Withania somnifera L.: Phenolic Compounds Composition and Biological Activity of Commercial Samples and Its Aqueous and Hydromethanolic Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Standard Solutions
2.3. Sample Preparation
2.4. Phytochemical Composition
2.4.1. Chromatographic Conditions
2.4.2. Total Phenolic Compounds (TPC), Flavonoid (TF), and Phenolic Acid (TPA) Contents
2.4.3. L(+) Ascorbic Acid Content
2.5. Bioactive Properties
2.5.1. Antioxidant Activity
2.5.2. Antibacterial Activity
Bacterial Strains and Growth Conditions
Agar Well Diffusion Assay
MIC and MBC Assays
2.5.3. AChE and BChE Inhibitory Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Validation Method for the Identification of Phenolic Compounds
3.2. Analysis of TPC, TF, TPA and ASA
3.3. Evaluation of Antioxidant Activity
3.4. Analysis of Individual Phenolic Compounds
3.5. Evaluation of Antibacterial Activity
3.6. AChE and BChE Inhibition Results
3.7. Correlation Analysis
3.8. Principal Components Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winters, M. Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern. Med. Rev. 2006, 11, 269–277. [Google Scholar] [PubMed]
- Ven Murthy, M.R.; Ranjekar, P.K.; Ramassamy, C.; Deshpande, M. Scientific Basis for the Use of Indian Ayurvedic Medicinal Plants in the Treatment of Neurodegenerative Disorders: 1. Ashwagandha. Cent. Nerv. Syst. Agents Med. Chem. 2010, 10, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Mabberley, D.J. Mabberley’s Plant-Book: A Portable Dictionary of Plants, Their Classification and Uses; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0521820714. [Google Scholar]
- Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 2009, 14, 2373–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, S.K.; Dhir, A. Withania somnifera: An Indian ginseng. Prog. Neuro-Psychopharmacology Biol. Psychiatry 2008, 32, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Marderosion, A.D. The Review of Natural Products, Facts and Comparisons; Lippincott Williams & Wilkins: St. Louis, MI, USA, 2001. [Google Scholar]
- Upton, R.; Graff, A.; Evans, F. Ashwagandha Root: Withania Somnifera: Analytical, Quality Control, and Therapeutic Monograph; American Herbal Pharmacopoeia: Santa Cruz, CA, USA, 2000. [Google Scholar]
- Chandra, P.; Kannujia, R.; Saxena, A.; Srivastava, M.; Bahadur, L.; Pal, M.; Singh, B.P.; Kumar Ojha, S.; Kumar, B. Quantitative determination of multi markers in five varieties of Withania somnifera using ultra-high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometer combined with multivariate analysis: Application. J. Pharm. Biomed. Anal. 2016, 129, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Gurav, S.; Wanjari, M.; Bhole, R.; Raut, N.; Prasad, S.; Saoji, S.; Chikhale, R.; Khanal, P.; Pant, A.; Ayyanar, M.; et al. Ethnological validation of Ashwagandha (Withania somnifera L. Dunal) ghrita as ‘Vajikarana Rasayana’: In-silico, in-vitro and in-vivo approach. J. Ethnopharmacol. 2023, 304, 116064. [Google Scholar] [CrossRef]
- Singh, N.; Bhalla, M.; de Jager, P.; Gilca, M. An overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. African J. Tradit. Complement. Altern. Med. 2011, 8, 208–213. [Google Scholar] [CrossRef]
- Kaur, K.; Rani, G.; Widodo, N.; Nagpal, A.; Taira, K.; Kaul, S.C.; Wadhwa, R. Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food Chem. Toxicol. 2004, 42, 2015–2020. [Google Scholar] [CrossRef]
- Hussain, S.A.; Panjagari, N.R.; Singh, R.R.B.; Patil, G.R. Potential Herbs and Herbal Nutraceuticals: Food Applications and Their Interactions with Food Components. Crit. Rev. Food Sci. Nutr. 2015, 55, 94–122. [Google Scholar] [CrossRef]
- Azgomi, R.N.D.; Zomorrodi, A.; Nazemyieh, H.; Fazljou, S.M.B.; Bazargani, H.S.; Nejatbakhsh, F.; Jazani, A.M.; Asrbadr, Y.A. Effects of Withania somnifera on Reproductive System: A Systematic Review of the Available Evidence. Biomed Res. Int. 2018, 2018, 4076430. [Google Scholar] [CrossRef] [Green Version]
