Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rosmarinus Officinalis and Antioxidant Action
2.2. Rosmarinus Officinalis and Antimicrobial Action
2.3. Rosmarinus Officinalis and Wound Healing
2.4. Rosmarinus Officinalis and Cutaneous Diseases
2.5. Rosmarinus Officinalis and Cutaneous Lymphoma
3. Materials and Methods
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Falzon, C.C.; Balabanova, A. Phytotherapy. Prim. Care Clin. Off. Pract. 2017, 44, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.R.; Bharadwaj, P.; Dingelstad, N.; Kalyaanamoorthy, S.; Mandal, S.C.; Ganesan, A.; Chattopadhyay, D.; Palit, P. Structure-Based Virtual Screening, Molecular Dynamics and Binding Affinity Calculations of Some Potential Phytocompounds against SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40, 6921–6938. [Google Scholar] [CrossRef] [PubMed]
- Chandra, K.; Das, A.K.; Banday, S.; Rana, N.A.; Arora, M.; Jain, S.; Islam, F.; Agarwal, S.; Kashyap, V.; Joshi, S.; et al. Efficacy of Polyherbal Formulations for Prevention of COVID-19 Infection in High-risk Subjects: A Randomized Open-label Controlled Clinical Trial. Phytother. Res. 2022, 36, 3632–3643. [Google Scholar] [CrossRef] [PubMed]
- Bijelić, K.; Hitl, M.; Kladar, N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence. Antibiotics 2022, 11, 1614. [Google Scholar] [CrossRef]
- Brendler, T.; Al-Harrasi, A.; Bauer, R.; Gafner, S.; Hardy, M.L.; Heinrich, M.; Hosseinzadeh, H.; Izzo, A.A.; Michaelis, M.; Nassiri-Asl, M.; et al. Botanical Drugs and Supplements Affecting the Immune Response in the Time of COVID-19: Implications for Research and Clinical Practice. Phytother. Res. 2021, 35, 3013–3031. [Google Scholar] [CrossRef]
- Krau, S.D. Complementary and Alternative Medications: A Growing Phenomenon. Nurs. Clin. N. Am. 2021, 56, xi–xii. [Google Scholar] [CrossRef]
- Schmidt, B.; Ribnicky, D.M.; Poulev, A.; Logendra, S.; Cefalu, W.T.; Raskin, I. A Natural History of Botanical Therapeutics. Metabolism 2008, 57, S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, C.M.C.; Lazzarini, J.R.; Soares Júnior, J.M.; Baracat, E.C. Phytotherapy: Yesterday, Today, and Forever? Rev. Assoc. Med. Bras. 2018, 64, 765–768. [Google Scholar] [CrossRef]
- Souza, C.R.F.; Baldim, I.; Bankole, V.O.; da Ana, R.; Durazzo, A.; Lucarini, M.; Cicero, N.; Santini, A.; Souto, E.B.; Oliveira, W.P. Spouted Bed Dried Rosmarinus officinalis Extract: A Novel Approach for Physicochemical Properties and Antioxidant Activity. Agriculture 2020, 10, 349. [Google Scholar] [CrossRef]
- Colalto, C. What Phytotherapy Needs: Evidence-Based Guidelines for Better Clinical Practice. Phytother. Res. 2018, 32, 413–425. [Google Scholar] [CrossRef]
- Williams, C.T. Herbal Supplements. Nurs. Clin. N. Am. 2021, 56, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zafar, F.; Asif, H.M.; Shaheen, G.; Ghauri, A.O.; Rajpoot, S.R.; Tasleem, M.W.; Shamim, T.; Hadi, F.; Noor, R.; Ali, T.; et al. A Comprehensive Review on Medicinal Plants Possessing Antioxidant Potential. Clin. Exp. Pharmacol. Physiol. 2022, 50, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Shukla, M.K.; Sharma, K.C.; Tirath; Kumar, L.; Anal, J.M.H.; Upadhyay, S.K.; Bhattacharyya, S.; Kumar, D. Revisiting the Therapeutic Potential of Gingerols against Different Pharmacological Activities. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Zhong, C.; Chen, Z.; Zheng, Z.; Li, S.; Chen, B.; Wu, Q.; Yao, H. Tanshinone I: Pharmacological Activities, Molecular Mechanisms against Diseases and Future Perspectives. Phytomedicine 2023, 110, 154632. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Li, Y.; Yang, P.; Zhang, Z.; Wu, H.; Zhu, L.; Liu, Y. Preparation Methods, Structural Characteristics, and Biological Activity of Polysaccharides from Salvia Miltiorrhiza: A Review. J. Ethnopharmacol. 2023, 305, 116090. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.N.A.; Wan Mustapha, W.A.; Sofian-Seng, N.-S.; Lim, S.J.; Mohd Razali, N.S.; Teh, A.H.; Rahman, H.A.; Mediani, A. A Comprehensive Review with Future Prospects on the Medicinal Properties and Biological Activities of Curcuma Caesia Roxb. Evid.-Based Complement Altern. Med. 2023, 2023, 7006565. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Ezzat, S.M.; el Bishbishy, M.H.; Mnayer, D.; Sharopov, F.; Kılıç, C.S.; Neagu, M.; Constantin, C.; Sharifi-Rad, M.; Atanassova, M.; et al. Rosmarinus Plants: Key Farm Concepts towards Food Applications. Phytother. Res. 2020, 34, 1474–1518. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (Rosemary) as Therapeutic and Prophylactic Agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef]
- Bae, H.; Paludan, M.; Knoblauch, J.; Jensen, K.H. Neural Networks and Robotic Microneedles Enable Autonomous Extraction of Plant Metabolites. Plant Physiol. 2021, 186, 1435–1441. [Google Scholar] [CrossRef]
- Nabavi, S.; Tenore, G.; Daglia, M.; Tundis, R.; Loizzo, M.; Nabavi, S. The Cellular Protective Effects of Rosmarinic Acid: From Bench to Bedside. Curr. Neurovasc. Res. 2015, 12, 98–105. [Google Scholar] [CrossRef]
- Kim, G.-D.; Park, Y.S.; Jin, Y.-H.; Park, C.-S. Production and Applications of Rosmarinic Acid and Structurally Related Compounds. Appl. Microbiol. Biotechnol. 2015, 99, 2083–2092. [Google Scholar] [CrossRef]
