Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Reagents
2.2. Drying Kinetics
2.3. Extract Preparation
2.4. Estimation of Total Phenolic Content
2.5. Estimation of Chlorophylls a, b and Total Carotenoids
2.6. Estimation of Antioxidant Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics
3.1.1. Moisture Content vs. Drying Time
3.1.2. Drying Rate vs. Moisture Content
3.2. Kinetic Modeling of Drying
3.3. Effective Moisture Diffusivity (Deff)
3.4. Energy Consumption and Energy Efficiency (EE)
3.5. Effect of Drying Parameters on Antioxidant Contents
3.5.1. Total Phenolic, Total Flavonoid Contents, and Polyphenol Indexes
3.5.2. Chlorophyll and Carotenoid Content
3.6. Effect of Drying Parameters on Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebrechristos, H.Y.; Chen, W. Utilization of potato peel as eco-friendly products: A review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haverkort, A.J.; Struik, P.; Visser, R.; Jacobsen, E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 2009, 52, 249–264. [Google Scholar] [CrossRef]
- FAO. 2020. Available online: www.fao.org/faostat/en/ (accessed on 20 December 2020).
- APS. Pomme de Terre: Une Production Annuelle de près de 50 Millions de Quintaux. Publié Le: Lundi, 13 Mai 2019 13:17. 2019. Available online: https://www.aps.dz/component/k2/tag/Agriculture?start=770 (accessed on 15 September 2022).
- Keijbets, M.J.H. Potato processing for the consumer: Developments and future challenges. Potato Res. 2008, 51, 271–281. [Google Scholar] [CrossRef]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M.; Hameed, A. Potato peel waste-its nutraceutical, industrial and biotechnological applacations. AIMS Agric. Food 2019, 4, 807–823. [Google Scholar] [CrossRef]
- Brahmi, F.; Mateos-Aparicio, I.; Garcia-Alonso, A.; Abaci, N.; Saoudi, S.; Smail-Benazzouz, L.; Guemghar-Haddadi, H.; Madani, K.; Boulekbache-Makhlouf, L. Optimization of conventional extraction parameters for recovering phenolic compounds from potato (Solanum tuberosum L.) peels and their application as an antioxidant in yogurt formulation. Antioxidants 2022, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Samarin, A.M.; Poorazarang, H.; Hematyar, N.; Elhamirad, A. Phenolics in potato peels: Extraction and utilization as natural antioxidants. World Appl. Sci. 2012, 18, 191–195. [Google Scholar] [CrossRef]
- Ran, X.-l.; Zhang, M.; Wang, Y.; Adhikari, B. Novel technologies applied for recovery and value addition of high value compounds from plant byproducts: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 450–461. [Google Scholar] [CrossRef]
- Guemouni, S.; Mouhoubi, K.; Brahmi, F.; Dahmoune, F.; Belbahi, A.; Benyoub, C.; Adjeroud-Abdellatif, N.; Atmani, K.; Bakhouche, H.; Boulekbache-Makhlouf, L. Convective and microwave drying kinetics and modeling of tomato slices, energy consumption, and efficiency. J. Food Process Eng. 2022, 45, e14113. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Mouhoubi, K.; Boulekbache-Makhlouf, L.; Madani, K.; Palatzidi, A.; Perez-Jimenez, J.; Mateos-Aparicio, I.; Garcia-Alonso, A. Phenolic compounds and antioxidant activity are differentially affected by drying processes in celery, coriander and parsley leaves. Int. J. Food Sci. Technol. 2022, 57, 3467–3476. [Google Scholar] [CrossRef]