- Bhat, J.A.; Akther, T.; Najar, R.A.; Rasool, F.; Hamid, A. Withania somnifera (L.) Dunal (Ashwagandha); current understanding and future prospect as a potential drug candidate. Front. Pharmacol. 2022, 13, 1029123. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.H.; Narsimhamurthy, K.; Singh, G. Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology 2008, 9, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, R.; Cottiglia, F.; Maccioni, E.; Talani, G.; Sanna, E.; Bassareo, V.; Kasture, S.B.; Acquas, E. The biologically active compound of Withania somnifera (L.) Dunal, docosanyl ferulate, is endowed with potent anxiolytic properties but devoid of typical benzodiazepine-like side effects. J. Psychopharmacol. 2021, 35, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.V.; Fathima, S.N.; Mote, R. Hydroalcoholic Extract of Ashwagandha Improves Sleep by Modulating GABA/Histamine Receptors and EEG Slow-Wave Pattern in In Vitro-In Vivo Experimental Models. Prev. Nutr. Food Sci. 2022, 27, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Ziauddin, M.; Phansalkar, N.; Patki, P.; Diwanay, S.; Patwardhan, B. Studies on the immunomodulatory effects of Ashwagandha. J. Ethnopharmacol. 1996, 50, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.; Gilda, S.; Sharma, S.; Jagtap, S.; Paradkar, A.; Mahadik, K.; Ranjekar, P.; Harsulkar, A. Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-restorative activity in TNBS-induced Inflammatory Bowel Disease. BMC Complement. Altern. Med. 2011, 11, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miraj, S. Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): A review. Altern. Med. Rev. 2000, 5, 334–346. [Google Scholar]
- Patil, D.; Gautam, M.; Mishra, S.; Karupothula, S.; Gairola, S.; Jadhav, S.; Pawar, S.; Patwardhan, B. Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: Application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J. Pharm. Biomed. Anal. 2013, 80, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.B.; Hahm, E.-R.; Kim, S.-H.; Singh, S. V Withaferin A Inhibits Fatty Acid Synthesis in Rat Mammary Tumors. Cancer Prev. Res. 2023, 16, 5–16. [Google Scholar] [CrossRef]
- Nile, S.H.; Liang, Y.; Wang, Z.; Zheng, J.; Sun, C.; Nile, A.; Patel, G.; Kai, G. Chemical composition, cytotoxic and pro-inflammatory enzyme inhibitory properties of Withania somnifera (L.) Dunal root extracts. S. Afr. J. Bot. 2021, 151, 46–53. [Google Scholar] [CrossRef]
- Saleem, S.; Muhammad, G.; Hussain, M.A.; Altaf, M.; Abbas Bukhari, S.N. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran. J. Basic Med. Sci. 2020, 23, 1501–1526. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, S.; Ghule, C.; Mirgal, A.; Girme, A.; Hingorani, L. Recent findings by high-performance thin-layer chromatographic separation for a comprehensive analysis of Withania somnifera by densitometry and mass spectrometry: An assessment to quality and adulteration. JPC-J. Planar Chromatogr.-Mod. TLC 2022, 35, 439–451. [Google Scholar] [CrossRef]
- Saini, D.; Madan, K.; Chauhan, S. Screening of Phytoconstituents from Traditional Plants against SARSCoV-2 using Molecular Docking Approach. Lett. Drug Des. Discov. 2022, 19, 1022–1038. [Google Scholar]
- Kumar, V.; Dey, A.; Hadimani, M.B.; Marcovic, T.; Emerald, M. Chemistry and pharmacology of withania somnifera: An update. Tang Humanit. Med. 2015, 5, 1.1–1.13. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, T.S.; Vale, R.C.; Almeida, R.R.; Ferreira, T.P.S.; Guimarães, L.G.L. Antioxidant potential and its correlation with the contents of phenolic compounds and flavonoids of methanolic extracts from different medicinal plants. Rev. Virtual Quim. 2017, 9, 1546–1559. [Google Scholar] [CrossRef]
- Latheef, S.K.; Dhama, K.; Samad, H.A.; Wani, M.Y.; Kumar, M.A.; Palanivelu, M.; Malik, Y.S.; Singh, S.D.; Singh, R. Immunomodulatory and prophylactic efficacy of herbal extracts against experimentally induced chicken infectious anaemia in chicks: Assessing the viral load and cell mediated immunity. Virus Dis. 2017, 28, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Dhanjal, J.K.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. J. Biomol. Struct. Dyn. 2020, 39, 3842–3854. [Google Scholar] [CrossRef]
- Singh, R.; Goel, S.; Bourgeade, P.; Aleya, L.; Tewari, D. Ayurveda Rasayana as antivirals and immunomodulators: Potential applications in COVID-19. Environ. Sci. Pollut. Res. 2021, 28, 55925–55951. [Google Scholar] [CrossRef]
- Mekbib, S.B.; Regnier, T.J.C.; Sivakumar, D.; Korsten, L. Evaluation of ethiopian plant extracts, Acacia seyal and Withania somnifera, to control green mould and ensure quality maintenance of citrus (Citrus sinensis L.). Fruits 2009, 64, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Tomar, V.; Beuerle, T.; Sircar, D. A validated HPTLC method for the simultaneous quantifications of three phenolic acids and three withanolides from Withania somnifera plants and its herbal products. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1124, 154–160. [Google Scholar] [CrossRef]
- Alam, N.; Hossain, M.; Khalil, M.I.; Moniruzzaman, M.; Sulaiman, S.A.; Gan, S.H. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complement. Altern. Med. 2011, 11, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polumackanycz, M.; Konieczynski, P.; Orhan, I.E.; Abaci, N.; Viapiana, A. Chemical Composition, Antioxidant and Anti-Enzymatic Activity of Golden Root (Rhodiola rosea L.) Commercial Samples. Antioxidants 2022, 11, 919. [Google Scholar] [CrossRef] [PubMed]
