 | 0.008 | 0.112 | <0.001 | 89.7 | <0.001 | |
SGA/IUGR (OR) | 8 | 0.111 | 0.017 | 0.712 | 0.020 | 95.3 | <0.001 | |
Absence of funisitis but presence of chorioamnionitis (Fun−/CA+) | GA (MD in weeks) | 15 | −0.251 | −0.525 | 0.023 | 0.072 | 50.0 | 0.014 |
Birth weight (MD in grams) | 15 | −25.4 | −71.4 | 20.7 | 0.281 | 43.1 | 0.039 | |
Male sex (OR) | 17 | 0.800 | 0.677 | 0.945 | 0.009 | 0.0 | 0.931 | |
Antenatal corticosteroids (OR) | 15 | 0.955 | 0.703 | 1.298 | 0.768 | 30.2 | 0.129 | |
Caesarean delivery (OR) | 12 | 0.944 | 0.754 | 1.181 | 0.612 | 8.4 | 0.363 | |
HDP (OR) | 10 | 0.406 | 0.185 | 0.894 | 0.025 | 50.8 | 0.032 | |
SGA/IUGR (OR) | 8 | 0.769 | 0.445 | 1.329 | 0.347 | 4.0 | 0.399 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.B.; Kinney, M.; Lawn, J. Born too soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10, S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, M.S.; Goldenberg, R.L. Global burden of prematurity. Semin. Fetal Neonatal Med. 2016, 21, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Lawn, J.E.; Gravett, M.G.; Nunes, T.M.; Rubens, C.E.; Stanton, C. Global report on preterm birth and stillbirth (1 of 7): Definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth 2010, 10, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, V.G.; Willis, K.A.; Jobe, A.; Ambalavanan, N. Chorioamnionitis and neonatal outcomes. Pediatr. Res. 2022, 91, 289–296. [Google Scholar] [CrossRef]
- Pietrasanta, C.; Pugni, L.; Merlo, D.; Acaia, B.; Consonni, D.; Ronchi, A.; Ossola, M.W.; Ghirardi, B.; Bottino, I.; Cribiù, F.M. Impact of different stages of intrauterine inflammation on outcome of preterm neonates: Gestational age-dependent and-independent effect. PLoS ONE 2019, 14, e0211484. [Google Scholar] [CrossRef]
- Pacora, P.; Chaiworapongsa, T.; Maymon, E.; Kim, Y.; Gomez, R.; Yoon, B.; Ghezzi, F.; Berry, S.; Qureshi, F.; Jacques, S. Funisitis and chorionic vasculitis: The histological counterpart of the fetal inflammatory response syndrome. J. Matern. Fetal Neonatal Med. 2002, 11, 18–25. [Google Scholar] [CrossRef]
- Kim, C.J.; Romero, R.; Chaemsaithong, P.; Chaiyasit, N.; Yoon, B.H.; Kim, Y.M. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 2015, 213, S29–S52. [Google Scholar] [CrossRef] [Green Version]
- Boettcher, L.B.; Clark, E.A. Neonatal and childhood outcomes following preterm premature rupture of membranes. Obstet. Gynecol. Clin. 2020, 47, 671–680. [Google Scholar] [CrossRef]
- Lee, S.E.; Romero, R.; Jung, H.; Park, C.-W.; Park, J.S.; Yoon, B.H. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am. J. Obstet. Gynecol. 2007, 197, e291–e296. [Google Scholar] [CrossRef]
- Kamei, M.; Hussein, M.H.; Hattori, A.; Saleh, M.; Kakita, H.; Abdel-Hamid Daoud, G.; Ishiguro, A.; Namba, F.; Yazaki, M.; Goto, H. Oxidative and Inflammatory Markers Are Higher in Full-Term Newborns Suffering Funisitis, and Higher Oxidative Markers Are Associated with Admission. Children 2022, 9, 702. [Google Scholar] [CrossRef]
- Jung, E.; Romero, R.; Yeo, L.; Diaz-Primera, R.; Marin-Concha, J.; Para, R.; Lopez, A.M.; Pacora, P.; Gomez-Lopez, N.; Yoon, B.H. The fetal inflammatory response syndrome: The origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin. Fetal Neonatal Med. 2020, 25, 101146. [Google Scholar] [CrossRef]
- Gantert, M.; Been, J.; Gavilanes, A.; Garnier, Y.; Zimmermann, L.; Kramer, B. Chorioamnionitis: A multiorgan disease of the fetus? J. Perinatol. 2010, 30, S21–S30. [Google Scholar] [CrossRef]
- Perez, M.; Robbins, M.E.; Revhaug, C.; Saugstad, O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 2019, 142, 61–72. [Google Scholar] [CrossRef]
- Saugstad, O.D. Oxidative stress in the newborn—A 30-year perspective. Neonatology 2005, 88, 228–236. [Google Scholar] [CrossRef]
- Villamor-Martinez, E.; Alvarez-Fuente, M.; Ghazi, A.M.; Degraeuwe, P.; Zimmermann, L.J.; Kramer, B.W.; Villamor, E. Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: A systematic review, meta-analysis, and metaregression. JAMA Netw. Open 2019, 2, e1914611. [Google Scholar] [CrossRef]
- Villamor-Martinez, E.; Cavallaro, G.; Raffaeli, G.; Mohammed Rahim, O.M.; Gulden, S.; Ghazi, A.M.; Mosca, F.; Degraeuwe, P.; Villamor, E. Chorioamnionitis as a risk factor for retinopathy of prematurity: An updated systematic review and meta-analysis. PLoS ONE 2018, 13, e0205838. [Google Scholar] [CrossRef] [Green Version]
