Bioactivity of Wild and Cultivated Legumes: Phytochemical Content and Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Plant Material and Extracts
2.1.2. Chemicals and Standards
2.1.3. Equipment
2.2. Methods
2.2.1. Extraction Procedure
2.2.2. Phytochemical Analysis
Total Phenolic Content (TPC)
Total Tannin Content (TTC)
Total Carotenoid Content (TCC)
Phenolic Compounds Fingerprinting
Carotenoids Fingerprinting
2.2.3. Antioxidant Properties Evaluation
Ferric Reducing Antioxidant Power (FRAP) Assay
DPPH • Radical Scavenging Assay
2.3. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.1.1. Phenolics
3.1.2. Carotenoids
3.2. Antioxidant Properties Determination Assays
4. Discussion
4.1. Phytochemical Analysis
4.1.1. Phenolic Compounds Content
4.1.2. Carotenoid Compounds Content
4.2. Antioxidant Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boye, J.I.; Arcand, Y. Current Trends in Green Technologies in Food Production and Processing. Food Eng. Rev. 2013, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ilea, R.C. Intensive Livestock Farming: Global Trends, Increased Environmental Concerns, and Ethical Solutions. J. Agric. Environ. Ethics 2009, 22, 153–167. [Google Scholar] [CrossRef]
- FAO Report on Meat for 2022–2030. Available online: https://www.fao.org/3/cb5332en/Meat.pdf (accessed on 1 January 2023).
- Guyomard, H.; Bouamra-Mechemache, Z.; Chatellier, V.; Delaby, L.; Détang-Dessendre, C.; Peyraud, J.-L.; Réquillart, V. Review: Why and How to Regulate Animal Production and Consumption: The Case of the European Union. Animal 2021, 15, 100283. [Google Scholar] [CrossRef] [PubMed]
- Hartung, J. A Short History of Livestock Production. In Livestock Housing; Aland, A., Banhazi, T., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 21–34. ISBN 978-90-8686-217-7. [Google Scholar]
- Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32017R0625 (accessed on 12 December 2022).
- Navale, M.R.; Bhardwaj, D.R.; Bishist, R.; Thakur, C.L.; Sharma, S.; Sharma, P.; Kumar, D.; Probo, M. Seasonal Variations in the Nutritive Value of Fifteen Multipurpose Fodder Tree Species: A Case Study of North-Western Himalayan Mid-Hills. PLoS ONE 2022, 17, e0276689. [Google Scholar] [CrossRef] [PubMed]
- Magableh, G.M. Supply Chains and the COVID-19 Pandemic: A Comprehensive Framework. Eur. Manag. Rev. 2021, 18, 363–382. [Google Scholar] [CrossRef]
- Solomon, J.K.Q. Legumes for Animal Nutrition and Dietary Energy. In Advances in Legumes for Sustainable Intensification; Elsevier: Amsterdam, The Netherlands, 2022; pp. 227–244. ISBN 978-0-323-85797-0. [Google Scholar]
- Mattioli, S.; Dal Bosco, A.; Martino, M.; Ruggeri, S.; Marconi, O.; Sileoni, V.; Falcinelli, B.; Castellini, C.; Benincasa, P. Alfalfa and Flax Sprouts Supplementation Enriches the Content of Bioactive Compounds and Lowers the Cholesterol in Hen Egg. J. Funct. Foods 2016, 22, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Gulewicz, P.; Martinez-Villaluenga, C.; Kasprowicz-Potocka, M.; Frias, J. Non-Nutritive Compounds in Fabaceae Family Seeds and the Improvement of Their Nutritional Quality by Traditional Processing—A Review. Pol. J. Food Nutr. Sci. 2014, 64, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition and Antioxidant Potential of Grain Legume Seeds: A Review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Liu, Y.; Hu, Z.; Liu, L.; Yan, Q.; Geng, D.; Wei, M.; Wan, Y.; Fan, G.; Yang, H.; et al. Effect of Radiation Processing on Phenolic Antioxidants in Cereal and Legume Seeds: A Review. Food Chem. 2022, 396, 133661. [Google Scholar] [CrossRef]
- Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W.F.; Salminen, J.-P.; et al. Benefits of Condensed Tannins in Forage Legumes Fed to Ruminants: Importance of Structure, Concentration, and Diet Composition. Crop Sci. 2019, 59, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Altuner, F.; Tuncturk, M.; Tuncturk, R.; Oral, E.; Altuner, F. Determınatıon of the Content of Antıoxıdants and Bıochemıcal Composition of Legume Mıcrogreens. J. Elem. 2022. [Google Scholar] [CrossRef]
- Tor-Roca, A.; Garcia-Aloy, M.; Mattivi, F.; Llorach, R.; Andres-Lacueva, C.; Urpi-Sarda, M. Phytochemicals in Legumes: A Qualitative Reviewed Analysis. J. Agric. Food Chem. 2020, 68, 13486–13496. [Google Scholar] [CrossRef] [PubMed]
- Fabaceae Plant Family. Available online: https://www.britannica.com/plant/Fabaceae (accessed on 24 November 2022).