- Birtić, S.; Dussort, P.; Pierre, F.-X.; Bily, A.C.; Roller, M. Carnosic Acid. Phytochemistry 2015, 115, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Li, Y.; Shen, Q.; Zhang, W.; Gu, X.; Ma, M.; Li, Y.; Zhang, L.; Liu, X.; Zhang, X. Carnosol and Its Analogues Attenuate Muscle Atrophy and Fat Lipolysis Induced by Cancer Cachexia. J. Cachexia Sarcopenia Muscle 2021, 12, 779–795. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, F.; Scanu, A.; Zamudio-Cuevas, Y.; Punzi, L.; Spinella, P. Anti-Inflammatory Effects of Polyphenols in Arthritis. J. Sci. Food Agric. 2018, 98, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Marín, M.P.; del Río, J.A.; Ortuño, A.; Ibarra, I. Flavonoid Distribution during the Development of Leaves, Flowers, Stems, and Roots of Rosmarinus officinalis. Postulation of a Biosynthetic Pathway. J. Agric. Food Chem. 2004, 52, 4987–4992. [Google Scholar] [CrossRef]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis Essential Oil: A Review of Its Phytochemistry, Anti-Inflammatory Activity, and Mechanisms of Action Involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Cicero, N.; Gervasi, T.; Virga, G.; Leone, R.; Licata, M.; et al. Study of Quantitative and Qualitative Variations in Essential Oils of Sicilian Rosmarinus officinalis L. Nat. Prod. Res. 2015, 29, 1928–1934. [Google Scholar] [CrossRef]
- Chaitanya, M.V.N.L.; Ramanunny, A.K.; Babu, M.R.; Gulati, M.; Vishwas, S.; Singh, T.G.; Chellappan, D.K.; Adams, J.; Dua, K.; Singh, S.K. Journey of Rosmarinic Acid as Biomedicine to Nano-Biomedicine for Treating Cancer: Current Strategies and Future Perspectives. Pharmaceutics 2022, 14, 2401. [Google Scholar] [CrossRef]
- Rašković, A.; Milanović, I.; Pavlović, N.; Ćebović, T.; Vukmirović, S.; Mikov, M. Antioxidant Activity of Rosemary (Rosmarinus officinalis L.) Essential Oil and Its Hepatoprotective Potential. BMC Complement. Altern. Med. 2014, 14, 225. [Google Scholar] [CrossRef] [Green Version]
- Bao, T.-Q.; Li, Y.; Qu, C.; Zheng, Z.-G.; Yang, H.; Li, P. Antidiabetic Effects and Mechanisms of Rosemary (Rosmarinus officinalis L.) and Its Phenolic Components. Am. J. Chin. Med. 2020, 48, 1353–1368. [Google Scholar] [CrossRef]
- Hasei, S.; Yamamotoya, T.; Nakatsu, Y.; Ohata, Y.; Itoga, S.; Nonaka, Y.; Matsunaga, Y.; Sakoda, H.; Fujishiro, M.; Kushiyama, A.; et al. Carnosic Acid and Carnosol Activate AMPK, Suppress Expressions of Gluconeogenic and Lipogenic Genes, and Inhibit Proliferation of HepG2 Cells. Int. J. Mol. Sci. 2021, 22, 4040. [Google Scholar] [CrossRef] [PubMed]
- Zappalà, A.; Vicario, N.; Calabrese, G.; Turnaturi, R.; Pasquinucci, L.; Montenegro, L.; Spadaro, A.; Parenti, R.; Parenti, C. Neuroprotective Effects of Rosmarinus officinalis L. Extract in Oxygen Glucose Deprivation (OGD)-Injured Human Neural-like Cells. Nat. Prod. Res. 2021, 35, 669–675. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Li, Y.; Xu, L.; Jia, J. Carnosic Acid Attenuates AβOs-Induced Apoptosis and Synaptic Impairment via Regulating NMDAR2B and Its Downstream Cascades in SH-SY5Y Cells. Mol. Neurobiol. 2023, 60, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Karagianni, K.; Pettas, S.; Kanata, E.; Lioulia, E.; Thune, K.; Schmitz, M.; Tsamesidis, I.; Lymperaki, E.; Xanthopoulos, K.; Sklaviadis, T.; et al. Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in in vitro and Cell-Free Models of Prion Diseases. Antioxidants 2022, 11, 726. [Google Scholar] [CrossRef]
- Seyedemadi, P.; Rahnema, M.; Bigdeli, M.R.; Oryan, S.; Rafati, H. The Neuroprotective Effect of Rosemary (Rosmarinus officinalis L.) Hydro-Alcoholic Extract on Cerebral Ischemic Tolerance in Experimental Stroke. Iran J. Pharm. Res. 2016, 15, 875–883. [Google Scholar] [PubMed]
- Ghasemzadeh Rahbardar, M.; Amin, B.; Mehri, S.; Mirnajafi-Zadeh, S.J.; Hosseinzadeh, H. Anti-Inflammatory Effects of Ethanolic Extract of Rosmarinus officinalis L. and Rosmarinic Acid in a Rat Model of Neuropathic Pain. Biomed. Pharmacother. 2017, 86, 441–449. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Han, J.-J.; Zhang, F.; Liu, S.; Zhu, L.; Wang, Z.-Z.; Zhang, G.-X.; Zhang, Y. Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis. Front. Immunol. 2018, 9, 1807. [Google Scholar] [CrossRef] [Green Version]
- Bickers, D.R.; Athar, M. Oxidative Stress in the Pathogenesis of Skin Disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative Stress in the Skin: Impact and Related Protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [Green Version]
- Kammeyer, A.; Luiten, R.M. Oxidation Events and Skin Aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kim, K. Protein Glycation Inhibitory and Antioxidative Activities of Some Plant Extracts in vitro. J. Agric. Food Chem. 2003, 51, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, S.M.; Salama, M.M.; ElMeshad, A.N.; Teaima, M.H.; Rashad, L.A. HPLC–DAD–MS/MS Profiling of Standardized Rosemary Extract and Enhancement of Its Anti-Wrinkle Activity by Encapsulation in Elastic Nanovesicles. Arch. Pharm. Res. 2016, 39, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Radwan, R.A.; Mostafa, E.S.; Alseekh, S.; Fernie, A.R.; Ezzat, S.M. Using an UPLC/MS-Based Untargeted Metabolomics Approach for Assessing the Antioxidant Capacity and Anti-Aging Potential of Selected Herbs. RSC Adv. 2020, 10, 31511–31524. [Google Scholar] [CrossRef]
- Nobile, V.; Schiano, I.; Peral, A.; Giardina, S.; Spartà, E.; Caturla, N. Antioxidant and Reduced Skin-Ageing Effects of a Polyphenol-Enriched Dietary Supplement in Response to Air Pollution: A Randomized, Double-Blind, Placebo-Controlled Study. Food Nutr. Res. 2021, 65. [Google Scholar] [CrossRef]