- Villamor-Martinez, E.; Fumagalli, M.; Mohammed Rahim, O.; Passera, S.; Cavallaro, G.; Degraeuwe, P.; Mosca, F.; Villamor, E. Chorioamnionitis is a risk factor for intraventricular hemorrhage in preterm infants: A systematic review and meta-analysis. Front. Physiol. 2018, 9, 1253. [Google Scholar] [CrossRef] [Green Version]
- Villamor-Martinez, E.; Lubach, G.A.; Rahim, O.M.; Degraeuwe, P.; Zimmermann, L.J.; Kramer, B.W.; Villamor, E. Association of histological and clinical chorioamnionitis with neonatal sepsis among preterm infants: A systematic review, meta-analysis, and meta-regression. Front. Immunol. 2020, 11, 972. [Google Scholar] [CrossRef]
- Behbodi, E.; Villamor-Martínez, E.; Degraeuwe, P.L.; Villamor, E. Chorioamnionitis appears not to be a risk factor for patent ductus arteriosus in preterm infants: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 37967. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, M. Comprehensive meta-analysis software. In Systematic Reviews in Health Research: Meta-Analysis in Context; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; pp. 535–548. [Google Scholar] [CrossRef]
- Borenstein, M.; Higgins, J. Meta-analysis and subgroups. Prev. Sci. 2013, 14, 134–143. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Bartoš, F.; Gronau, Q.F.; Timmers, B.; Otte, W.M.; Ly, A.; Wagenmakers, E.J. Bayesian model-averaged meta-analysis in medicine. Stat. Med. 2021, 40, 6743–6761. [Google Scholar] [CrossRef] [PubMed]
- Gronau, Q.F.; Heck, D.W.; Berkhout, S.W.; Haaf, J.M.; Wagenmakers, E.-J. A primer on Bayesian model-averaged meta-analysis. Adv. Methods Pract. Psychol. Sci. 2021, 4, 25152459211031256. [Google Scholar] [CrossRef]
- Lee, M.; Wagenmakers, E.J. Bayesian Data Analysis for Cognitive Science: A Practical Course; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Altman, D.G.; Bland, J.M. Statistics notes: Absence of evidence is not evidence of absence. BMJ 1995, 311, 485. [Google Scholar] [CrossRef] [Green Version]
- JASP, version 0.17; JASP Team: Amsterdam, The Netherlands, 2023.
- Heck, D.; Gronau, F.; Wagenmakers, E. metaBMA: Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis, Version 0.6.7; JASP Team: Amsterdam, The Netherlands, 2019.
- Babnik, J.; Stucin-Gantar, I.; Kornhauser-Cerar, L.; Sinkovec, J.; Wraber, B.; Derganc, M. Intrauterine inflammation and the onset of peri-intraventricular hemorrhage in premature infants. Biol. Neonate 2006, 90, 113–121. [Google Scholar] [CrossRef]
- Been, J.V.; Rours, I.G.; Kornelisse, R.F.; De Krijger, R.R.; Kramer, B.W.; Zimmermann, L.J. Chorioamnionitis alters the response to surfactant in preterm infants. Neonatology 2009, 95, 375–376. [Google Scholar] [CrossRef]
- Dessardo, N.S.; Mustac, E.; Dessardo, S.; Banac, S.; Peter, B.; Finderle, A.; Mari, M.; Haller, H. Chorioamnionitis and chronic lung disease of prematurity: A path analysis of causality. Am. J. Perinatol. 2012, 29, 133–140. [Google Scholar] [CrossRef]
- Fujimura, M.; Takeuchi, T.; Kitajima, H.; Nakayama, M. Chorioamnionitis and serum IgM in Wilson-Mikity syndrome. Arch. Dis. Child. 1989, 64, 1379–1383. [Google Scholar] [CrossRef]
- Ikeda, S.; Kihira, K.; Yokoi, A.; Tamakoshi, K.; Miyazaki, K.; Furuhashi, M. The levels of the neutrophil elastase in the amniotic fluid of pregnant women whose infants develop bronchopulmonary dysplasia. J. Matern. Fetal Neonatal Med. 2015, 28, 479–483. [Google Scholar] [CrossRef]
- Jackson, C.M.; Wells, C.B.; Tabangin, M.E.; Meinzen-Derr, J.; Jobe, A.H.; Chougnet, C.A. Pro-inflammatory immune responses in leukocytes of premature infants exposed to maternal chorioamnionitis or funisitis. Pediatr. Res. 2017, 81, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.; Vignes, K.; Cockerham, C.; Su, L.; Stromberg, A.J.; Huang, H.; Schanbacher, B.; Bauer, J.A.; Giannone, P.; O’Brien, J. Cord blood CRP: Preferred biomarker to histologic chorioamnionitis for neonatal outcomes in early preterm infants. Am. J. Obstet. Gynecol. 2022, 226, S94. [Google Scholar] [CrossRef]
- Kent, A.; Dahlstrom, J.E. Chorioamnionitis/funisitis and the development of bronchopulmonary dysplasia. J. Paediatr. Child Health 2004, 40, 356–359. [Google Scholar] [CrossRef]
- Kent, A.; Lomas, F.; Hurrion, E.; Dahlstrom, J.E. Antenatal steroids may reduce adverse neurological outcome following chorioamnionitis: Neurodevelopmental outcome and chorioamnionitis in premature infants. J. Paediatr. Child Health 2005, 41, 186–190. [Google Scholar] [CrossRef]
