Host–Guest Complexes HP-β-CD/Citrus Antioxidants: Exploratory Evaluations of Enhanced Properties in Biodegradable Film Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Chemicals
2.2. Extraction of Pectin and Bioactive Molecules Fraction from Citrus Lemon Waste
2.3. Identification and Quantification of Antioxidant Compounds
2.4. Preparation of the Complexes HP-β-CD with an Antioxidant Fraction
2.5. Thermogravimetric Analysis
2.6. Fourier-Transform Infrared Spectroscopy
2.7. Antioxidant Assays
2.7.1. Folin–Ciocalteu (F–C) Assay
2.7.2. DPPH Assay
2.8. Preparation of Pectin Films with Antioxidant/HP-β-CD Complexes and Antioxidant Activity Stability over Time
3. Results and Discussion
3.1. Side Extraction of Antioxidant Molecules
3.2. Evaluation of the Antioxidant Molecules Extracted from Citrus Waste
3.3. Characterization of the Physical and Chemical Properties of the Antioxidant-HP-β-CD Complex
3.3.1. Thermogravimetric Analysis
3.3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.4. Assessment of the Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus Wastes into Value-Added Products: Economic and Environmently Friendly Approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, J.; Langrish, T.A.G. Water-Based Extraction of Pectin from Flavedo and Albedo of Orange Peels. Chem. Eng. J. 2006, 120, 203–209. [Google Scholar] [CrossRef]
- Gülay Kirbaşlar, F.; Tavman, A.; Dülger, B.; Türker, G. Antimicrobial activity of turkish citrus peel oils. Pak. J. Bot. 2009, 41, 3207–3212. [Google Scholar]
- Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O.; Xiao, C.; Lu, C.; Liu, Y. Citrus Fruits as a Treasure Trove of Active Natural Metabolites That Potentially Provide Benefits for Human Health. Chem. Cent. J. 2015, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Obidi, O.F.; Adelowotan, A.O.; Ayoola, G.; Johnson, O.O.; Hassan, M.O.; Nwachukwu, S.C.U. Antimicrobial activity of orange oil on selected pathogens. Int. J. Biotechnol. 2013, 2, 113–122. [Google Scholar]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Antimicrobial Effects of Selected Plant Essential Oils on the Growth of a Pseudomonas Putida Strain Isolated from Meat. Meat Sci. 2006, 73, 236–244. [Google Scholar] [CrossRef]
- Rhodes, C.J. Plastic Pollution and Potential Solutions. Sci. Prog. 2018, 101, 207–260. [Google Scholar] [CrossRef]
- Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent Advances in Host–Guest Self-Assembled Cyclodextrin Carriers: Implications for Responsive Drug Delivery and Biomedical Engineering. Adv. Funct. Mater. 2020, 30, 1909049. [Google Scholar] [CrossRef]
- Pereira, A.G.; Carpena, M.; Oliveira, P.G.; Mejuto, J.C.; Prieto, M.A.; Gandara, J.S. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. Int. J. Mol. Sci. 2021, 22, 1339. [Google Scholar] [CrossRef]
- Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Leblanc, J.C.; et al. Re-Evaluation of b-Cyclodextrin (E 459) as a Food Additive. EFSA J. 2016, 14, 4628. [Google Scholar] [CrossRef]
- Przybyla, M.A.; Yilmaz, G.; Remzi Becer, C. Natural Cyclodextrins and Their Derivatives for Polymer Synthesis. Polym. Chem. 2020, 11, 7582–7602. [Google Scholar] [CrossRef]
- Cesari, A.; Uccello Barretta, G.; Kirschner, K.N.; Pappalardo, M.; Basile, L.; Guccione, S.; Russotto, C.; Lauro, M.R.; Cavaliere, F.; Balzano, F. Interaction of natural flavonoid eriocitrin with β-cyclodextrin and hydroxypropyl-β-cyclodextrin: An NMR and molecular dynamics investigation. New J. Chem. 2020, 44, 16431–16441. [Google Scholar] [CrossRef]