- Hoskin, R.; Pambianchi, E.; Pecorelli, A.; Grace, M.; Therrien, J.-P.; Valacchi, G.; Lila, M.A. Novel Spray Dried Algae-Rosemary Particles Attenuate Pollution-Induced Skin Damage. Molecules 2021, 26, 3781. [Google Scholar] [CrossRef]
- Mengoni, E.S.; Vichera, G.; Rigano, L.A.; Rodriguez-Puebla, M.L.; Galliano, S.R.; Cafferata, E.E.; Pivetta, O.H.; Moreno, S.; Vojnov, A.A. Suppression of COX-2, IL-1β and TNF-α Expression and Leukocyte Infiltration in Inflamed Skin by Bioactive Compounds from Rosmarinus officinalis L. Fitoterapia 2011, 82, 414–421. [Google Scholar] [CrossRef]
- Takano, N.; Inokuchi, Y.; Kurachi, M. Effects of Ethanol Extracts of Herbal Medicines on Dermatitis in an Atopic Dermatitis Mouse Model. Yakugaku Zasshi 2011, 131, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Hwang, C.J.; Choi, J.Y.; Park, M.H.; Song, M.J.; Oh, K.W.; Son, D.J.; Lee, S.H.; Han, S.B.; Hong, J.T. Inhibitory Effect of Carnosol on Phthalic Anhydride-Induced Atopic Dermatitis via Inhibition of STAT3. Biomol. Ther. 2017, 25, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Yeo, I.J.; Park, J.H.; Jang, J.S.; Lee, D.Y.; Park, J.E.; Choi, Y.E.; Joo, J.H.; Song, J.K.; Jeon, H.O.; Hong, J.T. Inhibitory Effect of Carnosol on UVB-Induced Inflammation via Inhibition of STAT3. Arch. Pharm. Res. 2019, 42, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Pierrard, C.; Lejeune, F.; Hilaire, P.; Breton, L.; Bernerd, F. Photoprotective Effect of a Water-Soluble Extract of Rosmarinus officinalis L. against UV-Induced Matrix Metalloproteinase-1 in Human Dermal Fibroblasts and Reconstructed Skin. Eur. J. Dermatol. 2008, 18, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Han, J.; Lee, C.S.; Heung Soo, B.; Lim, K.-M.; Ha, H. Carnosic Acid, a Phenolic Diterpene from Rosemary, Prevents UV-Induced Expression of Matrix Metalloproteinases in Human Skin Fibroblasts and Keratinocytes. Exp. Dermatol. 2013, 22, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Caturla, N.; Castillo, J.; Benavente-García, O.; Alcaraz, M.; Micol, V. Protective Effects of Citrus and Rosemary Extracts on UV-Induced Damage in Skin Cell Model and Human Volunteers. J. Photochem. Photobiol. B 2014, 136, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Nobile, V.; Michelotti, A.; Cestone, E.; Caturla, N.; Castillo, J.; Benavente-García, O.; Pérez-Sánchez, A.; Micol, V. Skin Photoprotective and Antiageing Effects of a Combination of Rosemary (Rosmarinus officinalis) and Grapefruit (Citrus paradisi) Polyphenols. Food Nutr. Res. 2016, 60, 31871. [Google Scholar] [CrossRef] [Green Version]
- Auh, J.-H.; Madhavan, J. Protective Effect of a Mixture of Marigold and Rosemary Extracts on UV-Induced Photoaging in Mice. Biomed. Pharmacother. 2021, 135, 111178. [Google Scholar] [CrossRef]
- Calniquer, G.; Khanin, M.; Ovadia, H.; Linnewiel-Hermoni, K.; Stepensky, D.; Trachtenberg, A.; Sedlov, T.; Braverman, O.; Levy, J.; Sharoni, Y. Combined Effects of Carotenoids and Polyphenols in Balancing the Response of Skin Cells to UV Irradiation. Molecules 2021, 26, 1931. [Google Scholar] [CrossRef]
- Ibrahim, N.; Abbas, H.; El-Sayed, N.S.; Gad, H.A. Rosmarinus officinalis L. Hexane Extract: Phytochemical Analysis, Nanoencapsulation, and in silico, in vitro, and in vivo Anti-Photoaging Potential Evaluation. Sci. Rep. 2022, 12, 13102. [Google Scholar] [CrossRef]
- Takayama, K.S.; Monteiro, M.C.; Saito, P.; Pinto, I.C.; Nakano, C.T.; Martinez, R.M.; Thomaz, D.V.; Verri JR, W.A.; Baracat, M.M.; Arakawa, N.S.; et al. Rosmarinus officinalis Extract-Loaded Emulgel Prevents UVB Irradiation Damage to the Skin. An. Acad. Bras. Cienc. 2022, 94. [Google Scholar] [CrossRef]
- Bernardes, W.A.; Lucarini, R.; Tozatti, M.G.; Souza, M.G.M.; Andrade Silva, M.L.; da Silva Filho, A.A.; Martins, C.H.G.; Miller Crotti, A.E.; Pauletti, P.M.; Groppo, M.; et al. Antimicrobial Activity of Rosmarinus officinalis against Oral Pathogens: Relevance of Carnosic Acid and Carnosol. Chem. Biodivers. 2010, 7, 1835–1840. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, X.; Zhou, N.; Li, J.; Liu, J.; Yue, J.; Hao, X.; Gan, M.; Lin, P.; Shang, X. Chemical Characterization of the Polar Antibacterial Fraction of the Ethanol Extract from Rosmarinus Officinalis. Food Chem. 2021, 344, 128674. [Google Scholar] [CrossRef]
- de Paula, I.M.B.; Moraes, F.C.; de Souza, O.V.; Yamamoto, C.H. Development of Mouthwash with Rosmarinus officinalis Extract. Braz. J. Pharm. Sci. 2014, 50, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Karadağ, A.E.; Demirci, B.; Çaşkurlu, A.; Demirci, F.; Okur, M.E.; Orak, D.; Sipahi, H.; Başer, K.H.C. In Vitro Antibacterial, Antioxidant, Anti-Inflammatory and Analgesic Evaluation of Rosmarinus officinalis L. Flower Extract Fractions. S. Afr. J. Bot. 2019, 125, 214–220. [Google Scholar] [CrossRef]