- Viapiana, A.; Struck-Lewicka, W.; Konieczynski, P.; Wesolowski, M.; Kaliszan, R. An approach based on HPLC-fingerprint and chemometrics to quality consistency evaluation of Matricaria chamomilla L. commercial samples. Front. Plant Sci. 2016, 7, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, S.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- European Medicines Agency European Pharmacopoeia 2002, 1308.31. Available online: https://www.ema.europa.eu/en/glossary/european-pharmacopoeia (accessed on 1 January 2023).
- Health, P.M. Polish Pharmacopoeia VI 2002, 150. Available online: https://www.urpl.gov.pl/en/polish-pharmacopoeia (accessed on 1 January 2023).
- Abdelmageed, O.H.; Khashaba, P.Y.; Askal, H.F.; Saleh, G.A.; Refaat, I.H. Selective spectrophotometric determination of ascorbic acid in drugs and foods. Talanta 1995, 42, 573–579. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Benzie, I.F.; Straint, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘“Antioxidant Power”’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polumackanycz, M.; Kaszuba, M.; Konopacka, A.; Marzec-Wróblewska, U.; Wesolowski, M.; Waleron, K.; Bucinski, A.; Agnieszka, V. Phenolic Composition and Biological Properties of Wild and Commercial Dog Rose Fruits and Leaves Milena. Molecules 2020, 25, 5272. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Sledzinski, T.; Goyke, E.; Wesolowski, M.; Viapiana, A. A comparative study on the phenolic composition and biological activities of Morus alba L. commercial samples. Molecules 2019, 24, 3082. [Google Scholar] [CrossRef] [Green Version]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, B.; Kumar, N.; Ahmad, A.H.; Rastogi, S.K. Influence of phytochemical composition on in vitro antioxidant and reducing activities of Indian ginseng [Withania somnifera (L.) Dunal] root extracts. J. Ginseng Res. 2018, 42, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.Y.; Chandra, D.R. In vitro screening of Ashwagandha root extracts for the maximum functional components. Pharma Innov. 2018, 7, 12–16. [Google Scholar]
- Mojzer, E.B.; Hrnčič, M.K.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Pittaluga, A.; Grilli, M.; Zunin, P.; Boggia, R. Bud-derivatives, a novel source of polyphenols and how different extraction processes affect their composition. Foods 2020, 9, 1343. [Google Scholar] [CrossRef]
- Islam, M.S.; Yoshimoto, M.; Ishiguro, K.; Okuno, S.; Yamakawa, O. Effect of artificial shading and temperature on radical scavenging activity and polyphenolic composition in sweetpotato (Ipomoea batatas L.) leaves. J. Am. Soc. Hortic. Sci. 2003, 128, 182–187. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, A.; Barros, L.; Ferreira, I. A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes. J. Sci. Food Agric. 2017, 98, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Chaudhary, N.; Sabikhi, L.; Hussain, S.A.; Kumar, M.H.S. A comparative study of the antioxidant and ACE inhibitory activities of selected herbal extracts. J. Herb. Med. 2020, 22, 100343. [Google Scholar] [CrossRef]
- Paul, R.K. In Vitro Antioxidant Activity of Withania somnifera Root. Int. J. Adv. Res. Chem. Sci. 2016, 3, 45–56. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Ferreira, I.C.F.R. Analytical tools used to distinguish chemical profiles of plants widely consumed as infusions and dietary supplements: Artichoke, milk thistle, and borututu. Food Anal. Methods 2014, 7, 1604–1611. [Google Scholar] [CrossRef] [Green Version]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Proestos, C.; Komaitis, M. Ultrasonically assisted extraction of phenolic compounds from aromatic plants: Comparison with conventional extraction technics. J. Food Qual. 2006, 29, 567–582. [Google Scholar] [CrossRef]
- Nile, S.H.; Nile, A.; Gansukh, E.; Baskar, V.; Kai, G. Subcritical water extraction of withanosides and withanolides from ashwagandha (Withania somnifera L) and their biological activities. Food Chem. Toxicol. 2019, 132, 110659. [Google Scholar] [CrossRef]
- Fernando, I.D.N.S.; Abeysinghe, D.C.; Dharmadasa, R.M. Determination of phenolic contents and antioxidant capacity of different parts of Withania somnifera (L.) Dunal. from three different growth stages. Ind. Crops Prod. 2013, 50, 537–539. [Google Scholar] [CrossRef]
- Elmastaş, M.; Demir, A.; Genç, N.; Dölek, Ü.; Güneş, M. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef]