- Mouhoubi, K.; Boulekbache-Makhlouf, L.; Mehaba, W.; Himed-Idir, H.; Madani, K. Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. J. Food Process Eng. 2022, 45, e13932. [Google Scholar] [CrossRef]
- Lv, W.; Li, D.; Lv, H.; Jin, X.; Han, Q.; Su, D.; Wang, Y. Recent development of microwave fluidization technology for drying of fresh fruits and vegetables. Trends Food Sci. Technol. 2019, 86, 59–67. [Google Scholar] [CrossRef]
- Bozkir, H. Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. J. Food Process Eng. 2020, 43, e13485. [Google Scholar] [CrossRef]
- Perazzini, H.; Freire, F.B.; Freire, F.B.; Freire, J.T. Thermal treatment of solid wastes using drying technologies: A review. Dry. Technol. 2016, 34, 39–52. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Rosselló, C.; Ratti, C. Understanding air-drying behavior of potato peel waste. Dry. Technol. 2022, 40, 3520–3531. [Google Scholar] [CrossRef]
- Hossain, M.B.; Brunton, N.P.; Rai, D.K. Effect of drying methods on the steroidal alkaloid content of potato peels, shoots and berries. Molecules 2016, 21, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, M.; Anjum, N.; Roy, F.; Yasmin, S.; Sohany, M.; Mahomud, M.S. Effect of drying methods on physicochemical, antioxidant and functional properties of potato peel flour and quality evaluation of potato peel composite cake. J. Agric. Food. Res. 2023, 11, 100508. [Google Scholar] [CrossRef]
- Choumane, F.Z.; Zaoui, F.; Kandouci, F.; Maachou, B.; Benguella, B. Valorization of potato peel residues to produce a bioflocculant to be used in the treatment of liquid effluents. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1204, p. 012002. [Google Scholar]
- Benkartoussa, M.; Lehocine, M.B.; Arris, S.; Meniai, H.A. Adsorption removal of eriochrome black t (Ebt) and rose bengal (rb) from aqueous solutions using bio-sorbents combination. Chem. Chem. Technol. 2021, 15, 299–311. [Google Scholar] [CrossRef]
- Bouhadjra, K.; Lemlikchi, W.; Oubagha, N. Valorisation des pelures de pommes de terre pour le traitement d’une solution aqueuse contenant un colorant textile (Reactive Blue 72). J. Water Environ. Sci. 2017, 1, 219–229. [Google Scholar]
- Djeddou, S.; Boutemak, K.; Cheknane, B.; Hadj-Ziane, A.; Ayoub, F. Etude de la production de bioéthanol de deuxième génération à partir d’un déchet agroalimentaire. J. Renew. Energy 2018, 21, 385–390. [Google Scholar]
- Nema, P.; Mohapatra, D.; Daniel, A.; Mishra, S.J. Modeling pulse microwave drying kinetics of ginger (Zingiber officinale R.). J. Food Technol. Res. 2013, 1, 46–58. [Google Scholar]
- Dahmoune, F.; Boulekbache, L.; Moussi, K.; Aoun, O.; Spigno, G.; Madani, K. Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod 2013, 50, 77–87. [Google Scholar] [CrossRef]
- Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 2005, 53, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 2231, 606X. [Google Scholar]
- Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M.J. Broad bean and pea by-products as sources of fibre-rich ingredients: Potential antioxidant activity measured in vitro. J. Sci. Food Agric. 2012, 92, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Aral, S.; Beşe, A.V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 2016, 210, 577–584. [Google Scholar] [CrossRef]
- Izli, N.; Polat, A. Freeze and convective drying of quince (Cydonia oblonga Miller.): Effects on drying kinetics and quality attributes. Heat Mass Transf. 2019, 55, 1317–1326. [Google Scholar] [CrossRef]
- Ramos, K.K.; Lessio, B.C.; Mecê, A.L.B.; Efraim, P. Mathematical modeling of uvaia byproduct drying and evaluation of quality parameters. Food Sci. Biotechnol. 2017, 26, 643–651. [Google Scholar] [CrossRef]
- Pinto, R.B.; Oduro-Kwarteng, S.; Hamidu, J.A.; Essandoh, H.M.K. Sensitivity of nutritional and microbial content of food wastes to drying technologies. Sci. Afr. 2022, 16, e01130. [Google Scholar] [CrossRef]
- M’hiri, N.; Ghali, R.; Nasr, I.B.; Boudhrioua, N. Effect of different drying processes on functional properties of industrial lemon byproduct. Process Saf. Environ. Prot. 2018, 116, 450–460. [Google Scholar] [CrossRef]
- Darvishi, H.; Khoshtaghaza, M.H.; Minaee, S. Drying kinetics and colour change of lemon slices. Int. Agrophysics 2014, 28, 1–6. [Google Scholar] [CrossRef]
- Cherrat, S.; Boulkebache-Makhlouf, L.; Zeghichi, S.; Walker, G. Effect of different drying temperatures on the composition and antioxidant activity of ginger powder. Ann. Univ. Dunarea Jos Galati. Fascicle VI-Food Technol. 2019, 43, 125–142. [Google Scholar] [CrossRef]
- Mouhoubi, K.; Boulekbache-Makhlouf, L.; Guendouze-Bouchefa, N.; Freidja, M.L.; Romero, A.; Madani, K. Modelling of drying kinetics and comparison of two processes: Forced convection drying and microwave drying of celery leaves (Apium graveolens L.). Ann. Univ. Dunarea Jos Galati. Fascicle VI-Food Technol. 2019, 43, 48–69. [Google Scholar] [CrossRef]
- Yang, H.; Sombatngamwilai, T.; Yu, W.-Y.; Kuo, M.-I. Drying applications during value-added sustainable processing for selected mass-produced food coproducts. Processes 2020, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- Sozzi, A.; Zambon, M.; Mazza, G.; Salvatori, D. Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technol. 2021, 385, 37–49. [Google Scholar] [CrossRef]
- Ghanem Romdhane, N.; Bonazzi, C.; Kechaou, N.; Mihoubi, N.B. Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Dry. Technol. 2015, 33, 1581–1589. [Google Scholar] [CrossRef]
- Patrón-Vázquez, J.; Baas-Dzul, L.; Medina-Torres, N.; Ayora-Talavera, T.; Sánchez-Contreras, Á.; García-Cruz, U.; Pacheco, N. The effect of drying temperature on the phenolic content and functional behavior of flours obtained from lemon wastes. Agronomy 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Sledz, M.; Wiktor, A.; Rybak, K.; Nowacka, M.; Witrowa-Rajchert, D. The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Appl. Acoust. 2016, 103, 148–156. [Google Scholar] [CrossRef]
- Zubernik, J.; Dadan, M.; Cichowska, J.; Witrowa-Rajchert, D.J. The impact of the pre-treatment in ethanol solution on the drying kinetics and selected properties of convective dried apples. Int. J. Food Eng. 2020, 16, 1–11. [Google Scholar] [CrossRef]