- Macedo, L.M.d.; Santos, É.M.d.; Ataide, J.A.; Silva, G.T.d.S.e.; Guarnieri, J.P.d.O.; Lancellotti, M.; Jozala, A.F.; Rosa, P.C.P.; Mazzola, P.G. Development and Evaluation of an Antimicrobial Formulation Containing Rosmarinus Officinalis. Molecules 2022, 27, 5049. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Rare and Emerging Opportunistic Fungal Pathogens: Concern for Resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Ribeiro, J.; Miranda, I.M.; Silva-Dias, A.; Cavalheiro, M.; Costa-de-Oliveira, S.; Rodrigues, A.G.; Teixeira, M.C. Clotrimazole Drug Resistance in Candida Glabrata Clinical Isolates Correlates with Increased Expression of the Drug:H+ Antiporters CgAqr1, CgTpo1_1, CgTpo3, and CgQdr2. Front. Microbiol. 2016, 7, 526. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.W.; Kuriyama, T.; Silva, S.; Malic, S.; Lewis, M.A.O. Candida Biofilms and Oral Candidosis: Treatment and Prevention. Periodontology 2011, 55, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ami, R. Treatment of Invasive Candidiasis: A Narrative Review. J. Fungi 2018, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to Essential Oils: Are They an Alternative to Antifungal Agents? J. Appl. Microbiol. 2016, 121, 1530–1545. [Google Scholar] [CrossRef]
- Altintas, A.; Tabanca, N.; Tyihák, E.; Ott, P.G.; Móricz, Á.M.; Mincsovics, E.; Wedge, D.E. Characterization of Volatile Constituents from Origanum Onites and Their Antifungal and Antibacterial Activity. J. AOAC Int. 2013, 96, 1200–1208. [Google Scholar] [CrossRef]
- Carbone, C.; do Teixeira, M.C.; do Sousa, M.C.; Martins-Gomes, C.; Silva, A.M.; Souto, E.M.B.; Musumeci, T. Clotrimazole-Loaded Mediterranean Essential Oils NLC: A Synergic Treatment of Candida Skin Infections. Pharmaceutics 2019, 11, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, E.H.; Costa, G.M.; Nakamura, T.U.; Nakamura, C.V.; Dias Filho, B.P. Antidermatophytic Activity of Hydroalcoholic Extracts from Rosmarinus officinalis and Tetradenia Riparia. J. Mycol. Med. 2015, 25, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Kallimanis, P.; Chinou, I.; Panagiotopoulou, A.; Soshilov, A.A.; He, G.; Denison, M.S.; Magiatis, P. Rosmarinus officinalis L. Leaf Extracts and Their Metabolites Inhibit the Aryl Hydrocarbon Receptor (AhR) Activation in vitro and in Human Keratinocytes: Potential Impact on Inflammatory Skin Diseases and Skin Cancer. Molecules 2022, 27, 2499. [Google Scholar] [CrossRef]
- Weckesser, S.; Engel, K.; Simon-Haarhaus, B.; Wittmer, A.; Pelz, K.; Schempp, C.M. Screening of Plant Extracts for Antimicrobial Activity against Bacteria and Yeasts with Dermatological Relevance. Phytomedicine 2007, 14, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Morgado, D.S.; Castro, R.; Ribeiro-Alves, M.; Corrêa-Moreira, D.; Castro-Alves, J.; Pereira, S.A.; Menezes, R.C.; Oliveira, M.M.E. Global Distribution of Animal Sporotrichosis: A Systematic Review of Sporothrix sp. Identified Using Molecular Tools. Curr. Res. Microb. Sci. 2022, 3, 100140. [Google Scholar] [CrossRef] [PubMed]
- Waller, S.B.; Madrid, I.M.; Cleff, M.B.; Santin, R.; Freitag, R.A.; Meireles, M.C.A.; Mello, J.R.B. Effects of Essential Oils of Rosmarinus officinalis Linn. and Origanum vulgare Linn. from Different Origins on Sporothrix Brasiliensis and Sporothrix Schenckii Complex. Arq. Bras. Med. Vet. Zootec. 2016, 68, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Waller, S.B.; Madrid, I.M.; Silva, A.L.; Dias de Castro, L.L.; Cleff, M.B.; Ferraz, V.; Meireles, M.C.A.; Zanette, R.; de Mello, J.R.B. In Vitro Susceptibility of Sporothrix Brasiliensis to Essential Oils of Lamiaceae Family. Mycopathologia 2016, 181, 857–863. [Google Scholar] [CrossRef]
- Waller, S.B.; Cleff, M.B.; Dalla Lana, D.F.; de Mattos, C.B.; Guterres, K.A.; Freitag, R.A.; Sallis, E.S.V.; Fuentefria, A.M.; de Mello, J.R.B.; de Faria, R.O.; et al. Can the Essential Oil of Rosemary (Rosmarinus officinalis Linn.) Protect Rats Infected with Itraconazole-Resistant Sporothrix Brasiliensis from Fungal Spread? J. Med. Mycol. 2021, 31, 101199. [Google Scholar] [CrossRef]
- Le, K.Y.; Otto, M. Quorum-Sensing Regulation in Staphylococci—An Overview. Front. Microbiol. 2015, 6, 1174. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, S.; Hillebrand, G.G.; Nunez, G. Rosmarinus officinalis L. (Rosemary) Extracts Containing Carnosic Acid and Carnosol Are Potent Quorum Sensing Inhibitors of Staphylococcus Aureus Virulence. Antibiotics 2020, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Sienkiewicz, M.; Łysakowska, M.; Pastuszka, M.; Bienias, W.; Kowalczyk, E. The Potential of Use Basil and Rosemary Essential Oils as Effective Antibacterial Agents. Molecules 2013, 18, 9334–9351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhan, A.; Alsuwayt, B.; Alanazi, F.; Yaseen, A.; Ashour, M.A. Evaluation and HPLC Characterisation of a New Herbal Ointment for the Treatment of Full-Thickness Burns in Rats. J. Taibah Univ. Med. Sci. 2021, 16, 152–161. [Google Scholar] [CrossRef]
- Mekkaoui, M.; Assaggaf, H.; Qasem, A.; El-Shemi, A.; Abdallah, E.M.; Bouidida, E.H.; Naceiri Mrabti, H.; Cherrah, Y.; Alaoui, K. Ethnopharmacological Survey and Comparative Study of the Healing Activity of Moroccan Thyme Honey and Its Mixture with Selected Essential Oils on Two Types of Wounds on Albino Rabbits. Foods 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Abu-Al-Basal, M.A. Healing Potential of Rosmarinus officinalis L. on Full-Thickness Excision Cutaneous Wounds in Alloxan-Induced-Diabetic BALB/c Mice. J. Ethnopharmacol. 2010, 131, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Sivamani, P.; Singaravelu, G.; Thiagarajan, V.; Jayalakshmi, T.; Kumar, G.R. Comparative Molecular Docking Analysis of Essential Oil Constituents as Elastase Inhibitors. Bioinformation 2012, 8, 457–460. [Google Scholar] [CrossRef]