- Datta, S.; Kumar Pal, N.; Nandy, A.K. Inhibition of the emergence of multi drug resistant Staphylococcus aureus by Withania somnifera root extracts. Asian Pac. J. Trop. Med. 2011, 4, 917–920. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Dhillon, S.; Rani, G.; Nagpal, A. The in vitro antibacterial/synergistic activities of Withania somnifera extracts. Fitoterapia 2004, 75, 385–388. [Google Scholar] [CrossRef]
- Rizwana, H.; Al Hazzani, A.A.; Shehata, A.I.; Moubayed, N.M.S. Antibacterial potential of Withania somnifera L. against human pathogenic bacteria. African J. Microbiol. Res. 2012, 6, 4810–4815. [Google Scholar] [CrossRef]
- Mehrotra, V.; Mehrotra, S.; Kirar, V.; Shyam, R.; Misra, K.; Srivastava, A.K.; Nandi, S.P. Antioxidant and antimicrobial activities of aqueous extract of Withania somnifera against methicillin-resistant Staphylococcus aureus. J. Microbiol. Biotechnol. Res. Sch. Res. Libr. J. Microbiol. Biotech. Res 2011, 1, 40–45. [Google Scholar]
- Murugan, R.; Rajesh, R.; Seenivasan, B.; Haridevamuthu, B.; Sudhakaran, G.; Guru, A.; Rajagopal, R.; Kuppusamy, P.; Juliet, A.; Gopinath, P.; et al. Withaferin A targets the membrane of Pseudomonas aeruginosa and mitigates the inflammation in zebrafish larvae; an in vitro and in vivo approach. Microb. Pathog. 2022, 172, 105778. [Google Scholar] [CrossRef] [PubMed]
- Gebeyehu, A.G.; Walle, K.Z.; Birhanu, M.Z.; Gebeyehu, R. Structural Elucidation and Antibacterial Activity Studies of Leaf Extracts of Withania somnifera. Indones. J. Chem. 2022, 22, 1586–1595. [Google Scholar] [CrossRef]
- Ha, J.W.; Yu, J.S.; Lee, B.S.; Kang, D.M.; Ahn, M.J.; Kim, J.K.; Kim, K.H. Structural Characterization of Withanolide Glycosides from the Roots of Withania somnifera and Their Potential Biological Activities. Plants 2022, 11, 767. [Google Scholar] [CrossRef] [PubMed]
- Balkrishna, A.; Gupta, A.K.; Singh, K.; Haldar, S.; Varshney, A. Effects of fatty acids in super critical fluid extracted fixed oil from Withania somnifera seeds on Gram-negative Salmonella enterica biofilms. Phytomedicine Plus 2021, 1, 100047. [Google Scholar] [CrossRef]
- Mehta, J.; Rolta, R.; Dev, K. Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. J. Ethnopharmacol. 2022, 282, 114589. [Google Scholar] [CrossRef]
- Khandia, R.; Viswanathan, N.; Singhal, S.; Alqahtani, T.; Almikhlafi, A.M.; Simonov, N.A.; Ashraf, M.G. Ameliorative Effects of Phytomedicines on Alzheimer’s Patients. Curr. Alzheimer Res. 2022, 19, 420–439. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, S.B.; Shah, Z.; Asiri, A.M. Withanolides: Biologically Active Constituents in the Treatment of Alzheimer’s Disease. Med. Chem. 2016, 12, 238–256. [Google Scholar] [CrossRef]
- Vinutha, B.; Prashanth, D.; Salma, K.; Sreeja, S.L.; Pratiti, D.; Padmaja, R.; Radhika, S.; Amit, A.; Venkateshwarlu, K.; Deepak, M. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 2007, 109, 359–363. [Google Scholar] [CrossRef]
- Durg, S.; Dhadde, S.B.; Vandal, R.; Shivakumar, B.S.; Charan, C.S. Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. J. Pharm. Pharmacol. 2015, 67, 879–899. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Kumar, K.H.; Bhushan, B.; Saharan, V. Ashwagandha root extract inhibits acetylcholine esterase, protein modification and ameliorates H2O2-Induced oxidative stress in rat lymphocytes. Pharmacogn. J. 2017, 9, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Pai, V.; Chandrashekar, K.S.; Pai, A.; Muralidharan, A.; Setty, M.M. In-vitro and in-silico correlation studies of natural ache inhibitors: An approach towards Alzheimer’s disease. Rasayan J. Chem. 2021, 2021, 83–91. [Google Scholar] [CrossRef]
- Choudhary, M.I.; Nawaz, S.A.; Zaheer, U.-H.; Lodhi, M.A.; Ghayur, M.N.; Jalil, S.; Riaz, N.; Yousuf, S.; Malik, A.; Gilani, A.H.; et al. Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem. Biophys. Res. Commun. 2005, 334, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R.; Liebmann, A.; Bhattacharya, S.K.; Kumar, A.; Ghosal, S.; Bigl, V. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and gabaergic markers in rat brain. Neurochem. Int. 1997, 30, 181–190. [Google Scholar] [CrossRef]
- Pandey, A.; Bani, S.; Dutt, P.; Kumar Satti, N.; Avtar Suri, K.; Nabi Qazi, G. Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine 2018, 102, 211–221. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Suhalka, P.; Sukhwal, P.; Jain, A.; Sharma, D. Inhibition of acetylcholinesterase and NO synthase activity in the mice brain: Effect of a Withania somnifera leaf juice. Neurophysiology 2012, 44, 301–308. [Google Scholar] [CrossRef]
- Singh, V.K.; Mundkinajeddu, D.; Koshy, R.; Bhat, D.; Nithin, J.; Balaji, K.R.; Gayathri, A.G. A Bioassay Approach To Complement Chemical Standardization of Ashwagandha Root Extracts. Rasayan J. Chem. 2022, 15, 2258–2266. [Google Scholar] [CrossRef]