- Mathesius, U. Are Legumes Different? Origins and Consequences of Evolving Nitrogen Fixing Symbioses. J. Plant Physiol. 2022, 276, 153765. [Google Scholar] [CrossRef] [PubMed]
- Sprent, J.I.; Ardley, J.; James, E.K. Biogeography of Nodulated Legumes and Their Nitrogen-fixing Symbionts. New Phytol. 2017, 215, 40–56. [Google Scholar] [CrossRef] [Green Version]
- Bhadkaria, A.; Srivastava, N.; Bhagyawant, S.S. A Prospective of Underutilized Legume Moth Bean (Vigna Aconitifolia (Jacq.) Marechàl): Phytochemical Profiling, Bioactive Compounds and in Vitro Pharmacological Studies. Food Biosci. 2021, 42, 101088. [Google Scholar] [CrossRef]
- Kareem, O.; Ali, T.; Dar, L.A.; Mir, S.A.; Rashid, R.; Nazli, N.; Gulzar, T.; Bader, G.N. Positive Health Benefits of Saponins from Edible Legumes: Phytochemistry and Pharmacology. In Edible Plants in Health and Diseases; Masoodi, M.H., Rehman, M.U., Eds.; Springer: Singapore, 2022; pp. 279–298. ISBN 9789811649585. [Google Scholar]
- Kite, G.C.; Veitch, N.C.; Grayer, R.J.; Simmonds, M.S.J. The Use of Hyphenated Techniques in Comparative Phytochemical Studies of Legumes. Biochem. Syst. Ecol. 2003, 31, 813–843. [Google Scholar] [CrossRef]
- János, V. Botanical Examinations of Veterinary Background at the Department of Botany of University of Veterinary Medicine between 1954 and 2009: A Retrospective: Summary [Állatorvosi Hátteru Botanikai Vizsgálatok Az Állatorvostudományi Egyetem Növénytani Tanszékén 1954 És 2009 Között: Retrospektív Összegzés]. Magy. Állatorvosok Lapja 2019, 141, 245–256. [Google Scholar]
- Arbain, D.; Saputri, G.A.; Syahputra, G.S.; Widiyastuti, Y.; Susanti, D.; Taher, M. Genus Pterocarpus: A Review of Ethnopharmacology, Phytochemistry, Biological Activities, and Clinical Evidence. J. Ethnopharmacol. 2021, 278, 114316. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.-S.; Akhtar, N.; Alsayegh, A.A.; Abusudah, W.F.; Almohmadi, N.H.; Shaheen, H.M.; Singh, T.G.; De Waard, M. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia. Molecules 2022, 27, 7340. [Google Scholar] [CrossRef]
- Farias, A.; Iturriaga, P. A Systematic Review on Secondary Metabolites of Genus Sophora: Chemical Diversity. J. Chil. Chem. Soc. 2022, 67, 5571–5581. [Google Scholar] [CrossRef]
- Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022, 27, 3863. [Google Scholar] [CrossRef] [PubMed]
- Selogatwe, K.M.; Asong, J.A.; Struwig, M.; Ndou, R.V.; Aremu, A.O. A Review of Ethnoveterinary Knowledge, Biological Activities and Secondary Metabolites of Medicinal Woody Plants Used for Managing Animal Health in South Africa. Vet. Sci. 2021, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Prasad, K. Technological, Processing and Nutritional Aspects of Chickpea (Cicer arietinum)—A Review. Trends Food Sci. Technol. 2021, 109, 448–463. [Google Scholar] [CrossRef]
- Richards, N.; Nielsen, B.D.; Finno, C.J. Nutritional and Non-Nutritional Aspects of Forage. Vet. Clin. N. Am. Equine Pract. 2021, 37, 43–61. [Google Scholar] [CrossRef]
- Jena, R.; Rath, D.; Rout, S.S.; Kar, D.M. A Review on Genus Millettia: Traditional Uses, Phytochemicals and Pharmacological Activities. Saudi Pharm. J. 2020, 28, 1686–1703. [Google Scholar] [CrossRef]