- Pérez-Recalde, M.; Ruiz Arias, I.E.; Hermida, É.B. Could Essential Oils Enhance Biopolymers Performance for Wound Healing? A Systematic Review. Phytomedicine 2018, 38, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Labib, R.M.; Ayoub, I.M.; Michel, H.E.; Mehanny, M.; Kamil, V.; Hany, M.; Magdy, M.; Moataz, A.; Maged, B.; Mohamed, A. Appraisal on the Wound Healing Potential of Melaleuca Alternifolia and Rosmarinus officinalis L. Essential Oil-Loaded Chitosan Topical Preparations. PLoS ONE 2019, 14, e0219561. [Google Scholar] [CrossRef]
- El-Sakhawy, M.A.; Soliman, G.A.; El-Sheikh, H.H.; Ganaie, M.A. Anticandidal Effect of Eucalyptus Oil and Three Isolated Compounds on Cutaneous Wound Healing in Rats. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 26–37. [Google Scholar]
- Ince, B.; Yildirim, A.M.; Okur, M.I.; Dadaci, M.; Yoruk, E. Effects of Rosmarinus officinalis on the Survivability of Random-Patterned Skin Flaps: An Experimental Study. J. Plast. Surg. Hand Surg. 2015, 49, 83–87. [Google Scholar] [CrossRef]
- Ince, B.; Bilgen, F.; Gundeslioglu, A.O.; Dadaci, M.; Kozacioglu, S. Use of Systemic Rosmarinus officinalis to Enhance the Survival of Random-Pattern Skin Flaps. Balk. Med. J. 2016, 33, 645–651. [Google Scholar] [CrossRef]
- Ince, B.; Dadaci, M.; Kilinc, I.; Oltulu, P.; Yarar, S.; Uyar, M. Effect of Cineole, Alpha-Pinene, and Camphor on Survivability of Skin Flaps. Turk. J. Med. Sci. 2018, 48, 644–652. [Google Scholar] [CrossRef]
- Maleš, Ž.; Drvar, D.L.; Duka, I.; Žužul, K. Application of Medicinal Plants in Several Dermatovenerological Entities. Acta Pharm. 2019, 69, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahi, Y.; Taghizadeh, M.; Marzony, E.T.; Sahebkar, A. Rosemary Oil vs. Minoxidil 2% for the Treatment of Androgenetic Alopecia: A Randomized Comparative Trial. Skinmed 2015, 13, 15–21. [Google Scholar] [PubMed]
- Rastegar, H.; Ahmadi Ashtiani, H.; Aghaei, M.; Ehsani, A.; Barikbin, B. Combination of Herbal Extracts and Platelet-Rich Plasma Induced Dermal Papilla Cell Proliferation: Involvement of ERK and Akt Pathways. J. Cosmet. Derm. 2013, 12, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Piera-Velazquez, S.; Jimenez, S.A. Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target. J. Clin. Med. 2021, 10, 4791. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, G.L.; Irrera, N.; Pizzino, G.; Santoro, D.; Roberts, W.N.; Bagnato, G.; Pallio, G.; Vaccaro, M.; Squadrito, F.; Saitta, A.; et al. Dual Avβ3 and Avβ5 Blockade Attenuates Fibrotic and Vascular Alterations in a Murine Model of Systemic Sclerosis. Clin. Sci. 2018, 132, 231–242. [Google Scholar] [CrossRef]
- Vagedes, J.; Henes, J.; Deckers, B.; Vagedes, K.; Kuderer, S.; Helmert, E.; von Schoen-Angerer, T. Topical Rosmarinus officinalis L. in Systemic Sclerosis-Related Raynaud’s Phenomenon: An Open-Label Pilot Study. Complement. Med. Res. 2022, 29, 242–248. [Google Scholar] [CrossRef]
- Yimam, M.; Lee, Y.-C.; Jiao, P.; Hong, M.; Brownell, L.; Jia, Q. A Standardized Composition Comprised of Extracts from Rosmarinus Officinalis, Annona Squamosa and Zanthoxylum Clava-Herculis for Cellulite. Pharmacogn. Res. 2017, 9, 319. [Google Scholar] [CrossRef]
- Jhappan, C.; Noonan, F.P.; Merlino, G. Ultraviolet Radiation and Cutaneous Malignant Melanoma. Oncogene 2003, 22, 3099–3112. [Google Scholar] [CrossRef] [Green Version]
- Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T. UV-Induced Skin Damage. Toxicology 2003, 189, 21–39. [Google Scholar] [CrossRef]
- Borgia, F.; Li Pomi, F.; Vaccaro, M.; Alessandrello, C.; Papa, V.; Gangemi, S. Oxidative Stress and Phototherapy in Atopic Dermatitis: Mechanisms, Role, and Future Perspectives. Biomolecules 2022, 12, 1904. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Tonacci, A.; Pioggia, G.; Musolino, C.; Gangemi, S. Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials. Nutrients 2020, 12, 1739. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Wu, S. The Mechanisms of Carnosol in Chemoprevention of Ultraviolet B-Light-Induced Non-Melanoma Skin Cancer Formation. Sci. Rep. 2018, 8, 3574. [Google Scholar] [CrossRef] [Green Version]
- Sancheti, G.; Goyal, P.K. Effect of Rosmarinus officinalis in Modulating 7,12-Dimethylbenz(a)Anthracene Induced Skin Tumorigenesis in Mice. Phytother. Res. 2006, 20, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical Profile of Rosmarinus officinalis and Salvia Officinalis Extracts and Correlation to Their Antioxidant and Anti-Proliferative Activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef]
- Cheung, S.; Tai, J. Anti-Proliferative and Antioxidant Properties of Rosemary Rosmarinus Officinalis. Oncol. Rep. 2007, 17, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
- Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory Effects of Rosemary Extracts, Carnosic Acid and Rosmarinic Acid on the Growth of Various Human Cancer Cell Lines. Plant Foods Hum. Nutr. 2010, 65, 158–163. [Google Scholar] [CrossRef]
- Johnson, J.J. Carnosol: A Promising Anti-Cancer and Anti-Inflammatory Agent. Cancer Lett. 2011, 305, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xavier, C.P.R.; Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Salvia fruticosa, Salvia officinalis, and Rosmarinic Acid Induce Apoptosis and Inhibit Proliferation of Human Colorectal Cell Lines: The Role in MAPK/ERK Pathway. Nutr. Cancer 2009, 61, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.-X.; Liu, J.-X.; Wang, L.; Li, H.-Z.; Luo, J.-B. Expression of Bcl-2 and Bax Genes in the Liver Cancer Cell Line HepG2 after Apoptosis Induced by Essential Oils from Rosmarinus Officinalis. Zhong Yao Cai 2008, 31, 877–879. [Google Scholar]