- Lahra, M.M.; Beeby, P.J.; Jeffery, H.E. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: A 13-year hospital cohort study. Pediatrics 2009, 123, 1314–1319. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, K.H.; Kim, A.; Yang, H.R.; Jung, E.Y.; Cho, S.H. Maternal and Placental Risk Factors for Developing Necrotizing Enterocolitis in Very Preterm Infants. Pediatr. Neonatol. 2017, 58, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Lynch, A.M.; Berning, A.A.; Thevarajah, T.S.; Wagner, B.D.; Post, M.D.; McCourt, E.A.; Cathcart, J.N.; Hodges, J.K.; Mandava, N.; Gibbs, R.S.; et al. The role of the maternal and fetal inflammatory response in retinopathy of prematurity. Am. J. Reprod. Immunol. 2018, 80, e12986. [Google Scholar] [CrossRef]
- Pavcnik-Arnol, M.; Lucovnik, M.; Kornhauser-Cerar, L.; Premru-Srsen, T.; Hojker, S.; Derganc, M. Lipopolysaccharide-binding protein as marker of fetal inflammatory response syndrome after preterm premature rupture of membranes. Neonatology 2014, 105, 121–127. [Google Scholar] [CrossRef]
- Perniciaro, S.; Casarin, J.; Nosetti, L.; Binda, C.; Salvatore, S.; Ghezzi, F.; Agosti, M. Early- and Late-Respiratory Outcome in Very Low Birth Weight with or without Intrauterine Inflammation. Am. J. Perinatol. 2020, 37, S76–S83. [Google Scholar] [CrossRef]
- Plakkal, N.; Soraisham, A.S.; Trevenen, C.; Freiheit, E.A.; Sauve, R. Histological chorioamnionitis and bronchopulmonary dysplasia: A retrospective cohort study. J. Perinatol. 2013, 33, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Puri, K.; Taft, D.H.; Ambalavanan, N.; Schibler, K.R.; Morrow, A.L.; Kallapur, S.G. Association of Chorioamnionitis with Aberrant Neonatal Gut Colonization and Adverse Clinical Outcomes. PLoS ONE 2016, 11, e0162734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, A.A.; Faye-Petersen, O.M.; Sims, B.; Peralta-Carcelen, M.; Reilly, S.D.; McGwin, G., Jr.; Carlo, W.A.; Ambalavanan, N. Histological characteristics of the fetal inflammatory response associated with neurodevelopmental impairment and death in extremely preterm infants. J. Pediatr. 2013, 163, e651–e652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, A.L.; Been, J.V.; Zimmermann, L.J.; Kornelisse, R.F.; Andriessen, P.; Vanterpool, S.F.; Bischoff, M.P.; Stokroos, R.J.; de Krijger, R.R.; Kremer, B.; et al. Automated auditory brainstem response in preterm newborns with histological chorioamnionitis. J. Matern. Fetal Neonatal Med. 2015, 28, 1864–1869. [Google Scholar] [CrossRef] [PubMed]
- Thomas, W.; Seidenspinner, S.; Kawczyńska-Leda, N.; Wirbelauer, J.; Szymankiewicz, M.; Speer, C.P. Soluble receptor for advanced glycation end products (sRAGE) in tracheobronchial aspirate fluid and cord blood of very low birth weight infants with chorioamnionitis and funisitis. Early Hum. Dev. 2010, 86, 593–598. [Google Scholar] [CrossRef]
- Torchin, H.; Lorthe, E.; Goffinet, F.; Kayem, G.; Subtil, D.; Truffert, P.; Devisme, L.; Benhammou, V.; Jarreau, P.H.; Ancel, P.Y. Histologic Chorioamnionitis and Bronchopulmonary Dysplasia in Preterm Infants: The Epidemiologic Study on Low Gestational Ages 2 Cohort. J. Pediatr. 2017, 187, 98–104.e3. [Google Scholar] [CrossRef]
- Trevisanuto, D.; Peruzzetto, C.; Cavallin, F.; Vedovato, S.; Cosmi, E.; Visentin, S.; Chiarelli, S.; Zanardo, V. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: A case-control study. J. Matern. Fetal Neonatal Med. 2013, 26, 1484–1490. [Google Scholar] [CrossRef]
- Woo, S.J.; Jung, H.J.; Kim, S.N.; Choe, G.; Ahn, J.; Park, K.H. Effects of maternal and placental inflammation on retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 915–923. [Google Scholar] [CrossRef]
- Andersen, C.; Kent, A.; Schmidt, B.; Nahmias, C.; deSa, D.; Bourgeois, J.; Xing, Z.; Kirpalani, H. Pulmonary fluorodeoxyglucose uptake in infants of very low birth weight with and without intrauterine inflammation. J. Pediatr. 2003, 143, 470–476. [Google Scholar] [CrossRef]
- Hong, S.; Jeong, M.; Oh, S.; Oh, J.W.; Park, C.W.; Park, J.S.; Jun, J.K.; Lee, S.M. Funisitis as a Risk Factor for Adverse Neonatal Outcomes in Twin Neonates with Spontaneous Preterm Birth: A Retrospective Cohort Study. Yonsei Med. J. 2021, 62, 822–828. [Google Scholar] [CrossRef]
