The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Study Objectives and Outcomes
2.4. Breast Milk Sampling and Analysis
2.5. Maternal Plasma
2.6. Maternal Dietary Intake
2.7. Statistical Analysis
2.7.1. Breast Milk
2.7.2. Maternal Plasma
2.7.3. Maternal Dietary Intake
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Infant and Young Children Nutrition: Global Strategy on Infant and Young Child Feeding. 2002. Available online: http://apps.who.int/gb/archive/pdf_files/WHA55/ea5515.pdf?ua=1 (accessed on 19 December 2022).
- Infant Feeding Joint Working Group. Nutrition for Healthy Term Infants: Recommendations from Birth to Six Months. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/infant-feeding/nutrition-healthy-term-infants-recommendations-birth-six-months.html (accessed on 19 December 2022).
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Feig, D.S.; Berger, H.; Donovan, L.; Godbout, A.; Kader, T.; Keely, E.; Sanghera, R. Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada: Diabetes and Pregnancy. Can. J. Diabetes 2018, 42, S255–S282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weintroh, N.; Karp, M.; Hod, M. Short- and long-range complications in offspring of diabetic mothers. J. Diabetes Complicat. 1996, 10, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Raidl, D.; Racek, J.; Steinerová, A.; Novotny, Z.; Stozicky, F.; Trefil, L.; Siala, K. Markers of oxidative stress in diabetic mothers and their infants during delivery. Physiol. Res. 2005, 54, 429–436. [Google Scholar]
- Peuchant, E.; Brun, J.L.; Rigalleau, V.; Dubourg, L.; Thomas, M.J.; Daniel, J.Y.; Leng, J.J.; Gin, H. Oxidative and antioxidant status in pregnancy women with either gestational or type 1 diabetes. Clin. Biochem. 2004, 37, 293–298. [Google Scholar] [CrossRef]
- Lappas, M.; Hiden, U.; Desoye, G.; Froehlich, J.; Mouzon, S.H.D.; Jawerbaum, A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid. Redox Signal. 2011, 15, 3061–3100. [Google Scholar] [CrossRef]
- Toescu, V.; Nuttall, S.L.; Martin, U.; Kendall, M.J.; Dunne, F. Oxidative stress and normal pregnancy. Clin. Endocrinol. 2002, 57, 609–613. [Google Scholar] [CrossRef]
- Halliwell, B. Free radicals, antioxidants and human disease: Curiosity, cause, or consequence? Lancet 1994, 344, 721–724. [Google Scholar] [CrossRef]
- Samoylenko, A.; Hossain, J.A.; Mennerick, D.; Kellokumpu, S.; Hiltunen, J.K.; Kietzmann, T. Nutritional countermeasures targeting reaction oxygen species in cancer: From mechanisms to biomarkers and clinical evidence. Antioxid. Redox Signal. 2013, 19, 2157–2196. [Google Scholar] [CrossRef] [Green Version]
- Griendling, K.K.; Touyz, R.M.; Zweier, J.L.; Dikalov, S.; Chilian, W.; Chen, Y.R.; Harrison, D.G.; Bhatnagar, A. Measurement of reactive oxygen species, reaction nitrogen species, and redox-dependent signalling in the cardiovascular system. Circ. Res. 2016, 119, e39–e75. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.; Lima, J. Fluorescence probes used for detection of reaction oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Gomes, A.J.; Lunardi, C.N.; Gonzalez, S.; Tedesco, A.C. The antioxidant action of Polypodium leucotomos extract and kojic acid: Reactions with reactive oxygen species. Braz. J. Med. Biol. Res. 2001, 34, 1487–1949. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.G. Handbook of Milk Composition; Academic Press: San Diego, CA, USA, 1995; pp. 675–724. [Google Scholar]
- Bishara, R.; Dunn, M.S.; Merko, S.E.; Darling, P. Nutrient composition of hindmilk produced by mothers of very low birth weight infants born at less than 28 weeks’ gestation. J. Hum. Lact 2008, 24, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Zarban, A.; Taheri, F.; Chahkandi, T.; Sharifzadeh, G.; Khorashadizadeh, M. Antioxidant and radical scavenging activity of human colostrum, transitional and mature milk. J. Clin. Biochem. Nutr. 2009, 45, 150–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsopmo, A.; Friel, J.K. Human milk has anti-oxidant properties to protect premature infants. Curr. Pediatr. Rev. 2007, 3, 45–51. [Google Scholar] [CrossRef]
- Newburg, D.S.; Walker, W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res. 2007, 61, 2–8. [Google Scholar] [CrossRef]