- Arranz, J.I.; Miranda, M.T.; Sepúlveda, F.J.; Montero, I.; Rojas, C.V. Analysis of drying of brewers’ spent grain. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 1467. [Google Scholar]
- Bezerra, C.V.; da Silva, L.H.M.; Corrêa, D.F.; Rodrigues, A.M. A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. Int. J. Heat Mass Transf. 2015, 85, 750–755. [Google Scholar] [CrossRef]
- Kara, C.; Doymaz, I. Thin layer drying kinetics of by-products from pomegranate juice processing. J. Food Process. Preserv. 2015, 39, 480–487. [Google Scholar] [CrossRef]
- Çetin, N. Comparative assessment of energy analysis, drying kinetics, and biochemical composition of tomato waste under different drying conditions. Sci. Hortic. 2022, 305, 111405. [Google Scholar] [CrossRef]
- EL-Mesery, H.S. Improving the thermal efficiency and energy consumption of convective dryer using various energy sources for tomato drying. Alex. Eng. J. 2022, 61, 10245–10261. [Google Scholar] [CrossRef]
- An, N.-N.; Li, D.; Wang, L.-J.; Wang, Y. Factors affecting energy efficiency of microwave drying of foods: An updated understanding. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- Yi, J.; Li, X.; He, J.; and Duan, X. Drying efficiency and product quality of biomass drying: A review. Dry. Technol. 2020, 38, 2039–2054. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional ingredients from agri-food waste: Effect of inclusion thereof on phenolic compound content and bioaccessibility in bakery products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef]
- Valadez-Carmona, L.; Plazola-Jacinto, C.P.; Hernández-Ortega, M.; Hernández-Navarro, M.D.; Villarreal, F.; Necoechea-Mondragón, H.; Ortiz-Moreno, A.; Ceballos-Reyes, G. Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innov. Food Sci. Emerg. Technol. 2017, 41, 378–386. [Google Scholar] [CrossRef]
- Hossain, M.A.; Dey, P.; Joy, R.I. Effect of osmotic pretreatment and drying temperature on drying kinetics, antioxidant activity, and overall quality of taikor (Garcinia pedunculata Roxb.) slices. Saudi J. Biol. Sci. 2021, 28, 7269–7280. [Google Scholar] [CrossRef]
- Chen, M.L.; Yang, D.J.; Liu, S.C. Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. Int. J. Food Sci. 2011, 46, 1179–1185. [Google Scholar] [CrossRef]
- Esparza-Martínez, F.J.; Miranda-López, R.; Mata-Sánchez, S.M.; Guzmán-Maldonado, S.H. Extractable and non-extractable phenolics and antioxidant capacity of mandarin waste dried at different temperatures. Plant Foods Hum. Nutr. 2016, 71, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Abd Rahman, N.F.; Shamsudin, R.; Ismail, A.; Shah, N.N.A.K.; Varith, J. Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innov. Food Sci. Emerg. Technol. 2018, 50, 217–225. [Google Scholar] [CrossRef]
- Giavoni, M.; Villanueva-Suárez, M.J.; De la Peña-Armada, R.; Garcia-Alonso, A.; Mateos-Aparicio, I. Pasteurization Modifies the Sensorial Attributes and Nutritional Profile of Orange Pulp By-Product. Foods 2022, 11, 1973. [Google Scholar] [CrossRef] [PubMed]
- Spoladore, S.F. Modelagem Matemática da Secagem de casca de Maracujá e Influência da Temperatura na cor, Compostos Fenólicos e Atividade Antioxidante. Master’s Thesis, Universidade Tecnológica Federal do Paraná, Parana, Brazil, 2014. [Google Scholar]