- Lau, J.; Magee, F.; Qiu, Z.; Houbé, J.; Von Dadelszen, P.; Lee, S.K. Chorioamnionitis with a fetal inflammatory response is associated with higher neonatal mortality, morbidity, and resource use than chorioamnionitis displaying a maternal inflammatory response only. Am. J. Obstet. Gynecol. 2005, 193, 708–713. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.J.; Choi, S.J.; Oh, S.Y.; Kim, J.S.; Roh, C.R.; Kim, J.H. Is there a stepwise increase in neonatal morbidities according to histological stage (or grade) of acute chorioamnionitis and funisitis? Effect of gestational age at delivery. J. Perinat. Med. 2015, 43, 259–267. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, Z.; Li, J.; Yang, Y. Effects of placental inflammation on neonatal outcome in preterm infants. Pediatr. Neonatol. 2014, 55, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Richardson, B.S.; Wakim, E.; daSilva, O.; Walton, J. Preterm histologic chorioamnionitis: Impact on cord gas and pH values and neonatal outcome. Am. J. Obstet. Gynecol. 2006, 195, 1357–1365. [Google Scholar] [CrossRef]
- Rocha, G.; Proença, E.; Quintas, C.; Rodrigues, T.; Guimarães, H. Chorioamnionitis and brain damage in the preterm newborn. J. Matern. Fetal Neonatal Med. 2007, 20, 745–749. [Google Scholar] [CrossRef]
- Thorell, A.; Hallingstrom, M.; Hagberg, H.; Fyhr, I.M.; Tsiartas, P.; Olsson, I.; Chaplin, J.E.; Mallard, C.; Jacobsson, B.; Savman, K. Microbial invasion of the amniotic cavity is associated with impaired cognitive and motor function at school age in preterm children. Pediatr. Res. 2020, 87, 924–931. [Google Scholar] [CrossRef]
- Yamada, N.; Sato, Y.; Moriguchi-Goto, S.; Yamashita, A.; Kodama, Y.; Sameshima, H.; Asada, Y. Histological severity of fetal inflammation is useful in predicting neonatal outcome. Placenta 2015, 36, 1490–1493. [Google Scholar] [CrossRef]
- Graham, E.M.; Holcroft, C.J.; Rai, K.K.; Donohue, P.K.; Allen, M.C. Neonatal cerebral white matter injury in preterm infants is associated with culture positive infections and only rarely with metabolic acidosis. Am. J. Obstet. Gynecol. 2004, 191, 1305–1310. [Google Scholar] [CrossRef]
- Wharton, K.N.; Pinar, H.; Stonestreet, B.S.; Tucker, R.; McLean, K.R.; Wallach, M.; Vohr, B.R. Severe umbilical cord inflammation—A predictor of periventricular leukomalacia in very low birth weight infants. Early Hum. Dev. 2004, 77, 77–87. [Google Scholar] [CrossRef]
- Davey, J.; Turner, R.M.; Clarke, M.J.; Higgins, J. Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: A cross-sectional, descriptive analysis. BMC Med. Res. Methodol. 2011, 11, 160. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, R.L.; Fontes, L.E.S.; Martimbianco, A.L.C.; Riera, R. Better understanding of ‘don’t confuse absence of evidence with evidence of absence’. J. Evid. Based Healthc. 2019, 1, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Wagenmakers, E.-J.; Lee, M.; Lodewyckx, T.; Iverson, G.J. Bayesian versus frequentist inference. In Bayesian Evaluation of Informative Hypotheses; Springer: New York, NY, USA, 2008; pp. 181–207. [Google Scholar] [CrossRef]
- Held, L.; Ott, M. On p-values and Bayes factors. Annu. Rev. Stat. Appl. 2018, 5, 393–419. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.H.; Romero, R.; Park, J.S.; Kim, M.; Oh, S.-Y.; Kim, C.J.; Jun, J.K. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am. J. Obstet. Gynecol. 2000, 183, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Romero, R.; Kim, C.J.; Shim, S.-S.; Yoon, B.H. Funisitis in term pregnancy is associated with microbial invasion of the amniotic cavity and intra-amniotic inflammation. J. Matern. Fetal Neonatal Med. 2006, 19, 693–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, T.B.; Heller, D.S.; Baergen, R.N. Isolated acute funisitis in the absence of acute chorioamnionitis: What does it mean? Placenta 2019, 75, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Tambor, V.; Kacerovsky, M.; Lenco, J.; Bhat, G.; Menon, R. Proteomics and bioinformatics analysis reveal underlying pathways of infection associated histologic chorioamnionitis in pPROM. Placenta 2013, 34, 155–161. [Google Scholar] [CrossRef]
- Kramer, B.W.; Kallapur, S.G.; Jobe, A.H. Chorioamnionitis and Oxidative Stress: New Ideas from Experimental Models. In Perinatal and Prenatal Disorders; Springer: Berlin/Heidelberg, Germany, 2014; pp. 39–46. [Google Scholar] [CrossRef]
- Ilekis, J.V.; Tsilou, E.; Fisher, S.; Abrahams, V.M.; Soares, M.J.; Cross, J.C.; Zamudio, S.; Illsley, N.P.; Myatt, L.; Colvis, C. Placental origins of adverse pregnancy outcomes: Potential molecular targets: An Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol. 2016, 215, S1–S46. [Google Scholar] [CrossRef] [Green Version]
- Yanowitz, T.D.; Jordan, J.A.; Gilmour, C.H.; Towbin, R.; Bowen, A.D.; Roberts, J.M.; Brozanski, B.S. Hemodynamic disturbances in premature infants born after chorioamnionitis: Association with cord blood cytokine concentrations. Pediatr. Res. 2002, 51, 310. [Google Scholar] [CrossRef] [Green Version]