- Friel, J.K.; Martin, S.M.; Langdon, M.; Herzberg, G.R.; Buettner, G.R. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr. Res. 2002, 51, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Ledo, A.; Arduini, A.; Asensi, M.A.; Sastre, J.; Escrig, R.; Brugada, M.; Aguar, M.; Saenz, P.; Vento, M. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants. Am. J. Clin. Nutr. 2009, 89, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Aycicek, A.; Erel, O.; Kocyigit, A.; Selek, S.; Demirkol, M.R. Breast milk provides better antioxidant power than formula. Nutrition 2006, 22, 616–619. [Google Scholar] [CrossRef]
- Pozzo, L.; Cirrincione, S.; Russo, R.; Karamać, M.; Amarowicz, R.; Coscia, A.; Antoniazzi, S.; Cavallarin, L.; Giribaldi, M. Comparison of oxidative status of human milk, human milk fortifiers and preterm infant formulas. Foods 2019, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Kusano, C.; Ferrari, B. Total antioxidant capacity: A biomarker in biomedical and nutritional studies. J. Cell. Mol. Biol. 2008, 7, 1–15. [Google Scholar]
- Elisia, I.; Kitts, D.D. Quantification of hexanal as an index of lipid oxidation in human milk and association with antioxidant components. J. Clin. Biochem. Nutr. 2011, 49, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Kitts, D.D.; Hu, C. Biological and chemical assessment of antioxidant activity of sugar-lysine model maillard reaction products. Ann. N. Y. Acad. Sci. 2005, 1043, 501–512. [Google Scholar] [CrossRef]
- Malta, L.G.; Liu, R.H. Analyses of total phenolics, total flavonoids, and total antioxidant activities in food and dietary supplements. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 305–314. [Google Scholar]
- Grant, S.M. Assessing Glycaemic Index Utility: From Bench to Bedside. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Grant, S.M.; Wolever, T.; O’Connor, D.L.; Nisenbaum, R.; Josse, R.G. Effect of a low glycaemic index diet on blood glucose in women with gestational hyperglycaemia. Diabetes Res. Clin. Pract. 2011, 91, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, H. The Antioxidant Status of Breast Milk in Women with and without Gestational Diabetes Mellitus. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2018. [Google Scholar]
- Saenz, A.T.; Elisia, I.; Innis, S.M.; Friel, J.K.; Kitts, D.D. Use of ORAC to assess antioxidant capacity of human milk. J. Food Compost. Anal. 2009, 22, 694–698. [Google Scholar] [CrossRef]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending applicability of the oxygen radical absorbance capacity (ORAC−fluorescein) assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Sriraman, N.K. Nuts and bolts of breastfeeding: Anatomy and physiology of lactation. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 305–310. [Google Scholar] [CrossRef]
- Alwakeel, S.S.; Bin-Jumah, M.; Imam, K.; Moga, M.; Bigiu, N. Carotenoids in Women and Infant Health. In Carotenoids: Structure and Function in the Human Body; Zia-Ul-Haq, M., Dewanjee, S., Riaz, M., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 757–774. [Google Scholar]
- Zielinska, M.A.; Hamulka, J.; Wesolowska, A. Carotenoid content in breastmilk in the 3rd and 6th month of lactation and its association with maternal dietary intake and anthropometric characteristics. Nutrients 2019, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Wallstrom, P.; Wirfalt, E.; Lahmann, P.H.; Gullberg, B.; Janzon, L.; Berglund, G. Serum concentrations of β-carotene and α-tocopherol are associated with diet, smoking, and general central adiposity. Am. J. Clin. Nutr. 2001, 73, 777–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, J.E.; Francis, T.; Clandinin, M.T. Vitamin A and E content of human milk at early stages of lactation. Early Hum. Dev. 1985, 11, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Kader, A.; Hassan, K.; Arshat, H. Changes in human milk vitamin E and total lipids during the first twelve days of lactation. Am. J. Clin. Nutr. 1986, 43, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Hamsoh, M.; Goldman, A.S. Human Lactation 2: Maternal and Environment Factors; Plenum Press: New York, NY, USA, 1986. [Google Scholar]
- Byerley, L.O.; Kirksey, A. Effects of different levels of vitamin C intake on the vitamin C concentration in human milk and the vitamin C intakes of breast-fed infants. Am. J. Clin. Nutr. 1985, 41, 665–671. [Google Scholar] [CrossRef]
- Seider, M.; Grant, S.; Barre, E.; Kitts, D.; Wolever, T.; O’Connor, D.; Darling, P.; Josse, R.; Thorpe, K.; Feig, D.; et al. Low Glycaemic Index Diet for Reduction of Oxidative Stress in Women with Gestational Diabetes. In Proceedings of the Dietitians of Canada National Conference, Vancouver, BC, Canada, 7–9 June 2018; Available online: https://dcjournal.ca/doi/10.3148/cjdpr-2018-022 (accessed on 20 March 2023).