- Zannini, D.; Dal Poggetto, G.; Malinconico, M.; Santagata, G.; Immirzi, B. Citrus Pomace Biomass as a Source of Pectin and Lignocellulose Fibers: From Waste to Upgraded Biocomposites for Mulching Applications. Polymers 2021, 13, 1280. [Google Scholar] [CrossRef] [PubMed]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Evaluation of Enrichment with Antioxidants from Olive Oil Mill Wastes in Hydrophilic Model System. J. Food Process. Preserv. 2019, 43, e14211. [Google Scholar] [CrossRef]
- Zoppetti, G.; Puppini, N.; Pizzutti, M.; Fini, A.; Giovani, T.; Comini, S. Water soluble progesterone–hydroxypropyl-β-cyclodextrin complex for injectable formulations. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 283–288. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins Inclusion Complex: Preparation Methods, Analytical Techniques and Food Industry Applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Antonucci, I.; Fiorentino, G.; Contursi, P.; Minale, M.; Riccio, R.; Riccio, S.; Limauro, D. Antioxidant Capacity of Rigenase®, a Specific Aqueous Extract of Triticum Vulgare. Antioxidants 2018, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin-Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- Imeneo, V.; Romeo, R.; De Bruno, A.; Piscopo, A. Green-Sustainable Extraction Techniques for the Recovery of Antioxidant Compounds from “Citrus Limon” by-Products. J. Environ. Sci. Health 2022, 57, 220–232. [Google Scholar] [CrossRef]
- Miyake, Y.; Yamamoto, K.; Osawa, T. Isolation of Eriocitrin(Eriodictyol 7-Rutinoside) from Lemon Fruit(Citrus Limon BURM. f.) and Its Antioxidative Activity. Food Sci. Technol. Int. Tokyo 1997, 3, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Hiramitsu, M.; Shimada, Y.; Kuroyanagi, J.; Inoue, T.; Katagiri, T.; Zang, L.; Nishimura, Y.; Nishimura, N.; Tanaka, T. Eriocitrin Ameliorates Diet-Induced Hepatic Steatosis with Activation of Mitochondrial Biogenesis. Sci. Rep. 2014, 4, 3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Huang, W.; Tan, R.; Xu, C.; Chen, X.; Li, S.; Liu, Y.; Qiu, H.; Cao, H.; Cheng, Q. The Benefits of Hesperidin in Central Nervous System Disorders, Based on the Neuroprotective Effect. Biomed. Pharmacother. 2023, 159, 114222. [Google Scholar] [CrossRef] [PubMed]
- Golechha, M.; Chaudhry, U.; Bhatia, J.; Saluja, D.; Arya, D.S. Naringin Protects against Kainic Acid-Induced Status Epilepticus in Rats: Evidence for an Antioxidant, Anti-Inflammatory and Neuroprotective Intervention. Biol. Pharm. Bull. 2011, 34, 360–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, E.S.W.; Li, R.W.S.; Li, J.; Li, R.; Seto, S.W.; Lee, S.M.Y.; Leung, G.P.H. Relaxation Effect of Narirutin on Rat Mesenteric Arteries via Nitric Oxide Release and Activation of Voltage-Gated Potassium Channels. Eur. J. Pharmacol. 2021, 905, 174190. [Google Scholar] [CrossRef]
- Martinez-Zapata, M.J.; Vernooij, R.W.M.; Simancas-Racines, D.; Uriona Tuma, S.M.; Stein, A.T.; Moreno Carriles, R.M.M.; Vargas, E.; Bonfill Cosp, X. Phlebotonics for venous insufficiency. Cochrane Database Syst. Rev. 2020, 11, CD003229. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Chia (Salvia hispanica L.) Seeds. Plant Foods Hum. Nutr. 2018, 73, 47–53. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Xu, Z.; Wu, M.; Xia, W.; Zhang, W. Chimonanthus Praecox Extract/Cyclodextrin Inclusion Complexes: Selective Inclusion, Enhancement of Antioxidant Activity and Thermal Stability. Ind. Crops Prod. 2017, 95, 60–65. [Google Scholar] [CrossRef]