- Shabtay, A.; Sharabani, H.; Barvish, Z.; Kafka, M.; Amichay, D.; Levy, J.; Sharoni, Y.; Uskokovic, M.R.; Studzinski, G.P.; Danilenko, M. Synergistic Antileukemic Activity of Carnosic Acid-Rich Rosemary Extract and the 19-nor Gemini Vitamin D Analogue in a Mouse Model of Systemic Acute Myeloid Leukemia. Oncology 2008, 75, 203–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.T.; Ho, C.T.; Wang, Z.Y.; Ferraro, T.; Lou, Y.R.; Stauber, K.; Ma, W.; Georgiadis, C.; Laskin, J.D.; Conney, A.H. Inhibition of Skin Tumorigenesis by Rosemary and Its Constituents Carnosol and Ursolic Acid. Cancer Res. 1994, 54, 701–708. [Google Scholar] [PubMed]
- Singletary, K.; MacDonald, C.; Wallig, M. Inhibition by Rosemary and Carnosol of 7,12-Dimethylbenz[a]Anthracene (DMBA)-Induced Rat Mammary Tumorigenesis and in vivo DMBA-DNA Adduct Formation. Cancer Lett. 1996, 104, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Li Pomi, F.; Borgia, F.; Custurone, P.; Vaccaro, M.; Pioggia, G.; Gangemi, S. Role of HMGB1 in Cutaneous Melanoma: State of the Art. Int. J. Mol. Sci. 2022, 23, 9327. [Google Scholar] [CrossRef]
- Huang, S.-C.; Ho, C.-T.; Lin-Shiau, S.-Y.; Lin, J.-K. Carnosol Inhibits the Invasion of B16/F10 Mouse Melanoma Cells by Suppressing Metalloproteinase-9 through down-Regulating Nuclear Factor-Kappa B and c-Jun. Biochem. Pharm. 2005, 69, 221–232. [Google Scholar] [CrossRef]
- Cattaneo, L.; Cicconi, R.; Mignogna, G.; Giorgi, A.; Mattei, M.; Graziani, G.; Ferracane, R.; Grosso, A.; Aducci, P.; Schininà, M.E.; et al. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells. PLoS ONE 2015, 10, e0132439. [Google Scholar] [CrossRef] [Green Version]
- Yasunaga, J. Viral, Genetic, and Immune Factors in the Oncogenesis of Adult T-Cell Leukemia/Lymphoma. Int. J. Hematol. 2023. [Google Scholar] [CrossRef]
- Honda, M.; Yamada, Y.; Tomonaga, M.; Ichinose, H.; Kamihira, S. Correlation of Urinary 8-Hydroxy-2′-Deoxyguanosine (8-OHdG), a Biomarker of Oxidative DNA Damage, and Clinical Features of Hematological Disorders: A Pilot Study. Leuk Res. 2000, 24, 461–468. [Google Scholar] [CrossRef]
- Hutchison, T.; Malu, A.; Yapindi, L.; Bergeson, R.; Peck, K.; Romeo, M.; Harrod, C.; Pope, J.; Smitherman, L.; Gwinn, W.; et al. The TP53-Induced Glycolysis and Apoptosis Regulator Mediates Cooperation between HTLV-1 P30II and the Retroviral Oncoproteins Tax and HBZ and Is Highly Expressed in an in vivo Xenograft Model of HTLV-1-Induced Lymphoma. Virology 2018, 520, 39–58. [Google Scholar] [CrossRef]
- Ishida, Y.; Yamasaki, M.; Yukizaki, C.; Nishiyama, K.; Tsubouchi, H.; Okayama, A.; Kataoka, H. Carnosol, Rosemary Ingredient, Induces Apoptosis in Adult T-Cell Leukemia/Lymphoma Cells via Glutathione Depletion: Proteomic Approach Using Fluorescent Two-Dimensional Differential Gel Electrophoresis. Hum. Cell 2014, 27, 68–77. [Google Scholar] [CrossRef]
- Visanji, J.M.; Thompson, D.G.; Padfield, P.J. Induction of G2/M Phase Cell Cycle Arrest by Carnosol and Carnosic Acid Is Associated with Alteration of Cyclin A and Cyclin B1 Levels. Cancer Lett. 2006, 237, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Calapai, G.; Minciullo, P.L.; Miroddi, M.; Chinou, I.; Gangemi, S.; Schmidt, R.J. Contact Dermatitis as an Adverse Reaction to Some Topically Used European Herbal Medicinal Products - Part 3: Mentha × Piperita—Solanum Dulcamara. Contact Dermat. 2016, 74, 131–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors and Year | Topic | Model | Extraction Procedure | Study Characteristics |
---|---|---|---|---|
Takayama et al. [58], 2022 | Antioxidants and UVB protection | In vivo/in vitro | Exhaustive maceration | An in vitro and in vivo study on the properties of R. officinalis demonstrated its protective role for the skin against tissue damage caused by UVB radiation. |
Nobile et al. [54], 2016 | Antioxidants and UVR protection | In vivo | Drying | The antioxidant, photoprotective and antiaging efficacy of the combination of Rosmarinus officinalis and Citrus paradisi extracts was demonstrated. |
Ibrahim et al. [57], 2022 | Antioxidants and anti-aging | In vivo/in vitro | Not specified | The photoprotective potential of rosemary extract, whose permeability and bioavailability improved when topically conveyed into lipid nanocapsule-based gel, was assessed. |
Nobile et al. [45], 2021 | Antioxidants and pollution | In vivo | Not specified | A double-blind randomized study demonstrated that oxidative stress-induced skin damage in both Asian and Caucasian women living in a polluted urban is reduced by oral supplementation with the following herbal extracts: Olea europaea leaf, Lippia citriodora, Rosmarinus officinalis, and Sophora japonica. |
Mengoni et al. [47], 2011 | Antioxidants, inflammation and AD | In vivo/in vitro | Drying | In a mouse model, the expression of IL-1β and TNF-α, markers of inflammation-associated genes in skin, were reduced by carnosic acid and carnosol. |
Calniquer et al. [56], 2021 | Antioxidants and UVB protection | In vitro | Not specified | An in vitro study demonstrated that the combination of carotenoids and polyphenols produces protective effects against UV-induced damage to skin cells, inhibiting UVB-induced NFκB activity and IL-6 release. |