- Khattak, S.; Saeed-Ur-Rehman; Shah, H.U.; Khan, T.; Ahmad, M. In vitro enzyme inhibition activities of crude ethanolic extracts derived from medicinal plants of Pakistan. Nat. Prod. Res. 2005, 19, 567–571. [Google Scholar] [CrossRef]
- Raza, M.A.; Danish, M.; Mushtaq, M.; Sumrra, S.H.; Saqib, Z.; Ur Rehman, S. Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant. Open Chem. 2017, 15, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Tousif, M.I.; Nazir, M.; Saleem, M.; Tauseef, S.; Uddin, R.; Altaf, M.; Zengin, G.; Ak, G.; Ozturk, R.B.; Mahomoodally, M.F. Exploring the industrial importance of a miracle herb Withania somnifera (L.) Dunal: Authentication through chemical profiling, in vitro studies and computational analyses. Process Biochem. 2022, 121, 514–528. [Google Scholar] [CrossRef]
- Mathew, M.; Subramanian, S. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS ONE 2014, 9, e0086804. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Srivastava, V.; Kabir, M.; Samal, M.; Insaf, A.; Ibrahim, M.; Zahiruddin, S.; Ahmad, S. Development of Synergy-Based Combination for Learning and Memory Using in vitro, in vivo and TLC-MS-Bioautographic Studies. Front. Pharmacol. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
No. | Sample Name on the Package | Part of the Plant | Confection | Place of Origin of Plant Material | Place of Manufacture | Retailer Name |
---|---|---|---|---|---|---|
1. | Gold Ashwagandha | Root | Capsule | Unknown | Poland | Gemini |
2. | Ashwagandha | Root | Tablet | India | Sweden | Gemini |
3. | Ashwagandha | Root | Capsule | Unknown | USA | Gemini |
4. | Ashwagandha | Root | Capsule | India | Germany | Fragaria |
5. | Bicaps Ashwagandha | Root | Capsule | Unknown | Poland | Fragaria |
6. | Ashvagandha | Rhizome | Capsule | India | India | Eko-Ziola |
7. | Ashwagandha Root | Root | Solid powder | Unknown | Poland | Eko-Ziola |
8. | Ashwagandha | Root | Capsule | Unknown | USA | Gemini |
9. | Ashwagandha 100% Natural | Whole plant | Tablet | Unknown | Poland | Eko-Ziola |
10. | Ashwagandha (root) in powder | Root | Ground root | Unknown | Poland | Gemini |
11. | Ashwagandha | Root | Crushed root | Unknown | Poland | Nagietek |
12. | Ashwagandha | Root | Sliced root | India | Poland | Auchan |
13. | Ashwagandha | Root | Ground root | India | Poland | Auchan |
14. | Ashwagandha | Root | Capsule | Unknown | USA | Gemini |
15. | Bio Ashwagandha | Root | Ground root | India | Poland | Fragaria |
16. | Ashwagandha | Root | Ground root | India | Poland | Nagietek |
17. | Ashwagandha | Root | Capsule | India | Poland | Fragaria |
18. | Ashwagandha | Root | Crushed root | India | Poland | Nagietek |
Compounds | Regression Equation a | Linearity (µg/mL) | R2 | LODs (µg/mL) | LOQs (µg/mL) |
---|---|---|---|---|---|
GA | y = 1160x – 367,737 | 55.6–278 | 0.9872 | 2.5 | 8.4 |
CAT | y = 58,916x – 28,179 | 52.1–260.9 | 0.9971 | 3.5 | 13.2 |
VA | y = 25,058x + 109,038 | 54.8–274.2 | 0.9871 | 2.7 | 9.5 |
CA | y = 28,663x + 307,368 | 44.4–222.5 | 0.9985 | 3.4 | 12.5 |
pCA | y = 11,754x + 69,779 | 50.6–251.3 | 0.9956 | 3.1 | 12.0 |
FA | y = 21,142x – 309,335 | 55.1–265.4 | 0.9978 | 2.6 | 9.8 |
SYN | y = 19,097x − 296,645 | 57.2–286.5 | 0.9981 | 2.9 | 10.6 |
RUT | y = 20,735x + 44,710 | 47.6–238.0 | 0.9978 | 2.0 | 7.1 |
Q | y = 48,916x + 63,779 | 50.1–250.3 | 0.9983 | 3.1 | 9.7 |
NAR | y = 41,794x – 22,317 | 54.0–270.4 | 0.9934 | 2.6 | 9.1 |
TPC | TF | TPA | ASA | DPPH | ABTS | FRAP | |
---|---|---|---|---|---|---|---|
Hydromethanolic Extracts | mg GAE/g dw | mg QE/g dw | mg CAE/g dw | mg ASA/g dw | mg TE/100 g DW | mg g DW | µmol Fe2+/g dw |
1 | 0.90 ± 0.12 e–g*† | 0.18 ± 0.07 fg* | 0.11 ± 0.09 h* | 7.82 ± 1.72 e–g* | 19.48 ± 2.06 e* | 16.65 ± 1.65 e* | 8.03 ± 0.09 e–g* |
2 | 2.03 ± 0.07 c* | 0.31 ± 0.02 c–f* | 2.04 ± 0.13 bc* | 13.32 ± 2.39 de* | 20.46 ± 2.1 de6* | 26.75 ± 1.59 e* | 9.27 ± 0.69 ef* |
3 | 0.90 ± 0.01 e–g* | 0.21 ± 0.01 e–g* | 1.25 ± 0.10 de* | 6.77 ± 1.91 e–g* | 81.11 ± 2.47 a* | 47.10 ± 4.83 d* | 5.30 ± 0.32 gh* |
4 | 1.75 ± 0.28 cd* | 0.64 ± 0.04 a* | 1.68 ± 0.13 cd* | 22.23 ± 3.53 bc* | 42.53 ± 3.53 cd* | 27.29 ± 0.48 e* | 34.53 ± 2.48 b |
5 | 6.96 ± 0.04 a* | 0.26 ± 0.03 d–g* | 2.45 ± 0.10 ab* | 35.90 ± 1.10 a | 47.21 ± 5.66 c* | 122.54 ± 3.91 a* | 18.56 ± 1.54 c* |
6 | 0.65 ± 0.09 g* | 0.32 ± 0.01 c–e* | 2.67 ± 0.09 a* | 35.46 ± 0.96 a* | 32.71 ± 4.58 c–e* | 124.84 ± 6.67 a* | 19.30 ± 2.06 c* |
7 | 1.19 ± 0.03 d–g* | 0.40 ± 0.03 bc* | 0.54 ± 0.11 f–h* | 24.76 ± 2.84 b* | 22.16 ± 1.89 de* | 25.15 ± 6.41 e* | 10.70 ± 0.76 de* |