- Ullah, R.; Alqahtani, A.S.; Noman, O.M.A.; Alqahtani, A.M.; Ibenmoussa, S.; Bourhia, M. A Review on Ethno-Medicinal Plants Used in Traditional Medicine in the Kingdom of Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 2706–2718. [Google Scholar] [CrossRef]
- Ateba, S.B.; Njamen, D.; Krenn, L. The Genus Eriosema (Fabaceae): From the Ethnopharmacology to an Evidence-Based Phytotherapeutic Perspective? Front. Pharmacol. 2021, 12, 641225. [Google Scholar] [CrossRef]
- Myrtsi, E.D.; Koulocheri, S.D.; Iliopoulos, V.; Haroutounian, S.A. High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC–MS/MS. Antioxidants 2021, 10, 1174. [Google Scholar] [CrossRef]
- Myrtsi, E.D.; Koulocheri, S.D.; Evergetis, E.; Haroutounian, S.A. Agro-Industrial Co-Products Upcycling: Recovery of Carotenoids and Fine Chemicals from Citrus Sp. Juice Industry Co-Products. Ind. Crops Prod. 2022, 186, 115190. [Google Scholar] [CrossRef]
- Myrtsi, E.D.; Koulocheri, S.D.; Evergetis, E.; Haroutounian, S.A. Pigments’ Analysis of Citrus Juicing Making By-products by LC-MS/MS and LC-DAD. MethodsX 2022, 9, 101888. [Google Scholar] [CrossRef] [PubMed]
- Spanou, C.I.; Veskoukis, A.S.; Stagos, D.; Liadaki, K.; Aligiannis, N.; Angelis, A.; Skaltsounis, A.-L.; Anastasiadi, M.; Haroutounian, S.A.; Kouretas, D. Effects of Greek Legume Plant Extracts on Xanthine Oxidase, Catalase and Superoxide Dismutase Activities. J. Physiol. Biochem. 2012, 68, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.A.; Chaudhry, B.A.; Uzair, M.; Imran, M.; Ashfaq, K. Total Phenolic and Flavonoid Contents, Cytotoxic, Immunomodulatory and Anti-Inflammatory Potential of Whole Plant of Astragalus creticus (Fabaceae). Trop. J. Pharm. Res. 2021, 20, 2109–2115. [Google Scholar] [CrossRef]
- Ghaffari, M.A.; Chaudhry, B.A.; Uzair, M.; Imran, M.; Haneef, M.; Ashfaq, K. Biological and Phytochemical Investigations of Crude Extracts of Astragalus creticus. Pak. J. Pharm. Sci. 2021, 34, 403–409. [Google Scholar]
- Nikolopoulou, D.; Grigorakis, K.; Stasini, M.; Alexis, M.; Iliadis, K. Effects of Cultivation Area and Year on Proximate Composition and Antinutrients in Three Different Kabuli-Type Chickpea (Cicer arientinum) Varieties. Eur. Food Res. Technol. 2006, 223, 737–741. [Google Scholar] [CrossRef]
- Acar, Z.; Gülümser, E.; LeblebìCì, S.; Ayan, İ.; Darcan, C. Secondary Metabolite Changes in Tedara (Bituminaria bituminosa L.) Genotypes in Different Growing Period. J. Agric. Sci. 2022, 28, 723–731. [Google Scholar] [CrossRef]
- Ventura, M.R.; Bastianelli, D.; Deniz, S.; Saavedra, P.; Rey, L.; Bonnal, L.; González-García, E. Phenolic and Tannin Compounds in Subtropical Shrubs (Bituminaria bituminosa, Chamaecytisus proliferus, and Adenocarpus foliosus) and the Effects on in Vitro Digestibility. Trop. Anim. Health Prod. 2019, 51, 1757–1761. [Google Scholar] [CrossRef]
- Butkutė, B.; Lemežienė, N.; Dagilytė, A.; Cesevičienė, J.; Benetis, R.; Mikaliūnienė, J.; Rodovičius, H. Mineral Element and Total Phenolic Composition and Antioxidant Capacity of Seeds and Aerial Plant Parts of Perennial Legumes. Commun. Soil Sci. Plant Anal. 2016, 47, 36–45. [Google Scholar] [CrossRef]