Sanchez et al. [53], 2014 | Antioxidants and UVB protection | In vivo/in vitro | Drying and water dissolution | In HaCaT keratinocytes and in human volunteers, the oral intake of rosemary and citrus bioflavonoid extracts reduced UVB-induced ROS, thus preventing cellular DNA damage. |
Kim et al. [42], 2003 | Antioxidants | In vitro | Ethanol/water (50:50, v/v) | The protein glycation inhibitory activity of aqueous ethanolic extracts of various plants, including Rosmarinus officinalis, closely correlated with the antioxidant activity of the extracts. |
Salem et al. [44], 2020 | Antioxidants | In vitro | Drying, maceration, water distillation, boiling, filtration, lyophilization | An in vitro study evaluated the radical-scavenging and anti-aging activity of aqueous and ethanoic extracts of phenolic-rich selected herbs, including Rosmarinus officinalis, which showed the highest antioxidant activity and the most pronounced anti-elastase, anti-tyrosinase and anti-collagenase activity. |
Ezzat et al. [43], 2016 | Antioxidants | In vivo/in vitro | Drying, pulverization, defatting, percolation with 70% ethanol, evaporation | The anti-wrinkle activity of DER, which was optimized by encapsulation in transferosomes, was assessed in an in vitro study. |
Yeo et al. [50], 2019 | Antioxidants and atopic dermatitis | In vivo | Not specified | The anti-inflammation effect of the topical application of carnosol on UVB-induced skin inflammation in HR1 mice inhibited erythema, epidermal thickness and inflammatory responses. |
Lee et al. [49], 2019 | Antioxidants and atopic dermatitis | In vivo/in vitro | Not specified | Carnosol inhibited LPS-induced nitric oxide generation and the expression of inflammatory marker proteins, including iNOS and COX-2 in RAW 264.7 cells. STAT3 phosphorylation and DNA-binding activity in RAW 264.7 cells were reduced. |
Takano et al. [48], 2011 | Antioxidant and atopic dermatitis | In vivo/in vitro | Ethanol | In an atopic dermatitis mouse model, the application of four herbal extracts, including Rosmarinus officinalis, reduced atopic lesions, thus inhibiting the effect of NGF on neuritic outgrowths in lesional skin. |
Martin et al. [51], 2008 | Anti UV | In vitro | Solubilization | IL1-α and IL-6, which play a role in the up-regulation of UV-induced MMP-1, could be suppressed by the Rosmarinus officinalis water-soluble extract. |
Park et al. [52], 2013 | Anti UV | In vitro | Not specified | The antiaging activity of carnosic acid downregulated the UV-induced expression of MMP-1, MMP-3 and MMP-9 in human fibroblasts and keratinocytes. |
Hoskin et al. [46], 2021 | Antioxidants and pollution | Ex vivo | Hydroalcoholization | The topical application of a gel based on hydroalcoholic rosemary extract complexed with algae proteins against pollution-induced oxidative skin damage was demonstrated. |
Hyuck Auh et al. [55], 2021 | Anti UV | In vivo | Ethanol at 72 °C for 3 h, evaporation | A mixture of marigold and rosemary extracts demonstrated anti-aging activity in a UV-induced mouse model of photoaging, with reduced expression of matrix metalloproteinase, interleukins, TNF-α, procollagen type I, superoxide dismutase, glutathione peroxidase and catalase |
Authors and Year | Topic | Model | Extraction Procedure | Study Characteristics |
---|---|---|---|---|
Kallimanis et al. [73], 2022 | Anti-microbial activity | In vitro | After drying, the leaf was treated with each solvent in a 1:10 ratio, and then separated from the liquid part by filtration. | Five different dry ROEs were assayed for their activities as antagonists of AhR ligand, which in turn inhibited Malassezia furfur yeasts. |
De Macedo et al. [63], 2022 | Anti-microbial activity | In vitro | Maceration, infusion, Soxhlet and ultrasound | A topical formulation with R. officinalis extract demonstrated antimicrobial activity against S. aureus, S. oralis, and P. aeruginosa |
Endo et al. [72], 2015 | Anti-microbial activity | In vitro | Leaf were dried in a circulating-air oven at 40 °C. Subsequently, they were soaked in 90/10% (v/v) ethanol–water for 48 h at 25 °C, protected from light. | Hydroalcoholic extracts from R. officinalis and T. riparia in vitro was demonstrated to have antifungal activity against strains of Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum gypseum |
Nakagawa et al. [80], 2020 | Anti-microbial | In vitro | Not specified. | Diterpene carnosic acid and carnosol, present in Rosmarinus officinalis L. leaves, had specific effect on S. aureus agr expression. |
Waller et al. [76], 2021 | Anti-microbial activity | In vitro | Distillation by steam dragging in Clevenger equipment for 4 h | The study demonstrated rosemary oil as a promising antifungal to treat sporotrichosis, thus postponing systemic fungal spreading. |
Weckesser et al. [74], 2007 | Anti-microbial activity | In vitro | The solvent used was Carbon dioxide/isopropyl alcohol. | Rosmarinus extract inhibited the growth of Candida strains |
Sienkiewicz et al. [81], 2013 | Anti-microbial activity | In vitro | Not specified. | Basil and Rosmarinus officinalis essential oils played a role against resistant Escherichia coli clinical strains, and also against extended-spectrum β-lactamase positive bacteria. |