- Gao, S.; Bie, C.; Ji, Q.; Ling, H.; Li, C.; Fu, Y.; Zhao, L.; Ye, F. Preparation and Characterization of Cyanazine-Hydroxypropyl-Beta-Cyclodextrin Inclusion Complex. RSC Adv. 2019, 9, 26109–26115. [Google Scholar] [CrossRef] [Green Version]
- Shahid-ul-Islam; Butola, B.S. A Synergistic Combination of Shrimp Shell Derived Chitosan Polysaccharide with Citrus Sinensis Peel Extract for the Development of Colourful and Bioactive Cellulosic Textile. Int. J. Biol. Macromol. 2020, 158, 94–103. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Moriwaki, M.; Minoura, K.; Timm, D.; Abe, A.; Kito, K. Structural Investigation of Hesperetin-7-O-Glucoside Inclusion Complex with β-Cyclodextrin: A Spectroscopic Assessment. Molecules 2022, 27, 5395. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. Study of Flavonoid/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes by UV-Vis, FT-IR, DSC, and X-ray Diffraction Analysis. Prev. Nutr. Food. Sci. 2020, 25, 449–456. [Google Scholar] [CrossRef] [PubMed]
Compounds | Regression Equation | R2 | LOD mg/kg | LOQ mg/kg |
---|---|---|---|---|
p-Coumaric acid | y = 114.17x + 35.47 | 0.999 | 0.081 | 0.315 |
Ferulic acid | y = 127.18x − 72.81 | 0.999 | 0.077 | 0.568 |
Rutin | y = 46.07x − 14.44 | 0.999 | 0.097 | 0.321 |
Eriocitrin | y = 41.392x − 38.81 | 0.999 | 0.357 | 19.082 |
Narirutin | y = 88.81x + 84.18 | 0.999 | 0.081 | 0.765 |
Naringin | y = 42.17x − 20.75 | 0.999 | 0.068 | 0.577 |
Hesperidin | y = 54.81x + 24.38 | 0.999 | 0.077 | 23.452 |
Identification Name | Antioxidants (mg) | HP-β-CD (mg) | Molar Ratio Antioxidants/ HP-β-CD |
---|---|---|---|
HP-β-CD20 | 100.0 | 52.4 | 1:0.4 |
HP-β-CD40 | 100.0 | 104.8 | 1:0.8 |
HP-β-CD60 | 100.0 | 157.2 | 1:1.2 |
HP-β-CD80 | 100.0 | 209.6 | 1:1.6 |
HP-β-CD100 | 100.0 | 250.9 | 1:2 |
Antioxidant Molecules | Amount |
---|---|
p-cumaric acid | 6.06 ± 0.74 |
Ferulic acid | 8.22 ± 2.33 |
Rutin | 2.99 ± 0.65 |
Eriocitrin | 167.10 ± 5.65 |
Narirutin | 12.47 ± 2.95 |
Naringin | 5.17 ± 0.42 |
Hesperidin | 74.58 ± 2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, G.; Zannini, D.; Immirzi, B.; De Bruno, A.; Fiorentino, G.; Dal Poggetto, G. Host–Guest Complexes HP-β-CD/Citrus Antioxidants: Exploratory Evaluations of Enhanced Properties in Biodegradable Film Packaging. Antioxidants 2023, 12, 763. https://doi.org/10.3390/antiox12030763
Gallo G, Zannini D, Immirzi B, De Bruno A, Fiorentino G, Dal Poggetto G. Host–Guest Complexes HP-β-CD/Citrus Antioxidants: Exploratory Evaluations of Enhanced Properties in Biodegradable Film Packaging. Antioxidants. 2023; 12(3):763. https://doi.org/10.3390/antiox12030763
Chicago/Turabian StyleGallo, Giovanni, Domenico Zannini, Barbara Immirzi, Alessandra De Bruno, Gabriella Fiorentino, and Giovanni Dal Poggetto. 2023. "Host–Guest Complexes HP-β-CD/Citrus Antioxidants: Exploratory Evaluations of Enhanced Properties in Biodegradable Film Packaging" Antioxidants 12, no. 3: 763. https://doi.org/10.3390/antiox12030763
APA StyleGallo, G., Zannini, D., Immirzi, B., De Bruno, A., Fiorentino, G., & Dal Poggetto, G. (2023). Host–Guest Complexes HP-β-CD/Citrus Antioxidants: Exploratory Evaluations of Enhanced Properties in Biodegradable Film Packaging. Antioxidants, 12(3), 763. https://doi.org/10.3390/antiox12030763