- Koul, B.; Taak, P.; Kumar, A.; Kumar, A.; Sanyal, I. Genus Psoralea: A Review of the Traditional and Modern Uses, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2019, 232, 201–226. [Google Scholar] [CrossRef]
- Aguilera, Y.; Dueñas, M.; Estrella, I.; Hernández, T.; Benitez, V.; Esteban, R.M.; Martín-Cabrejas, M.A. Phenolic Profile and Antioxidant Capacity of Chickpeas (Cicer arietinum L.) as Affected by a Dehydration Process. Plant Foods Hum. Nutr. 2011, 66, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Marrelli, M.; Conforti, F.; Tenuta, M.; Bonesi, M.; Menichini, F.; Loizzo, M. Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods 2015, 4, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Warkentin, T.D.; Briggs, C.J.; Oomah, B.D.; Campbell, C.G.; Woods, S. Total Phenolics and Condensed Tannins in Field Pea (Pisum sativum L.) and Grass Pea (Lathyrus sativus L.). Euphytica 1998, 101, 97–102. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J. Trifolium Species—The Latest Findings on Chemical Profile, Ethnomedicinal Use and Pharmacological Properties. J. Pharm. Pharmacol. 2016, 68, 845–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubczyk, K.; Łukomska, A.; Gutowska, I.; Kochman, J.; Janił, J.; Janda, K. Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. Appl. Sci. 2021, 11, 2120. [Google Scholar] [CrossRef]
- Carlsen, S.C.K.; Fomsgaard, I.S. Biologically Active Secondary Metabolites in White Clover (Trifolium repens L.)—A Review Focusing on Contents in the Plant, Plant–Pest Interactions and Transformation. Chemoecology 2008, 18, 129–170. [Google Scholar] [CrossRef]
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomer, I.; Oren-Shamir, M.; Galili, S. Determination of Polyphenols, Flavonoids, and Antioxidant Capacity in Colored Chickpea (Cicer arietinum L.). J. Food Sci. 2010, 75, S115–S119. [Google Scholar] [CrossRef]
- Sharma, K.R.; Giri, G. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. Int. J. Food Sci. 2022, 2022, 4629290. [Google Scholar] [CrossRef]
- van Cleef, F.O.S.; Dubeux, J.C.B.; Ciriaco, F.M.; Henry, D.D.; Ruiz-Moreno, M.; Jaramillo, D.M.; Garcia, L.; Santos, E.R.S.; DiLorenzo, N.; Vendramini, J.M.B.; et al. Inclusion of a Tannin-Rich Legume in the Diet of Beef Steers Reduces Greenhouse Gas Emissions from Their Excreta. Sci. Rep. 2022, 12, 14220. [Google Scholar] [CrossRef]
- Abdel-Latif, M.A.; Elbestawy, A.R.; El-Far, A.H.; Noreldin, A.E.; Emam, M.; Baty, R.S.; Albadrani, G.M.; Abdel-Daim, M.M.; Abd El-Hamid, H.S. Quercetin Dietary Supplementation Advances Growth Performance, Gut Microbiota, and Intestinal MRNA Expression Genes in Broiler Chickens. Animals 2021, 11, 2302. [Google Scholar] [CrossRef]
- Cui, K.; Guo, X.D.; Tu, Y.; Zhang, N.F.; Ma, T.; Diao, Q.Y. Effect of Dietary Supplementation of Rutin on Lactation Performance, Ruminal Fermentation and Metabolism in Dairy Cows. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1065–1073. [Google Scholar] [CrossRef]