- Inder, T.E.; Perlman, J.M.; Volpe, J.J. Preterm Intraventricular Hemorrhage/Posthemorrhagic Hydrocephalus. In Volpe’s Neurology of the Newborn, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 637–698. [Google Scholar]
- Mohamed, M.A.; Aly, H. Transport of premature infants is associated with increased risk for intraventricular haemorrhage. Arch. Dis. Child. Fetal Neonatal Ed. 2010, 95, F403–F407. [Google Scholar] [CrossRef]
- Molina-Holgado, E.; Molina-Holgado, F. Mending the broken brain: Neuroimmune interactions in neurogenesis. J. Neurochem. 2010, 114, 1277–1290. [Google Scholar] [CrossRef]
- Stanimirovic, D.; Satoh, K. Inflammatory mediators of cerebral endothelium: A role in ischemic brain inflammation. Brain Pathol. 2000, 10, 113–126. [Google Scholar] [CrossRef]
- Kimble, A.; Robbins, M.E.; Perez, M. Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from ‘Omics’ Studies. Antioxidants 2022, 11, 2380. [Google Scholar] [CrossRef]
- Lembo, C.; Buonocore, G.; Perrone, S. Oxidative stress in preterm newborns. Antioxidants 2021, 10, 1672. [Google Scholar] [CrossRef]
- Graziosi, A.; Perrotta, M.; Russo, D.; Gasparroni, G.; D’Egidio, C.; Marinelli, B.; Di Marzio, G.; Falconio, G.; Mastropasqua, L.; Li Volti, G. Oxidative stress markers and the retinopathy of prematurity. J. Clin. Med. 2020, 9, 2711. [Google Scholar] [CrossRef]
- Silvestro, S.; Calcaterra, V.; Pelizzo, G.; Bramanti, P.; Mazzon, E. Prenatal hypoxia and placental oxidative stress: Insights from animal models to clinical evidences. Antioxidants 2020, 9, 414. [Google Scholar] [CrossRef]
- Raffaeli, G.; Manzoni, F.; Cortesi, V.; Cavallaro, G.; Mosca, F.; Ghirardello, S. Iron homeostasis disruption and oxidative stress in preterm newborns. Nutrients 2020, 12, 1554. [Google Scholar] [CrossRef]
- Karthigesu, K.; Bertolo, R.F.; Brown, R.J. Parenteral nutrition and oxidant load in neonates. Nutrients 2021, 13, 2631. [Google Scholar] [CrossRef]
- Dani, C.; Poggi, C.; Pratesi, S. Bilirubin and oxidative stress in term and preterm infants. Free Radic. Res. 2019, 53, 2–7. [Google Scholar] [CrossRef]
- Parsons, A.; Netsanet, A.; Seedorf, G.J.; Abman, S.H.; Taglauer, E.S. Understanding the Role of Placental Pathophysiology in the Development of Bronchopulmonary Dysplasia (BPD). Am. J. Physiol. Lung Cell Mol. Physiol. 2022, 323, L651–L658. [Google Scholar] [CrossRef]
- Pierro, M.; Villamor-Martinez, E.; van Westering-Kroon, E.; Alvarez-Fuente, M.; Abman, S.H.; Villamor, E. Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: A systematic review, meta-analysis and meta-regression. Thorax 2022, 77, 268–275. [Google Scholar] [CrossRef]
- Pierro, M.; Van Mechelen, K.; van Westering-Kroon, E.; Villamor-Martínez, E.; Villamor, E. Endotypes of Prematurity and Phenotypes of Bronchopulmonary Dysplasia: Toward Personalized Neonatology. J. Pers. Med. 2022, 12, 687. [Google Scholar] [CrossRef]
- Amelio, G.S.; Provitera, L.; Raffaeli, G.; Tripodi, M.; Amodeo, I.; Gulden, S.; Cortesi, V.; Manzoni, F.; Cervellini, G.; Tomaselli, A. Endothelial dysfunction in preterm infants: The hidden legacy of uteroplacental pathologies. Front. Pediatr. 2022, 10, 1041919. [Google Scholar] [CrossRef] [PubMed]
- Hartling, L.; Liang, Y.; Lacaze-Masmonteil, T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F8–F17. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Aune, D.; Speer, C.P.; Saugstad, O.D. Chorioamnionitis as a risk factor for retinopathy of prematurity: A systematic review and meta-analysis. Neonatology 2014, 105, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Abiramalatha, T.; Bandyopadhyay, T.; Ramaswamy, V.V.; Shaik, N.B.; Thanigainathan, S.; Pullattayil, A.K.; Amboiram, P. Risk Factors for Periventricular Leukomalacia in Preterm Infants: A Systematic Review, Meta-analysis, and GRADE-Based Assessment of Certainty of Evidence. Pediatr. Neurol. 2021, 124, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W. Systematic review of chorioamnionitis and cerebral palsy. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 25–29. [Google Scholar] [CrossRef]
- Been, J.V.; Lievense, S.; Zimmermann, L.J.; Kramer, B.W.; Wolfs, T.G. Chorioamnionitis as a risk factor for necrotizing enterocolitis: A systematic review and meta-analysis. J. Pediatr. 2013, 162, 236–242.e2. [Google Scholar] [CrossRef] [Green Version]