Carbone et al. [71], 2013 | Anti-microbial activity | In vitro | Not specified. | Nanostructured lipid carrier systems containing EOs, including Rosmarinus officinalis, could improve Clotrimazole effectiveness against candidiasis. |
Author | Topic | Model | Extraction Procedure | Study Characteristics |
---|---|---|---|---|
Labib et al. [87], 2019 | Wound Healing | In vivo | Not specified | The wound-healing potential of a combination of rosemary and tea tree essential oils incorporated into chitosan-based preparations was highlighted. |
Abu-Al-Basal et al. [84], 2010 | Wound healing | In vivo | Steam distillation | An in vivo study conducted on BALB/c mice demonstrated the efficacy of both aqueous extract and essential oil of Rosmarinus officinalis in healing diabetic wounds. |
Mekkaoui et al. [83], 2021 | Wound healing | In vivo | Not specified | A honey mixture with selected essential oils on chemical and thermal wound models in rabbits has healing effects. |
Sivamani et al. [85], 2012 | Wound healing | In silico | Not specified | Rosmarinus, among other essential oils, inhibited the deleterious activities of elastase, thus ameliorating wound healing. |
Sakhawy et al. [88], 2023 | Wound healing | In vivo | Not specified | Topical application of a mixture of essential oils, including Rosmarinus officinalis, had potential in healing wounds infected with Candida albicans. |
Farhan et al. [82], 2021 | Wound healing | In vivo | Methanol extraction | In vitro, the antifungal activities of Rosmarinus officinalis in wounds infected with Candida albicans was demonstrated. |
Ince et a [90], 2016 | Increasing skin flap survival | In vivo | Not specified | The vasodilatory effects of Rosmarinus officinalis contributed to increasing skin flap survival. |
Ince et al. [89], 2015 | Increasing skin flap survival | In vivo | Not specified. | Rosmarinus officinalis increased skin flap survival in a mouse model. |
Ince et al. [91], 2018 | Increasing skin flap survival | In vivo | Not specified | Alpha-pinene and cineole were the components of Rosmarinus officinalis responsible for increased flap survival. |
Author and Year | Topic | Model | Extraction Procedure | Study Characteristics |
---|---|---|---|---|
Panahi et al. [93], 2019 | Alopecia | Rosmarinus officinalis improved microcirculation surrounding the follicle, with comparable results to topical Minoxidil 2% in hair regrowth in patients affected by androgenetic alopecia. | ||
Rastegar et al. [94], 2013 | Alopecia | In vitro | The herbs were dried, crushed, and passed through 80-mesh stainless-steel sieves and water was used as a base. | Herbal extract with Rosmarinus officinalis and PRP had a positive effect on hair regrowth, promoting the proliferation of human dermal papilla. |
Vagedes et al. [97], 2022 | Raynaud’s phenomenon | In vivo | Not specified. | In an open-label pilot study, warmth perception in patients with systemic sclerosis-related Raynaud’s phenomenon was increased by the application of topical rosemary essential oil. |
Yimam et al. [98], 2017 | Cellulite | In vitro | Dried rosemary leaf was extracted with an approximately 10-fold volume of 95% ethyl alcohol at 40 °C. | A composition of extracts, including those from Rosmarinus officinalis, reduced lipid accumulation, platelet aggregation and inflammation, thus ameliorating microcirculation through antioxidant activity |
Tong et al. [103], 2018 | Non-Melanoma skin cancer | In vitro | Not specified. | Carnosol inhibits the UVB-induced activation of NF-κB, thus reducing keratinocyte carcinogenesis in vitro |
Sancheti et al. [104], 2006 | Skin cancer | In vivo | Extraction in a Soxhlet apparatus with double-distilled water by refluxing for 36 h at 50–60 °C. | A mouse model demonstrated the protective role of Rosmarinus officinalis against skin tumorigenesis |
Huang et al. [115], 2005 | Melanoma | In vivo | Extraction with hexane, solvent evaporation, dissolving the dried material with methanol, and then filtrating and evaporating the solvent again. | Carnosol inhibited the migration of metastatic B16/F10 mouse melanoma cells in vitro by suppressing the expression of MMP-9 |
Cattaneo et al. [116], 2015 | Melanoma | In vitro | Grinding into fine powder and suspension at 330 g/L in a solution of 65% (w/w) ethanol/water for 21 days. The extract was then filtered and stored at −20 °C until use. | In vitro, extract of Rosmarinus officinalis L. inhibited human melanoma A375 cell line proliferation in a dose- and time-proportional way |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li Pomi, F.; Papa, V.; Borgia, F.; Vaccaro, M.; Allegra, A.; Cicero, N.; Gangemi, S. Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases. Antioxidants 2023, 12, 680. https://doi.org/10.3390/antiox12030680
Li Pomi F, Papa V, Borgia F, Vaccaro M, Allegra A, Cicero N, Gangemi S. Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases. Antioxidants. 2023; 12(3):680. https://doi.org/10.3390/antiox12030680
Chicago/Turabian StyleLi Pomi, Federica, Vincenzo Papa, Francesco Borgia, Mario Vaccaro, Alessandro Allegra, Nicola Cicero, and Sebastiano Gangemi. 2023. "Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases" Antioxidants 12, no. 3: 680. https://doi.org/10.3390/antiox12030680
APA StyleLi Pomi, F., Papa, V., Borgia, F., Vaccaro, M., Allegra, A., Cicero, N., & Gangemi, S. (2023). Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases. Antioxidants, 12(3), 680. https://doi.org/10.3390/antiox12030680