- Cui, Z.-W.; Xu, S.-Y.; Sun, D.-W. Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Dry Technol. 2004, 22, 563–575. [Google Scholar] [CrossRef]
- Östbring, K.; Sjöholm, I.; Rayner, M.; Erlanson-Albertsson, C. Effects of storage conditions on degradation of chlorophyll and emulsifying capacity of thylakoid powders produced by different drying methods. Foods 2020, 9, 669. [Google Scholar] [CrossRef]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A.H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibas, I.; Zia, M.P.; Yilmaz, A. The effect of drying methods on color and chlorophyll content of parsley leaves. Turkish J. Agri.-Food Sci. Technol. 2019, 7, 919–926. [Google Scholar] [CrossRef]
- Kumar, S.S.; Manoj, P.; Shetty, N.P.; Giridhar, P. Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L. J. Sci. Food Agri. 2015, 95, 1812–1820. [Google Scholar] [CrossRef]
- Albanese, D.; Adiletta, G.; D′ Acunto, M.; Cinquanta, L.; Di Matteo, M. Tomato peel drying and carotenoids stability of the extracts. Int. J. Food Sci. Technol. 2014, 49, 2458–2463. [Google Scholar] [CrossRef]
- Lyu, Y.; Bi, J.; Chen, Q.; Li, X.; Lyu, C.; Hou, H. Color, carotenoids, and peroxidase degradation of seed-used pumpkin byproducts as affected by heat and oxygen content during drying process. Food Bioprocess Technol. 2020, 13, 1929–1939. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Keskitalo, M.; Yang, B.; Suomela, J.-P. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. J. Food Compos. Anal. 2018, 72, 75–82. [Google Scholar] [CrossRef]
- Song, J.; Wang, X.; Li, D.; Meng, L.; Liu, C. Degradation of carotenoids in pumpkin (Cucurbita maxima L.) slices as influenced by microwave vacuum drying. Int. J. Food Prop. 2017, 20, 1479–1487. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.-Q.; Zhang, M.; Huang, L.-L.; Mujumdar, A.S.; Tang, J. Influence of microwave drying method on the characteristics of the sweet potato dices. J. Food Process. Preserv. 2017, 37, 662–669. [Google Scholar] [CrossRef]
- Hernández-Ortega, M.; Kissangou, G.; Necoechea-Mondragón, H.; Sánchez-Pardo, M.E.; Ortiz-Moreno, A. Microwave dried carrot pomace as a source of fiber and carotenoids. Food Nutri. Sci. 2013, 4, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
Model Name | Mathematical Equation |
---|---|
Newton | MR = exp(−kt) |
Henderson and Pabis | MR = a.exp(−kt) |
Logarithmic | MR = a.exp(−kt) + c |
Page | MR = exp(−ktn) |
Modified Page 1 | MR = exp(−(kt)n) |
Modified Page 2 | MR = exp(−kt)n |
Midilli et al. | MR = a.exp(−ktn) + bt |
Two terms | MR = a.exp(−kt) + b.exp(−k1t) |
Two-term exponential | MR = a.exp(−kt) + (1 − a).exp(−kat) |
Approximation of diffusion | MR = a.exp(−kt) + (1 − a).exp(−kbt) |
Verma et al. | MR = a.exp(−k) + (1 − a).exp(−k1t) |
Modified Henderson and Pabis | MR = a.exp(−kt) + b.exp(−k1t) + c.exp(−k2t) |
Parabolic | MR = a + b.t + c.t2 |
Wang and Singh | MR = 1 + a.t + b.t2 |
Chavez-Mendez et al. | MR = (1−(1−L2)L1t)1/(1−L2) |
Logistic | MR = b/(1 + a.exp(k.t)) |
Sledz et al. | MR = b.exp(−kt)/(1 + a.exp(k1.t)) |
Simplified Fick’s diffusion equation | MR = a.exp(−k(t/L2)) |