8 | 3.80 ± 0.61 b* | 0.48 ± 0.07 b* | 2.71 ± 0.81 a* | 17.06 ± 2.81 cd* | 52.96 ± 4.98 bc* | 99.92 ± 6.77 b* | 45.57 ± 0.13 a* |
9 | 0.82 ± 0.09 e–g* | 0.35 ± 0.04 cd* | 1.84 ± 0.39 c* | 20.98 ± 2.69 bc* | 38.36 ± 2.55 c–e* | 75.99 ± 9.86 c | 12.60 ± 0.30 d* |
10 | 0.80 ± 0.07 e–g* | 0.21 ± 0.02 e–g* | 0.32 ± 0.02 gh* | 6.99 ± 2.54 e–g* | 76.45 ± 1.39 a* | 23.47 ± 2.67 e* | 8.51 ± 0.91 ef* |
11 | 0.90 ± 0.22 e–g* | 0.22 ± 0.01 e–g* | 0.36 ± 0.04 gh* | 6.96 ± 0.80 e–g* | 80.82 ± 0.72 a* | 24.88 ± 0.49 e* | 8.29 ± 0.30 e–g* |
12 | 0.67 ± 0.03 fg* | 0.16 ± 0.01 g* | 0.30 ± 0.06 gh* | 11.19 ± 0.57 d–f* | 79.93 ± 2.05 a* | 17.04 ± 2.33 e* | 7.79 ± 0.89 e–g* |
13 | 0.65 ± 0.04 g* | 0.18 ± 0.04 fg* | 1.00 ± 0.05 ef* | 7.23 ± 0.82 e–g* | 80.34 ± 1.2 a* | 22.62 ± 6.26 e* | 13.02 ± 0.80 d |
14 | 1.33 ± 0.17 de* | 0.19 ± 0.03 fg* | 0.47 ± 0.05 gh* | 2.46 ± 0.23 g* | 85.75 ± 1.87 a* | 26.28 ± 2.76 e* | 8.20 ± 1.38 e–g* |
15 | 1.34 ± 0.07 de* | 0.16 ± 0.01 g* | 0.26 ± 0.01 gh* | 2.78 ± 0.43 g* | 87.82 ± 2.65 a* | 19.31 ± 3.46 e* | 10.01 ± 0.94 de* |
16 | 1.29 ± 0.12 d–f* | 0.18 ± 0.02 fg* | 0.30 ± 0.05 gh* | 3.73 ± 0.83 g* | 91.17 ± 0.12 a* | 27.28 ± 2.56 a* | 6.90 ± 0.38 f–h* |
17 | 1.35 ± 0.09 de* | 0.36 ± 0.09 cd* | 0.66 ± 0.02 fg* | 4.57 ± 1.09 fg* | 89.37 ± 2.43 a* | 21.68 ± 9.32 e* | 3.87 ± 0.35 h* |
18 | 1.57 ± 0.38 cd* | 0.19 ± 0.01 fg* | 0.42 ± 0.09 gh* | 3.86 ± 0.26 g* | 71.96 ± 4.55 ab* | 16.54 ± 0.88 e* | 4.55 ± 0.31 h* |
TPC | TF | TPA | ASA | DPPH | ABTS | FRAP | |
Aqueous extracts | mg GAE/g dw | mg QE/g dw | mg CAE/g dw | mg ASA/g dw | mg TE/100 g DW | mg g DW | µmol Fe2+/g dw |
1 | 3.46 ± 0.03 c–f* | 3.41 ± 0.33 ab* | 0.82 ± 0.13 h* | 36.92 ± 1.84 cd* | 281.92 ± 2.66 a* | 48.07 ± 3.36 e–g* | 16.86 ± 4.03 ef* |
2 | 5.19 ± 0.28 bc* | 2.29 ± 0.29 a–c* | 4.66 ± 0.83 de* | 60.42 ± 3.64 a* | 226.13 ± 4.36 bc* | 37.08 ± 3.43 f–h* | 35.54 ± 4.06 a–c* |
3 | 2.99 ± 0.76 d–f* | 2.47 ± 0.53 a–c* | 3.95 ± 0.99 ef* | 35.40 ± 3.31 c–e* | 174.76 ± 9.85 e–g* | 72.97 ± 3.66 bc* | 15.12 ± 2.27 ef* |
4 | 2.48 ± 0.08 ef* | 2.06 ± 0.28 bc* | 6.43 ± 0.35 bc* | 51.96 ± 5.02 ab* | 120.33 ± 5.06 hi* | 42.81 ± 0.91 e–g* | 34.08 ± 2.30 a–c |
5 | 5.06 ± 1.01 bc* | 2.14 ± 0.06 bc* | 7.10 ± 1.75 ab* | 34.11 ± 3.96 c–f | 212.66 ± 9.93 b–d* | 82.23 ± 5.23 a–c* | 9.31 ± 9.72 g* |
6 | 5.95 ± 1.97 a* | 3.60 ± 0.75 a* | 8.16 ± 0.84 a* | 19.54 ± 2.03 gh* | 177.04 ± 9.82 d–g* | 90.04 ± 3.26 a* | 13.87 ± 2.22 f* |
7 | 2.87 ± 0.34 d–f* | 1.62 ± 0.02 c* | 2.49 ± 0.41 fg* | 54.73 ± 5.02 ab* | 127.35 ± 3.46 h* | 54.76 ± 5.86 de* | 14.80 ± 2.63 ef* |
8 | 5.87 ± 0.59 a* | 2.60 ± 0.26 a–c* | 5.68 ± 1.83 cd* | 28.37 ± 2.33 d–g* | 93.66 ± 7.86 i* | 85.88 ± 3.70 ab* | 31.28 ± 6.15 a–d* |
9 | 4.69 ± 0.42 b–d* | 1.62 ± 0.12 c* | 7.67 ± 0.35 ab* | 45.85 ± 4.36 bc* | 189.75 ± 6.72 d–f* | 72.71 ± 4.32 bc | 40.01 ± 3.14 a* |
10 | 3.67 ± 0.08 c–e* | 2.36 ± 0.26 a–c* | 1.20 ± 0.26 gh* | 23.26 ± 2.53 d–h* | 212.18 ± 8.04 b–e* | 85.03 ± 3.13 ab* | 24.33 ± 1.14 c–f* |
11 | 3.29 ± 0.01 d–f* | 2.37 ± 0.20 a–c* | 1.37 ± 0.22 gh* | 23.00 ± 2.57 e–h* | 204.31 ± 9.37 c–e* | 40.47 ± 7.59 e–g* | 18.71 ± 0.78 ef* |
12 | 3.08 ± 0.18 d–f* | 2.20 ± 1.10 a–c* | 0.82 ± 0.28 h* | 21.32 ± 3.03 f–h* | 154.50 ± 4.36 f–h* | 21.31 ± 5.93 h* | 21.31 ± 0.66 d–f* |
13 | 2.57 ± 0.14 ef* | 2.71 ± 0.05 a–c* | 1.43 ± 0.28 gh* | 29.54 ± 2.07 d–g* | 154.67 ± 6.62 f–h* | 26.21 ± 1.57 h* | 13.17 ± 0.73 f |
14 | 4.52 ± 0.38 b–d* | 2.51 ± 0.40 a–c* | 2.62 ± 0.02 fg* | 34.57 ± 1.59 c–f* | 244.23 ± 3.93 b* | 42.40 ± 4.19 e–g* | 21.77 ± 4.60 d–f* |
15 | 3.48 ± 0.31 c–f* | 1.93 ± 0.37 c* | 1.57 ± 0.27 gh* | 27.79 ± 5.65 d–g* | 200.32 ± 8.06 c–e* | 31.58 ± 2.53 gh* | 26.42 ± 5.81 b–e* |
16 | 2.24 ± 0.18 ef* | 2.21 ± 0.47 a–c* | 0.99 ± 0.26 h* | 13.97 ± 3.10 h* | 192.49 ± 9.02 c–e* | 66.03 ± 5.09 cd* | 18.97 ± 2.91 ef* |
17 | 3.12 ± 0.07 d–f* | 1.44 ± 0.22 c* | 5.21 ± 0.37 c–e* | 21.46 ± 2.30 f–h* | 143.26 ±5.48 g–h* | 75.04 ± 5.56 a–c* | 37.61 ± 1.36 ab* |
18 | 1.73 ± 0.23 f* | 2.43 ± 0.90 a–c | 1.44 ± 0.25 gh* | 28.96 ± 3.39 d–g* | 118.91 ± 7.38 hi* | 52.44 ± 5.32 d–f* | 18.14 ± 3.56 ef* |
GA | CAT | VA | CA | FA | SYN | pCA | RUT | Q | NAR | |
---|---|---|---|---|---|---|---|---|---|---|
Hydromethanolic Extracts | ||||||||||
Sample No | (µg/g) | (mg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (mg/g) | (µg/g) |
1 | 136.50 ± 2.81 c† | 1.04 ± 0.23 d* | 106.93 ± 1.32 b* | 305.28 ± 2.43 b | 262.55 ± 3.54 a–c | ND | ND | 1085.06 ± 5.35 a | 1.25 ± 0.03 bc* | 573.38 ± 2.43 a |
2 | 252.71 ± 3.87 b* | 2.37 ± 0.76 b* | ND | 367.33 ± 3.64 b* | 479.74 ± 2.57 a* | ND | 271.91 ± 2.45 c | 764.42 ± 3.52 a–c* | 1.26 ± 0.04 b* | 499.58 ± 3.82 a* |