- Park, H.W.; Choi, Y.-S.; Kim, K.S.; Kim, S.-N. Chorioamnionitis and patent ductus arteriosus: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0138114. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Geissbühler, M.; Hincapié, C.A.; Aghlmandi, S.; Zwahlen, M.; Jüni, P.; da Costa, B.R. Most published meta-regression analyses based on aggregate data suffer from methodological pitfalls: A meta-epidemiological study. BMC Med. Res. Methodol. 2021, 21, 123. [Google Scholar] [CrossRef]
- Thébaud, B. Preempting Bronchopulmonary Dysplasia: Time to Focus on the Placenta? Am. J. Respir. Cell Mol. 2022, 66, 8–9. [Google Scholar] [CrossRef]
- Dexter, S.C.; Pinar, H.; Malee, M.P.; Hogan, J.; Carpenter, M.W.; Vohr, B.R. Outcome of very low birth weight infants with histopathologic chorioamnionitis. Obstet. Gynecol. 2000, 96, 172–177. [Google Scholar] [CrossRef]
- Liu, Y.; Hoyo, C.; Murphy, S.; Huang, Z.; Overcash, F.; Thompson, J.; Brown, H.; Murtha, A.P. DNA methylation at imprint regulatory regions in preterm birth and infection. Am. J. Obstet. Gynecol. 2013, 208, e391–e397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challis, J.; Newnham, J.; Petraglia, F.; Yeganegi, M.; Bocking, A. Fetal sex and preterm birth. Placenta 2013, 34, 95–99. [Google Scholar] [CrossRef] [PubMed]
- van Westering-Kroon, E.; Huizing, M.J.; Villamor-Martínez, E.; Villamor, E. Male Disadvantage in Oxidative Stress-Associated Complications of Prematurity: A Systematic Review, Meta-Analysis and Meta-Regression. Antioxidants 2021, 10, 1490. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.D.; Dickinson, C.; Kandasamy, Y. Sex difference in mortality for premature and low birth weight neonates: A systematic review. Am. J. Perinatol. 2018, 35, 707–715. [Google Scholar] [CrossRef]
- Zisk, J.L.; Genen, L.H.; Kirkby, S.; Webb, D.; Greenspan, J.; Dysart, K. Do premature female infants really do better than their male counterparts? Am. J. Perinatol. 2011, 28, 241–246. [Google Scholar] [CrossRef] [Green Version]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020. [Google Scholar] [CrossRef]
- Miracle, X.; Di Renzo, G.C.; Stark, A.; Fanaroff, A.; Carbonell-Estrany, X.; Saling, E. Guideline for the use of antenatal corticosteroids for fetal maturation. J. Perinat. Med. 2008, 36, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Gilstrap, L.C.; Christensen, R.; Clewell, W.H.; D’Alton, M.E.; Davidson, E.C.; Escobedo, M.B.; Gjerdingen, D.K.; Goddard-Finegold, J.; Goldenberg, R.L.; Grimes, D.A. Effect of corticosteroids for fetal maturation on perinatal outcomes: NIH consensus development panel on the effect of corticosteroids for fetal maturation on perinatal outcomes. JAMA 1995, 273, 413–418. [Google Scholar] [CrossRef]
- Amiya, R.M.; Mlunde, L.B.; Ota, E.; Swa, T.; Oladapo, O.T.; Mori, R. Antenatal corticosteroids for reducing adverse maternal and child outcomes in special populations of women at risk of imminent preterm birth: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0147604. [Google Scholar] [CrossRef] [Green Version]
- Been, J.V.; Rours, I.G.; Kornelisse, R.F.; Passos, V.L.; Kramer, B.W.; Schneider, T.A.; de Krijger, R.R.; Zimmermann, L.J. Histologic chorioamnionitis, fetal involvement, and antenatal steroids: Effects on neonatal outcome in preterm infants. Am. J. Obstet. Gynecol. 2009, 201, e581–e588. [Google Scholar] [CrossRef]
Outcome | Control Group | K | Averaged Effect (logOR) | Standard Error | Credible Interval | BF10 | Evidence For | p-Value Frequentist Analysis | BFrf | Evidence For | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | H1 | H0 | Random Effects | Fixed Effects | ||||||||
Mortality | Fun− | 12 | 0.417 | 0.216 | −0.048 | 0.823 | 2.008 | Weak | 0.035 | 10.65 | Strong | ||
Fun−/CA− | 12 | 0.551 | 0.211 | 0.126 | 0.984 | 5.593 | Mod. | 0.013 | 6.169 | Mod. | |||
Fun−/CA+ | 12 | 0.118 | 0.201 | −0.275 | 0.521 | 0.283 | Mod. | 0.534 | 0.972 | Weak | |||
Any BPD | Fun− | 6 | 0.354 | 0.158 | 0.038 | 0.657 | 2.794 | Weak | 0.006 | 0.569 | Weak | ||
Fun−/CA− | 7 | 0.540 | 0.168 | 0.193 | 0.856 | 12.59 | Strong | <0.001 | 0.706 | Weak | |||
Fun−/CA+ | 7 | 0.175 | 0.186 | −0.187 | 0.545 | 0.356 | Weak | 0.290 | 0.458 | Weak | |||
Mod./ severe BPD | Fun− | 16 | 0.381 | 0.221 | −0.055 | 0.828 | 1.272 | Weak | 0.040 | 11,651 | Strong | ||
Fun−/CA− | 14 | 0.390 | 0.238 | −0.097 | 0.856 | 1.273 | Weak | 0.048 | 42,766 | Strong | |||
Fun−/CA+ | 14 | 0.202 | 0.179 | −0.154 | 0.570 | 0.472 | Weak | 0.262 | 2.078 | Weak | |||
Severe BPD | Fun− | 3 | 0.275 | 0.388 | −0.442 | 1.109 | 0.508 | Weak | 0.375 | 4.333 | Mod. | ||