Weibull | MR = exp(−(t/a)b) |
Demir et al. | MR = a.exp(−kt)n + b |
Taghian Dinani et al. | MR = a.exp(−((t − b)/a)2) |
Fernando and Amarasinghe | MR = (1 + a.t + b.t2)/(1 + c.t) |
Model | Drying Conditions | Drying Constants and Coefficients | Statistical Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | χ2 | RMSE | |||||||
Logistic | CD | 40 °C | b = 1.5349 | a = 0.5530 | k = 0.0202 | 0.9997 | 0.0000 | 0.0050 | |
60 °C | b = 2.5463 | a = 1.5129 | k = 0.0347 | 0.9987 | 0.0001 | 0.0089 | |||
80 °C | b = 2.1057 | a = 1.1018 | k = 0.0447 | 0.9996 | 0.0000 | 0.0051 | |||
100 °C | b = 1.4379 | a = 0.4489 | k = 0.0650 | 0.9995 | 0.0001 | 0.0068 | |||
120 °C | b = 1.3997 | a = 0.3983 | k = 0.1190 | 0.9999 | 0.0000 | 0.0038 | |||
MD | 200 W | b = 1.9942 | a = 0.9524 | k = 0.0906 | 0.9995 | 0.0000 | 0.0065 | ||
400 W | b = 54.8324 | a = 52.7941 | k = 0.1381 | 0.9949 | 0.0003 | 0.0173 | |||
600 W | b = 2.9118 | a = 1.9354 | k = 0.1956 | 0.9951 | 0.0004 | 0.0196 | |||
800 W | b = 756,811.6567 | a = 790,586.2429 | k = 0.2044 | 0.9828 | 0.0010 | 0.0304 | |||
Sledz et al. | CD | 40 °C | b = 3.6874 | k = 0.0217 | a = 2.7143 | k1 = −0.0191 | 0.9997 | 0.0000 | 0.0047 |
60 °C | b = 1.1901 | k = 0.0304 | a = 0.1909 | k1 = −0.1269 | 0.9995 | 0.0000 | 0.0054 | ||
80 °C | b = 1.4528 | k = 0.0409 | a = 0.4552 | k1 = −0.0653 | 0.9997 | 0.0000 | 0.0043 | ||
100 °C | b = 11.9400 | k = 0.0875 | a = 10.9565 | k1 = −0.0680 | 0.9999 | 0.0000 | 0.0030 | ||
120 °C | b = 1.5087 | k = 0.0902 | a = 0.5087 | k1 = −2.6579 | 0.9998 | 0.0000 | 0.0039 | ||
MD | 200 W | b = 1.5210 | k = 0.0818 | a = 0.5130 | k1 = −0.1405 | 0.9997 | 0.0000 | 0.0053 | |
400 W | b = 1.0637 | k = 0.1419 | a = 0.0767 | k1 = −0.7370 | 0.9954 | 0.0003 | 0.0165 | ||
600 W | b = 1.0101 | k = 0.1535 | a = 0.0000 | k1 = 0.8702 | 0.9990 | 0.0001 | 0.0086 | ||
800 W | b = 0.9573 | k = 0.2044 | a = 0.0000 | k1 = 0.5734 | 0.9829 | 0.0010 | 0.0304 | ||
Fernando and Amarasinghe | CD | 40 °C | a = −0.0063 | b = 0.0000 | c = 0.0049 | 0.9923 | 0.0006 | 0.0241 | |
60 °C | a = −0.0102 | b = 0.0000 | c = 0.0190 | 0.9896 | 0.0007 | 0.0255 | |||
80 °C | a = −0.0138 | b = 0.0000 | c = 0.0193 | 0.9934 | 0.0005 | 0.0219 | |||
100 °C | a = −0.0188 | b = 0.0001 | c = 0.0150 | 0.9919 | 0.0009 | 0.0266 | |||
120 °C | a = −0.0308 | b = 0.0002 | c = 0.0314 | 0.9905 | 0.0013 | 0.0305 | |||
MD | 200 W | a = −0.0378 | b = 0.0004 | b = 0.0135 | 0.9961 | 0.0003 | 0.0180 | ||
400 W | a = −0.0542 | b = 0.0008 | b = 0.0976 | 0.9908 | 0.0006 | 0.0233 | |||
600 W | a = −0.0797 | b = 0.0016 | b = 0.0704 | 0.9978 | 0.0002 | 0.0130 | |||
800 W | a = −0.0610 | b = 0.0011 | b = 0.2409 | 0.9928 | 0.0004 | 0.0197 |
Convective Drying | Microwave Drying | ||||||||
---|---|---|---|---|---|---|---|---|---|
40 °C | 60 °C | 80 °C | 100 °C | 120 °C | 200 W | 400W | 600 W | 800 W | |
Time | 450 ± 10 a | 303.33 ± 5.77 b | 166.67 ± 5.77 c | 160 ± 0 d | 96.67 ± 5.75 e | 60.0 ± 0.5 a | 40.0 ± 6.4 b | 23.17 ± 2.02 c | 25.17 ± 4.07 d |
DR | 0.01 ± 0.00 c | 0.02 ± 0.00 b | 0.02± 0.00 b | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.07 ± 0.00 d | 0.11 ± 0.01 c | 0.20 ± 0.00 b | 0.17 ± 0.01 a |