3 | 125.78 ± 1.36 c* | 1.42 ± 0.67 bc* | 99.08 ± 2.03 b* | 295.96 ± 2.62 b* | 270.47 ± 2.53 a–c | ND | ND | 414.31 ± 4.75 c–e | 1.22 ± 0.06 bc* | 47.76 ± 3.89 c–e |
4 | 288.22 ± 2.71 b* | 6.54 ± 0.32 a* | ND | 360.82 ± 1.75 b* | 458.57 ± 3.75 ab* | 132.56 ± 2.32 b | 277.71 ± 2.63 b* | 747.88 ± 3.86 a–d* | 1.49 ± 0.03 b* | 316.44 ± 2.81 b* |
5 | 120.67 ± 1.18 c* | 1.13 ± 0.12 d* | 150.46 ± 4.21 a* | 331.60 ± 3.67 b* | ND | 185.43 ± 3.72 a* | 241.38 ± 1.34 d | 915.71 ± 4.63 ab* | 0.85 ± 0.03 c | 496.81 ± 3.87 a |
6 | 428.01 ± 2.82 a* | 2.16 ± 0.76 d* | ND | 334.70 ± 3.32 b* | 174.93 ± 1.53 c* | 134.11 ± 2.98 b | 466.77 ± 3.78 a | 431.65 ± 3.57 c–e* | 1.28 ± 0.07 b* | 69.30 ± 3.82 c–e* |
7 | 119.91 ± 2.57 c | 2.28 ± 0.57 b* | 105.64 ± 1.32 b | 312.01 ± 4.04 b | ND | ND | 151.29 ± 1.83 e | 423.91 ± 4.24 c–e | 1.37 ± 0.06 b | 49.22 ± 2.34 c–e |
8 | 118.23 ± 1.52 c* | 5.33 ± 1.67 d* | ND | 505.28 ± 2.52 a* | 238.63 ± 2.56 bc* | 87.89 ± 1.65 c | 278.58 ± 2.43 b | 594.41 ± 5.75 b–e | 2.16 ± 0.12 a* | 174.01 ± 3.89 c* |
9 | 115.02 ± 2.56 c | 0.75 ± 0.12 d* | 104.64 ± 2.43 b* | 313.55 ± 2.45 b* | ND | ND | ND | 373.55 ± 2.54 de | 1.28 ± 0.07 b* | 137.85 ± 2.79 cd* |
10 | 115.85 ± 1.29 c* | 0.95 ± 0.25 d* | ND | 310.57 ± 3.89 b | ND | ND | ND | 421.90 ± 2.87 c–e* | 1.37 ± 0.05 b* | 39.17 ± 1.93 de* |
11 | 123.65 ± 2.82 c* | 1.14 ± 0.57 d* | ND | 327.03 ± 3.49 b | 262.11 ± 2.54 a–c* | ND | ND | 377.81 ± 2.48 de* | 1.46 ± 0.07 b* | ND |
12 | 114.17 ± 3.16 c | 1.05 ± 0.52 d* | 100.90 ± 2.73 b | 305.86 ± 2.10 b | ND | ND | ND | 403.12 ± 3.75 c–e | 1.45 ± 0.03 b* | 26.66 ± 2.79 de |
13 | 117.79 ± 1.27 c | 0.95 ± 0.63 d* | ND | 309.70 ± 3.15 b | 255.37 ± 3.83 bc | ND | ND | 381.22 ± 3.45 de | 1.32 ± 0.08 b* | ND |
14 | 120.69 ± 2.18 c | 1.06 ± 0.29 d* | 101.83 ± 1.83 b* | 309.44 ± 2.07 b | 256.65 ± 3.82 bc | ND | ND | 389.54 ± 4.01 c–e | 1.25 ± 0.06 b* | ND |
15 | 111.67 ± 2.62 c* | 0.81 ± 0.26 d* | ND | 300.01 ± 2.19 b | 244.50 ± 2.96 bc | ND | ND | 743.20 ± 4.24 a–d | 1.32 ± 0.04 b* | 443.46 ± 3.27 ab* |
16 | 122.77 ± 2.17 c | 1.06 ± 0.17 d* | ND | 297.99 ± 2.92 b | 266.68 ± 3.82 a–c | ND | ND | 391.45 ± 3.29 c–e | 1.40 ± 0.06 b* | ND |
17 | 114.70 ± 1.72 c | 0.75 ± 0.52 d* | 101.63 ± 2.10 b* | 328.55 ± 3.56 b | ND | ND | ND | 361.81 ± 2.08 e* | 1.23 ± 0.07 bc | ND |
18 | 108.92 ± 1.96 c | 0.84 ± 0.13 d* | ND | 297.64 ± 2.91 b | ND | ND | ND | 360.34 ± 1.92 e | 1.26 ± 0.04 b* | ND |
GA | CAT | VA | CA | FA | SYN | pCA | RUT | Q | NAR | |
Aqueous extracts | ||||||||||
Sample no | (mg/g) | (mg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (mg/g) | (mg/g) |
1 | ND | 6.66 ± 1.02 ef* | 705.71 ± 1.78 d* | ND | ND | 95.07 ± 1.04 a | ND | ND | 1.06 ± 0.03 ab* | ND |
2 | 0.92 ± 0.05 cd* | 9.44 ± 1.87 bc* | 986.42 ± 2.87 a | 633.50 ± 1.32 a* | 264.77 ± 2.19 a* | 34.45 ± 0.43 c | 58.18 ± 1.43 d | 337.27 ± 2.03 b* | 0.65 ± 0.05 ab* | 1.60 ± 0.21 c* |
3 | 0.95 ± 0.04 b–d* | 7.04 ± 0.84 d–f* | 674.14 ± 2.56 e* | 377.88 ± 1.92 b* | ND | ND | 109.28 ± 1.53 a | ND | 0.68 ± 0.04 ab* | ND |
4 | 1.95 ± 0.08 a* | 8.71 ± 0.68 b–d* | 103.96 ± 1.48 h | 340.13 ± 1.78 b* | 297.31 ± 1.88 a* | ND | 89.27 ± 1.93 b* | 105.23 ± 1.73 e* | 0.37 ± 0.03 bc* | 0.91 ± 0.06 d* |
5 | 1.04 ± 0.05 b* | 11.93 ± 1.79 a* | 736.68 ± 2.77 c* | 102.93 ± 1.83 d* | 186.44 ± 1.76 b | 41.04 ± 0.54 b* | 25.09 ± 0.43 f | 115.52 ± 2.94 e* | ND | ND |
6 | 0.92 ± 0.04 cd* | 7.69 ± 2.75 c–f* | 884.32 ± 1.82 b | 273.31 ± 1.89 c* | 277.94 ± 2.01 a* | ND | 15.22 ± 0.69 g | 357.07 ± 4.92 ab* | 0.68 ± 0.03 ab* | 1.67 ± 0.04 c* |
7 | ND | 7.70 ± 1.88 c–f* | ND | ND | ND | ND | 62.23 ± 0.88 d | ND | ND | ND |
8 | 1.01 ± 0.03 bc* | 10.50 ± 2.96 ab* | 142.42 ± 1.78 g | 129.09 ± 2.04 e* | 291.33 ± 1.89 a* | ND | 50.12 ± 0.72 e | 199.28 ± 2.12 d* | 0.72 ± 0.05 ab* | 1.77 ± 0.08 c* |
9 | ND | 8.12 ± 2.03 c–e* | 874.62 ± 3.52 b* | 245.02 ± 2.12 c* | 204.39 ± 2.97 b | ND | 23.43 ± 0.65 f | 376.21 ± 1.93 a* | 0.33 ± 0.01 c* | 0.81 ± 0.03 d |
10 | 0.95 ± 0.06 b–d* | 6.48 ± 0.78 ef* | ND | ND | ND | ND | ND | ND | 0.99 ± 0.02 ab* | 2.41 ± 0.44 b* |
11 | 0.88 ± 0.04 d* | 6.78 ± 0.52 ef* | ND | ND | 271.60 ± 1.67 a* | ND | ND | ND | 1.03 ± 0.05 ab* | ND |
12 | ND | 6.48 ± 0.96 ef* | ND | ND | ND | ND | ND | ND | 0.74 ± 0.04 ab* | ND |
13 | ND | 6.42 ± 0.99 ef* | ND | ND | ND | ND | ND | ND | 1.02 ± 0.03 ab* | ND |
14 | ND | 6.66 ± 0.76 ef* | 710.96 ± 2.26 d* | ND | ND | ND | 76.11 ± 1.02 c | ND | 1.07 ± 0.04 a* | ND |
15 | 0.87 ± 0.05 d* | 6.34 ± 0.77 ef* | ND | ND | ND | ND | ND | ND | 0.82 ± 0.05 ab* | 2.49 ± 0.12 b* |
16 | ND | 6.53 ± 0.85 ef* | ND | ND | ND | ND | ND | ND | 1.06 ± 0.03 ab* | ND |
17 | ND | 7.64 ± 1.74 c–f* | 631.10 ± 2.78 f* | ND | ND | ND | 73.07 ± 1.65 c | 254.44 ± 1.79 c* | ND | ND |