Fun−/CA− | 3 | 0.242 | 0.448 | −0.602 | 1.187 | 0.548 | Weak | 0.436 | 8.420 | Mod. | |||
Fun−/CA+ | 3 | 0.257 | 0.279 | −0.284 | 0.815 | 0.530 | Weak | 0.250 | 0.530 | Weak | |||
BPD or death | Fun− | 3 | 0.229 | 0.245 | −0.374 | 0.625 | 0.819 | Weak | 0.027 | 1.293 | Weak | ||
Fun−/CA− | 3 | 0.266 | 0.268 | −0.414 | 0.671 | 1.013 | Weak | 0.197 | 1.847 | Weak | |||
Fun−/CA+ | 3 | 0.004 | 0.238 | −0.485 | 0.456 | 0.241 | Mod. | 0.932 | 0.307 | Mod. | |||
Any ROP | Fun− | 3 | 0.471 | 0.243 | −0.130 | 0.849 | 2.199 | Weak | 0.030 | 1.660 | Weak | ||
Fun−/CA− | 4 | 0.521 | 0.193 | 0.052 | 0.835 | 4.229 | Mod. | <0.001 | 0.938 | Weak | |||
Fun−/CA+ | 3 | 0.285 | 0.248 | −0.217 | 0.747 | 0.677 | Weak | 0.113 | 0.644 | Weak | |||
Severe ROP | Fun− | 3 | 0.522 | 0.325 | −0.254 | 1.058 | 2.200 | Weak | 0.122 | 1.674 | Weak | ||
Fun−/CA− | 3 | 0.527 | 0.361 | −0.333 | 1.123 | 1.831 | Weak | 0.211 | 2.479 | Weak | |||
Fun−/CA+ | 3 | 0.169 | 0.341 | −0.505 | 0.839 | 0.462 | Weak | 0.511 | 0.544 | Weak | |||
Any PDA | Fun− | 3 | 0.415 | 0.440 | −0.517 | 1.277 | 0.983 | Weak | 0.342 | 15.09 | Strong | ||
Fun−/CA− | 3 | 0.427 | 0.443 | −0.548 | 1.250 | 1.095 | Weak | 0.312 | 8.112 | Mod. | |||
Fun−/CA+ | 3 | 0.303 | 0.444 | −0.562 | 1.241 | 0.584 | Weak | 0.457 | 2.668 | Weak | |||
PDA req treatment | Fun− | 5 | 0.442 | 0.330 | −0.203 | 1.124 | 1.119 | Weak | 0.139 | 4551 | Strong | ||
Fun−/CA− | 4 | 0.462 | 0.341 | −0.238 | 1.131 | 1.210 | Weak | 0.158 | 9344 | Strong | |||
Fun−/CA+ | 4 | 0.006 | 0.230 | −0.434 | 0.491 | 0.242 | Mod. | 0.939 | 0.784 | Weak | |||
PDA req surgical treatment | Fun− | 3 | 0.675 | 0.484 | −0.358 | 1.603 | 2.069 | Weak | 0.142 | 3.299 | Mod. | ||
Fun−/CA− | 3 | 0.837 | 0.459 | −0.111 | 1.713 | 3.489 | Mod. | 0.072 | 1.986 | Weak | |||
Fun−/CA+ | 3 | 0.235 | 0.448 | −0.608 | 1.128 | 0.589 | Weak | 0.460 | 0.862 | Weak | |||
Any PVL | Fun− | 5 | 0.585 | 0.327 | −0.057 | 1.228 | 2.196 | Weak | 0.030 | 0.727 | Weak | ||
Fun−/CA− | 4 | 0.273 | 0.331 | −0.365 | 0.933 | 0.557 | Weak | 0.560 | 0.662 | Weak | |||
Fun−/CA+ | 3 | 0.388 | 0.541 | −0.649 | 1.485 | 0.821 | Weak | 0.316 | 0.708 | Weak | |||
Cystic PVL | Fun− | 5 | −0.101 | 0.225 | −0.541 | 0.344 | 0.296 | Mod. | 0.588 | 0.303 | Mod. | ||
Fun−/CA− | 4 | −0.044 | 0.219 | −0.469 | 0.392 | 0.264 | Mod. | 0.961 | 0.325 | Mod. | |||
Fun−/CA+ | 3 | −0.184 | 0.302 | −0.773 | 0.415 | 0.437 | Weak | 0.222 | 0.591 | Weak | |||
Any IVH | Fun− | 6 | 0.680 | 0.190 | 0.295 | 1.044 | 34.25 | Strong | <0.001 | 0.493 | Weak | ||
Fun−/CA− | 6 | 0.750 | 0.193 | 0.366 | 1.125 | 65.57 | Strong | <0.001 | 0.419 | Weak | |||
Fun−/CA+ | 7 | 0.423 | 0.218 | −0.005 | 0.853 | 1.896 | Weak | 0.026 | 0.662 | Weak | |||
Severe IVH | Fun− | 9 | 0.532 | 0.188 | 0.140 | 0.877 | 7.385 | Mod. | <0.001 | 0.632 | Weak | ||
Fun−/CA− | 9 | 0.593 | 0.191 | 0.191 | 0.945 | 10.22 | Strong | 0.001 | 0.758 | Weak | |||
Fun−/CA+ | 9 | 0.079 | 0.216 | −0.339 | 0.504 | 0.275 | Mod. | 0.709 | 0.362 | Weak | |||
Any NEC | Fun− | 2 | 0.273 | 0.549 | −0.791 | 1.377 | 0.730 | Weak | 0.637 | 0.929 | Weak | ||
Fun−/CA− | 2 | 0.271 | 0.570 | −0.843 | 1.407 | 0.743 | Weak | 0.641 | 0.946 | Weak | |||
Fun−/CA+ | 3 | 0.065 | 0.545 | −0.997 | 1.163 | 0.649 | Weak | 0.880 | 0.728 | Weak | |||
NEC ≥ stage 2 | Fun− | 8 | 0.159 | 0.285 | −0.392 | 0.728 | 0.398 | Weak | 0.535 | 10.85 | Strong | ||
Fun−/CA− | 9 | 0.166 | 0.320 | −0.453 | 0.821 | 0.422 | Weak | 0.549 | 33.68 | Strong | |||
Fun−/CA+ | 8 | −0.207 | 0.241 | −0.674 | 0.270 | 0.431 | Weak | 0.275 | 0.533 | Weak | |||
NEC or death | Fun− | 2 | −0.390 | 0.406 | −1.151 | 0.463 | 0.858 | Weak | 0.267 | 0.996 | Weak | ||
Fun−/CA− | 2 | −0.312 | 0.440 | −1.130 | 0.634 | 0.744 | Weak | 0.724 | 1.193 | Weak | |||
Fun−/CA+ | 2 | −0.514 | 0.404 | −1.281 | 0.319 | 1.280 | Weak | 0.062 | 0.897 | Weak | |||
Any sepsis | Fun− | 10 | 0.260 | 0.144 | −0.020 | 0.566 | 1.165 | Weak | 0.048 | 3.790 | Mod. | ||
Fun−/CA− | 10 | 0.289 | 0.140 | 0.023 | 0.587 | 2.051 | Weak | 0.022 | 2.773 | Weak | |||
Fun−/CA+ | 10 | 0.303 | 0.211 | −0.070 | 0.773 | 0.866 | Weak | 0.091 | 3.090 | Mod. | |||
EOS | Fun− | 6 | 0.673 | 0.286 | 0.111 | 1.255 | 6.655 | Mod. | 0.019 | 4.281 | Mod. | ||
Fun−/CA− | 4 | 0.641 | 0.295 | 0.055 | 1.245 | 4.096 | Mod. | 0.028 | 2.249 | Weak | |||
Fun−/CA+ | 4 | 0.179 | 0.335 | −0.453 | 0.880 | 0.426 | Weak | 0.449 | 1.102 | Weak | |||
LOS | Fun− | 6 | 0.212 | 0.152 | −0.086 | 0.511 | 0.553 | Weak | 0.096 | 0.466 | Weak | ||