Deff | 0.20± 0.02 e | 0.38 ± 0.02 d | 0.53± 0.04 c | 0.72± 0.05 b | 1.18± 0.05 a | 0.79 ± 0.08 d | 1.88 ± 0.47 b,c | 2.46 ± 0.33 a,b | 2.09± 0.23 a |
SECe | 245 ± 2.46 a | 188± 3.90 b | 127 ± 3.64 c | 127± 4.57 c | 62.7 ± 1.98 d | 27.30 ± 0.30 a | 23.5 ± 0.4 b | 12.5 ± 0.1 c | 13.4 ± 0.3 d |
EE | 0.01 ± 0.00 d | 0.13± 0.00 c | 0.19± 0.01 b | 0.19± 0.01 b | 0.38± 0.01 a | 0.83 ± 0.01 d | 0.96± 0.02 c | 1.80± 0.02 a | 1.68± 0.04 b |
Convective Drying | Microwave Drying | ||||||||
---|---|---|---|---|---|---|---|---|---|
40 °C | 60 °C | 80 °C | 100 °C | 120 °C | 200 W | 400W | 600 W | 800 W | |
TPC | 557.41 ± 0.75 b | 374.26 ± 0.42 c | 215.00 ± 2.01 e | 180.49 ± 0.15 f | 514.94 ± 0.92 c | 767.10 ± 1.86 a | 337.10 ± 0.15 c | 307.90 ± 0.86 d | 607.84 ± 0.15 b |
PI | 6.83 ± 0.06 a | 3.68 ± 0.01 d | 2.93 ± 0.01 e | 1.82 ± 0.01 f | 4.53 ± 0.02 c | 7.97 ± 0.05 a | 5.84 ± 0.03 b | 3.38 ± 0.01 d | 5.75 ± 0.01 b |
TFC | 176.71 ± 0.30 b | 140.39 ± 0.35 c | 129.61 ± 0.99 d | 119.41 ± 2.87 e | 156.10 ± 0.26 c | 222.85 ± 0.32 a | 168.86 ± 0.35 b | 51.05 ± 0.25 c | 213.04 ± 0.21 b |
Chl a | 1.91 ± 0.02 d | 1.58 ± 0.02 e | 1.18 ± 0.02 f | 0.55 ± 0.01 g | 0.42 ± 0.01 h | 4.56 ± 0.01 a | 3.27 ± 0.03 b | 2.56 ± 0.02 c | 1.14 ± 0.02 f |
Chl b | 5.15 ± 0.04 d | 3.89 ± 0.03 f | 3.10 ± 0.02 g | 2.67 ± 0.03 h | 2.51 ± 0.04 h | 8.72 ± 0.05 a | 7.18 ± 0.05 b | 6.42 ± 0.04 c | 4.39 ± 0.05 e |
T Chl | 6.34 ± 0.06 a | 5.25 ± 0.05 b | 4.28 ± 0.04 c | 3.22 ± 0.04 b | 2.93 ± 0.05 d | 13.28 ± 0.06 | 10.45 ± 0.08 | 8.98 ± 0.06 | 5.53 ± 0.07 |
Caro | 0.17± 0.01 d | 0.15 ± 0.01 e | 0.07 ± 0.00 f | 0.06 ± 0.00 f | 0.04 ± 0.00 g | 1.44 ± 0.01 a | 0.86 ± 0.01 b | 0.23 ± 0.01 c | 0.21 ± 0.01 c |
DPPH | 14.26 ± 0.06 b | 13.23 ± 0.09 b | 12.55 ± 0.06 c | 10.7 6 ± 0.04 e | 08.61 ± 0.01 f | 18.20 ± 0.07 a | 13.61 ± 2.26 c | 11.43 ± 0.05 d | 10.88± 0.06 e |
TAA | 993 ± 60 a | 883.2 ± 80.6 b | 829.4 ± 61.1 b | 596.7 ± 51.2 c | 460.8 ± 48.3 d | 1006 ± 120 a | 924.6 ± 57.4 b | 392.2 ± 36.1 d | 406.3 ± 35.1 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahmi, F.; Mateos-Aparicio, I.; Mouhoubi, K.; Guemouni, S.; Sahki, T.; Dahmoune, F.; Belmehdi, F.; Bessai, C.; Madani, K.; Boulekbache-Makhlouf, L. Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity. Antioxidants 2023, 12, 638. https://doi.org/10.3390/antiox12030638
Brahmi F, Mateos-Aparicio I, Mouhoubi K, Guemouni S, Sahki T, Dahmoune F, Belmehdi F, Bessai C, Madani K, Boulekbache-Makhlouf L. Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity. Antioxidants. 2023; 12(3):638. https://doi.org/10.3390/antiox12030638
Chicago/Turabian StyleBrahmi, Fatiha, Inmaculada Mateos-Aparicio, Khokha Mouhoubi, Sara Guemouni, Tassadit Sahki, Farid Dahmoune, Ferroudja Belmehdi, Chafiaa Bessai, Khodir Madani, and Lila Boulekbache-Makhlouf. 2023. "Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity" Antioxidants 12, no. 3: 638. https://doi.org/10.3390/antiox12030638
APA StyleBrahmi, F., Mateos-Aparicio, I., Mouhoubi, K., Guemouni, S., Sahki, T., Dahmoune, F., Belmehdi, F., Bessai, C., Madani, K., & Boulekbache-Makhlouf, L. (2023). Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity. Antioxidants, 12(3), 638. https://doi.org/10.3390/antiox12030638