18 | ND | 5.98 ± 0.23 f* | ND | ND | ND | ND | ND | ND | 0.99 ± 0.02 ab* | 9.92 ± 0.21 a |
S. aureus ATCC 6538 | MRSA 6374 | MRSA N315 | MRSA 18582 | MRSA 12673 | S. epidermidis ATCC 14990 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
1. | 32 | >32 | 8 | 32 | >32 | >32 | 16 | 16 | >32 | >32 | 16 | >32 |
2. | 2 | 8 | 0.5 | 1 | 4 | 32 | 8 | 16 | 32 | >32 | 4 | 32 |
3. | 16 | 32 | 8 | 32 | >32 | >32 | >32 | >32 | >32 | >32 | >32 | >32 |
4. | 1 | 16 | 4 | >32 | 2 | 4 | 2 | 8 | 4 | >32 | 4 | 32 |
6. | 2 | 8 | 8 | >32 | 4 | 8 | 4 | 16 | 8 | >32 | 4 | 16 |
8. | 4 | 16 | 16 | >32 | 4 | 8 | 4 | 8 | 32 | >32 | 4 | 16 |
9. | 2 | 8 | 1 | 4 | 2 | 32 | 4 | 16 | 8 | >32 | 4 | 16 |
10. | 16 | >32 | 1 | >32 | 4 | >32 | 4 | >32 | 2 | >32 | 4 | 8 |
11. | 16 | >32 | 8 | >32 | 8 | >32 | 4 | >32 | 16 | >32 | 4 | 32 |
15. | 4 | 32 | 4 | >32 | 2 | >32 | 8 | >32 | 4 | >32 | 2 | 8 |
S. pneumoniae | S. pyogenes | E. hirae | E. faecalis | B.subtillis ATCC 6633 | C. diphtheriae | |||||||
Sample No | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
1. | 16 | 32 | 0.25 | 2 | 32 | >32 | 32 | >32 | 2 | 4 | 0.5 | 1 |
2. | 8 | 16 | 0.5 | 1 | 32 | >32 | 8 | >32 | 4 | 4 | 1 | 0.5 |
3. | >32 | >32 | 0.25 | >32 | >32 | >32 | >32 | >32 | >32 | >32 | 0.25 | >32 |
4. | 4 | 8 | 0.25 | 0.25 | 8 | >32 | 4 | 8 | 0.5 | 1 | 0.1 | 0.25 |
6. | 4 | 8 | 0.25 | 0.5 | 16 | >32 | 4 | >32 | 1 | 2 | 1 | 1 |
8. | 8 | 16 | 4 | >32 | >32 | >32 | 8 | >32 | 4 | 4 | 8 | 8 |
9. | 4 | 8 | 4 | >32 | 16 | >32 | 1 | >32 | 8 | 8 | >32 | >32 |
10. | 4 | 8 | 4 | >32 | 16 | >32 | 4 | >32 | 1 | 1 | 0.5 | 4 |
11. | 4 | 8 | 4 | >32 | 32 | >32 | 4 | >32 | 1 | 1 | >32 | >32 |
15. | 2 | 8 | 4 | >32 | 8 | >32 | 1 | >32 | 0.5 | 0.5 | >32 | >32 |
Cholinesterase Inhibition | ||||
---|---|---|---|---|
AChE | BChE | |||
Sample No. | Hydromethanolic Extracts | Aqueous Extracts | Hydromethanolic Extracts | Aqueous Extracts |
1 | 83.24 ± 2.63 d*† | 71.25 ± 0.59 e* | 54.30 ± 1.76 bc* | 101.35 ± 0.85 c* |
2 | 64.36 ± 5.27 i* | 46.46 ± 2.33 k* | 53.60 ± 1.37 c* | 90.17 ± 3.94 f* |
3 | 63.83 ± 0.75 i* | 53.33 ± 5.3 i* | 40.07 ± 2.74 e* | 94.29 ± 4.53 e* |
4 | 40.69 ± 9.4 k* | 59.17 ± 2.37 g* | 21.24 ± 0.83 h* | 60.30 ± 2.07 l* |
5 | 123 ± 11.77 a* | 46.46 ± 5.6 k* | 36.79 ± 1.89 f* | 76.44 ± 3.54 g* |
6 | 84.04 ± 8.27 d* | 57.29 ± 3.86 h* | 55.96 ± 3.42 b* | 105.71 ± 4.39 b* |
7 | 107.45 ± 5.34 b | 106.88 ± 5.04 b | 78.28 ± 2.15 a* | 138.27 ± 1.12 a* |
8 | 21.28 ± 1.04 l* | 67.29 ± 3.26 f* | 18.55 ± 4.15 i* | 69.94 ± 4.85 i* |
9 | 77.93 ± 0.38 e* | 109.58 ± 3.54 a* | 21.41 ± 1.42 h* | 75.68 ± 1.31 gh* |
10 | 47.07 ± 0.58 j* | 41.88 ± 2.06 n* | 16.30 ± 1.17 j* | 49.95 ± 3.74 n* |
11 | 65.96 ± 1.50 i* | 43.96 ± 2.06 l* | 35.64 ± 0.21 f* | 74.91 ± 5.05 h* |
12 | 75.00 ± 4.51 f* | 51.46 ± 2.67 j* | 41.07 ± 0.75 e* | 69.43 ± 1.04 i* |
13 | 68.88 ± 1.88 h* | 58.96 ± 1.31 g* | 17.82 ± 2.83 ij* | 33.53 ± 0.85 o* |
14 | 71.81 ± 0.75 g* | 36.46 ± 3.26 o* | 46.42 ± 1.17 d* | 99.35 ± 1.31 d* |
15 | 83.24 ± 0.38 d* | 42.92 ± 2.43 m* | 46.15 ± 0.78 d* | 58.07 ± 3.91 m* |
16 | 89.89 ± 3.01 c | 88.13 ± 4.45 c | 27.11 ± 2.39 g* | 61.64 ± 9.51 k* |
17 | 120.74 ± 1.53 a* | 106.46 ± 2.45 b* | 47.81 ± 1.86 d* | 89.19 ± 1.51 f* |
18 | 87.50 ± 0.38 c* | 77.5 ± 4.73 d* | 53.64 ± 3.96 c* | 64.42 ± 1.38 j* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polumackanycz, M.; Petropoulos, S.A.; Śledziński, T.; Goyke, E.; Konopacka, A.; Plenis, A.; Viapiana, A. Withania somnifera L.: Phenolic Compounds Composition and Biological Activity of Commercial Samples and Its Aqueous and Hydromethanolic Extracts. Antioxidants 2023, 12, 550. https://doi.org/10.3390/antiox12030550
Polumackanycz M, Petropoulos SA, Śledziński T, Goyke E, Konopacka A, Plenis A, Viapiana A. Withania somnifera L.: Phenolic Compounds Composition and Biological Activity of Commercial Samples and Its Aqueous and Hydromethanolic Extracts. Antioxidants. 2023; 12(3):550. https://doi.org/10.3390/antiox12030550
Chicago/Turabian StylePolumackanycz, Milena, Spyridon A. Petropoulos, Tomasz Śledziński, Elżbieta Goyke, Agnieszka Konopacka, Alina Plenis, and Agnieszka Viapiana. 2023. "Withania somnifera L.: Phenolic Compounds Composition and Biological Activity of Commercial Samples and Its Aqueous and Hydromethanolic Extracts" Antioxidants 12, no. 3: 550. https://doi.org/10.3390/antiox12030550
APA StylePolumackanycz, M., Petropoulos, S. A., Śledziński, T., Goyke, E., Konopacka, A., Plenis, A., & Viapiana, A. (2023). Withania somnifera L.: Phenolic Compounds Composition and Biological Activity of Commercial Samples and Its Aqueous and Hydromethanolic Extracts. Antioxidants, 12(3), 550. https://doi.org/10.3390/antiox12030550