Fun−/CA− | 5 | 0.252 | 0.210 | −0.164 | 0.671 | 0.589 | Weak | 0.220 | 0.837 | Weak | |||
Fun−/CA+ | 5 | 0.046 | 0.224 | −0.390 | 0.493 | 0.269 | Mod. | 0.840 | 0.401 | Weak |
Outcome | Control Group | K | OR | 95% CI | p | Heterogeneity | Meta-Regression * | ||
---|---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | I2 (%) | p | p | |||||
Mortality | Fun−/CA− | 12 | 1.162 | 0.721 | 1.874 | 0.537 | 40.3 | 0.072 | 0.179 |
Fun−/CA+ | 12 | 1.840 | 1.163 | 2.911 | 0.009 | 59.8 | 0.004 | ||
Any BPD | Fun−/CA− | 7 | 1.778 | 1.311 | 2.411 | <0.001 | 16.7 | 0.303 | 0.065 |
Fun−/CA+ | 7 | 1.192 | 0.861 | 1.652 | 0.290 | 0.0 | 0.627 | ||
Moderate/severe BPD | Fun−/CA− | 14 | 1.557 | 1.003 | 2.416 | 0.048 | 76.3 | <0.001 | 0.493 |
Fun−/CA+ | 14 | 1.258 | 0.842 | 1.879 | 0.262 | 55.9 | 0.006 | ||
Severe BPD | Fun−/CA− | 3 | 1.669 | 0.460 | 6.056 | 0.436 | 83.7 | 0.002 | 0.915 |
Fun−/CA+ | 3 | 1.322 | 0.822 | 2.124 | 0.250 | 0.0 | 0.497 | ||
BPD or death | Fun−/CA− | 3 | 1.324 | 0.864 | 2.029 | 0.197 | 22.5 | 0.275 | 0.121 |
Fun−/CA+ | 3 | 1.015 | 0.719 | 1.433 | 0.932 | 0.0 | 0.950 | ||
Any ROP | Fun−/CA− | 4 | 1.744 | 1.313 | 2.316 | <0.001 | 10.1 | 0.343 | 0.289 |
Fun−/CA+ | 3 | 1.391 | 0.925 | 2.092 | 0.113 | 0.0 | 0.541 | ||
Severe ROP | Fun−/CA− | 3 | 1.694 | 0.729 | 3.936 | 0.221 | 66.8 | 0.049 | 0.457 |
Fun−/CA+ | 3 | 1.249 | 0.644 | 2.422 | 0.511 | 0.0 | 0.597 | ||
Any PDA | Fun−/CA− | 3 | 1.850 | 0.561 | 6.102 | 0.312 | 80.1 | 0.007 | 0.919 |
Fun−/CA+ | 3 | 1.688 | 0.425 | 6.705 | 0.457 | 76.5 | 0.014 | ||
PDA requiring any treatment | Fun−/CA− | 4 | 1.818 | 0.792 | 4.174 | 0.158 | 88.9 | <0.001 | 0.308 |
Fun−/CA+ | 4 | 1.018 | 0.639 | 1.623 | 0.939 | 43.9 | 0.148 | ||
PDA requiring surgical treatment | Fun−/CA− | 3 | 3.468 | 0.895 | 13.439 | 0.072 | 68.7 | 0.041 | 0.492 |
Fun−/CA+ | 3 | 1.724 | 0.407 | 7.303 | 0.460 | 58.2 | 0.091 | ||
Any PVL | Fun−/CA− | 5 | 1.438 | 0.653 | 3.167 | 0.367 | 29.0 | 0.228 | 0.507 |
Fun−/CA+ | 3 | 1.974 | 0.522 | 7.468 | 0.316 | 0.0 | 0.998 | ||
Cystic PVL | Fun−/CA− | 6 | 0.945 | 0.632 | 1.413 | 0.784 | 0.0 | 0.846 | 0.646 |
Fun−/CA+ | 4 | 0.810 | 0.478 | 1.371 | 0.432 | 0.0 | 0.422 | ||
Any IVH | Fun−/CA− | 6 | 2.223 | 1.566 | 3.155 | <0.001 | 0.000 | 0.627 | 0.210 |
Fun−/CA+ | 7 | 1.580 | 1.056 | 2.364 | 0.026 | 0.000 | 0.451 | ||
Severe IVH | Fun−/CA− | 9 | 1.850 | 1.280 | 2.675 | 0.001 | 17.68 | 0.285 | 0.029 |
Fun−/CA+ | 9 | 1.082 | 0.717 | 1.632 | 0.709 | 0.000 | 0.695 | ||
Any NEC | Fun−/CA− | 2 | 1.592 | 0.226 | 11.222 | 0.641 | 50.66 | 0.155 | 0.678 |
Fun−/CA+ | 3 | 1.113 | 0.277 | 4.477 | 0.880 | 0.000 | 0.699 | ||
Severe NEC | Fun−/CA− | 9 | 1.259 | 0.593 | 2.674 | 0.549 | 68.71 | 0.001 | 0.405 |
Fun−/CA+ | 8 | 0.772 | 0.485 | 1.228 | 0.275 | 0.000 | 0.704 | ||
NEC or death | Fun−/CA− | 2 | 0.778 | 0.194 | 3.125 | 0.724 | 57.65 | 0.124 | 0.701 |
Fun−/CA+ | 2 | 0.499 | 0.240 | 1.037 | 0.062 | 0.000 | 0.617 | ||
Any sepsis | Fun−/CA− | 10 | 1.363 | 1.047 | 1.774 | 0.022 | 42.05 | 0.077 | 0.991 |
Fun−/CA+ | 10 | 1.435 | 0.943 | 2.184 | 0.091 | 58.61 | 0.010 | ||
Early-onset sepsis | Fun−/CA− | 4 | 2.153 | 1.085 | 4.270 | 0.028 | 60.88 | 0.053 | 0.400 |
Fun−/CA+ | 4 | 1.383 | 0.597 | 3.203 | 0.449 | 55.49 | 0.081 | ||
Late-onset sepsis | Fun−/CA− | 5 | 1.315 | 0.849 | 2.036 | 0.220 | 33.92 | 0.195 | 0.458 |
Fun−/CA+ | 5 | 1.043 | 0.693 | 1.570 | 0.840 | 0.000 | 0.591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hundscheid, T.M.; Huizing, M.J.; Villamor-Martinez, E.; Bartoš, F.; Villamor, E. Association of Funisitis with Short-Term Outcomes of Prematurity: A Frequentist and Bayesian Meta-Analysis. Antioxidants 2023, 12, 534. https://doi.org/10.3390/antiox12020534
Hundscheid TM, Huizing MJ, Villamor-Martinez E, Bartoš F, Villamor E. Association of Funisitis with Short-Term Outcomes of Prematurity: A Frequentist and Bayesian Meta-Analysis. Antioxidants. 2023; 12(2):534. https://doi.org/10.3390/antiox12020534
Chicago/Turabian StyleHundscheid, Tamara Maria, Maurice Jacob Huizing, Eduardo Villamor-Martinez, František Bartoš, and Eduardo Villamor. 2023. "Association of Funisitis with Short-Term Outcomes of Prematurity: A Frequentist and Bayesian Meta-Analysis" Antioxidants 12, no. 2: 534. https://doi.org/10.3390/antiox12020534
APA StyleHundscheid, T. M., Huizing, M. J., Villamor-Martinez, E., Bartoš, F., & Villamor, E. (2023). Association of Funisitis with Short-Term Outcomes of Prematurity: A Frequentist and Bayesian Meta-Analysis. Antioxidants, 12(2), 534. https://doi.org/10.3390/antiox12020534