- Zygula, A.; Kosinski, P.; Zwierzchowska, A.; Sochacka, M.; Wroczynski, P.; Makarewicz-Wujec, M.; Pietrzak, B.; Wielgos, M.; Rzentala, M.; Giebultowicz, J. Oxidatve stress makers in saliva and plasma differ between diet-controlled and insulin-controlled gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 148, 72–80. [Google Scholar] [CrossRef]
- The American College of Nurse-Midwives. Gestational diabetes: What happens after my baby is born? J. Midwifery Womens Health 2012, 58, 119–120. [Google Scholar]
- Fry, H.L.; Levin, O.; Kholina, K.; Bianco, J.L.; Gallant, J.; Chan, K.; Whitfield, K.C. Infant feeding experiences and concerns among caregivers early in COVID-19 State of Emergency in Nova Scotia, Canada. Matern. Child Nutr. 2021, 17, e13154. [Google Scholar] [CrossRef] [PubMed]
- Lemas, D.J.; Wright, L.; Flood-Grady, E.; Francois, M.; Chen, L.; Hentschel, A.; Du, X.; Hsiao, C.J.; Chen, H.; Neu, J.; et al. Perspectives of pregnant and breastfeeding women on longitudinal clinical studies that require non-invasive biospecimen collection—A qualitative study. BMC Pregnancy Childbirth 2021, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
Characteristics | GD (n = 8) | NG (n = 10) | p-Value |
---|---|---|---|
Age (years) * | 33.9 ± 3.1 | 31.9 ± 2.6 | ns |
Pre-pregnancy BMI (kg/m2) * | 26.4 ± 3.5 | 26.0 ± 8.7 | ns |
Postpartum BMI (kg/m2) * | 26.8 ± 3.1 | 28.4 ± 8.1 | ns |
Time of breast milk collection (week postpartum) * | 8.3 ± 1.9 | 7.3 ± 1.3 | ns |
GD history | 13% | 0% | ns |
First degree relative with GD | 25% | 30% | ns |
Ethnicity (%) | ns | ||
Aboriginal | 0% | 10% | |
Caucasian | 37.5% | 60% | |
East Asian | 25% | - | |
Indian | - | 10% | |
Latin American | 12.5% | - | |
Middle Eastern | - | 20% | |
Southeast Asian | 12.5% | - | |
Other | 12.5% | - |
GD (n = 8) | NG (n = 10) | p-Value | |
---|---|---|---|
Energy (kcal) Intake | 1810 (1710, 2170) | 2220 (2180, 2380) | 0.032 |
Carbohydrates (g) | 228 (207, 259) | 284 (243, 308) | 0.090 |
Fiber (g) | 19.7 (15.3, 27.7) | 24.3 (18.3, 32.3) | 0.19 |
Fat (g) | 61.3 (49.0, 79.9) | 78.8 (72.0, 105.4) | 0.45 |
Protein (g) | 103.2 (82.2, 108.0) | 86.0 (72.8, 107.8) | 0.60 |
Beta-carotene (µg) | 3950 (2520, 5240) | 2960 (1920, 5590) | 0.92 |
Alpha-tocopherol (mg) | 10.49 (8.10, 13.24) | 4.26 (3.22, 6.75) | 0.009 |
Ascorbic acid (mg) | 130 (105, 147) | 130 (100, 152) | 0.15 |
GD (n = 8) | NG (n = 10) | p-Value | |
---|---|---|---|
ORAC (mmol/L) | 2.33 (2.03, 2.62) | 1.83 (1.74, 2.02) | 0.06 |
Beta-carotene (nmol/L) | 20.9 (10.8, 31.5) | 43.9 (28.4, 77.4) | 0.12 |
Alpha-tocopherol (μmol/L) | 3.92 (2.51, 4.99) | 4.57 (2.89, 5.9) | 0.33 |
Ascorbic acid (μmol/L) | 344 (283, 404) | 391 (368, 408) | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Churchill, M.; Zawawi, H.; Elisia, I.; Seider, M.; Noseworthy, R.; Thompson, A.; Glenn, A.J.; Ramdath, D.D.; O’Connor, D.; Darling, P.; et al. The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus. Antioxidants 2023, 12, 842. https://doi.org/10.3390/antiox12040842
Churchill M, Zawawi H, Elisia I, Seider M, Noseworthy R, Thompson A, Glenn AJ, Ramdath DD, O’Connor D, Darling P, et al. The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus. Antioxidants. 2023; 12(4):842. https://doi.org/10.3390/antiox12040842
Chicago/Turabian StyleChurchill, Megan, Halah Zawawi, Ingrid Elisia, Maxine Seider, Rebecca Noseworthy, Alexandra Thompson, Andrea J. Glenn, D. Dan Ramdath, Deborah O’Connor, Pauline Darling, and et al. 2023. "The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus" Antioxidants 12, no. 4: 842. https://doi.org/10.3390/antiox12040842
APA StyleChurchill, M., Zawawi, H., Elisia, I., Seider, M., Noseworthy, R., Thompson, A., Glenn, A. J., Ramdath, D. D., O’Connor, D., Darling, P., Wolever, T., Barre, D. E., Feig, D. S., Kitts, D. D., & Grant, S. M. (2023). The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus. Antioxidants, 12(4), 842. https://doi.org/10.3390/antiox12040842