- Wang, W.; Wen, C.; Guo, Q.; Li, J.; He, S.; Yin, Y. Dietary Supplementation With Chlorogenic Acid Derived from Lonicera Macranthoides Hand-Mazz Improves Meat Quality and Muscle Fiber Characteristics of Finishing Pigs via Enhancement of Antioxidant Capacity. Front. Physiol. 2021, 12, 650084. [Google Scholar] [CrossRef]
- Elgersma, A.; Søegaard, K.; Jensen, S.K. Interrelations between Herbage Yield, α-Tocopherol, β-Carotene, Lutein, Protein, and Fiber in Non-Leguminous Forbs, Forage Legumes, and a Grass–Clover Mixture as Affected by Harvest Date. J. Agric. Food Chem. 2015, 63, 406–414. [Google Scholar] [CrossRef]
- Rezaei, M.K.; Deokar, A.; Tar’an, B. Identification and Expression Analysis of Candidate Genes Involved in Carotenoid Biosynthesis in Chickpea Seeds. Front. Plant Sci. 2016, 7, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaumont, D.; Gudin, C. Division and Growth of Mesophyll Cells Isolated from Psoralea Bituminosa Leaves. Enzym. Microb. Technol. 1985, 7, 437–442. [Google Scholar] [CrossRef]
- Green, A.S.; Fascetti, A.J. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Role of Vitamin A in Ruminant Nutrition. Available online: https://www.sweetlix.com/research-articles/immunity/the-role-of-vitamin-a-in-ruminant-nutrition/ (accessed on 19 February 2023).
- Xu, C.Z.; Wang, H.F.; Yang, J.Y.; Wang, J.H.; Duan, Z.Y.; Wang, C.; Liu, J.X.; Lao, Y. Effects of Feeding Lutein on Production Performance, Antioxidative Status, and Milk Quality of High-Yielding Dairy Cows. J. Dairy Sci. 2014, 97, 7144–7150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqub, M.; Jaradat, N. In Vitro Studies of Bituminaria Bituminosa L. Extracts from Palestine for Their Antioxidant, Qualitative, and Quantitative Properties. Palest. Med. Pharm. J. 2023, 8. Available online: https://journals.najah.edu/media/journals/full_texts/2023_Vol8.pdf (accessed on 20 January 2023).
- Xu, J.-G.; Hu, Q.-P.; Liu, Y. Antioxidant and DNA-Protective Activities of Chlorogenic Acid Isomers. J. Agric. Food Chem. 2012, 60, 11625–11630. [Google Scholar] [CrossRef]
- Sutcliffe, T.; Winter, A.; Punessen, N.; Linseman, D. Procyanidin B2 Protects Neurons from Oxidative, Nitrosative, and Excitotoxic Stress. Antioxidants 2017, 6, 77. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxidative Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [Green Version]
- Bernatoniene, J.; Kopustinskiene, D. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrommatis, A.; Giamouri, E.; Myrtsi, E.D.; Evergetis, E.; Filippi, K.; Papapostolou, H.; Koulocheri, S.D.; Zoidis, E.; Pappas, A.C.; Koutinas, A.; et al. Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants 2021, 10, 1250. [Google Scholar] [CrossRef] [PubMed]
- McKenna, P.; Cannon, N.; Conway, J.; Dooley, J.; Davies, W.P. Red Clover (Trifolium pratense) in Conservation Agriculture: A Compelling Case for Increased Adoption. Int. J. Agric. Sustain. 2018, 16, 342–366. [Google Scholar] [CrossRef]
Sample | Taxa | Location | Yield (%) | ||
---|---|---|---|---|---|
Hexane | DCM | MeOH | |||
L01 1 | Astragalus creticus Lam. | Parnassos Mt., 2017 | 0.53 | 0.54 | 12.3 |
L02 1 | Astragalus glycyphyllos L. | Parnassos Mt., 2017 | 1.81 | 1.57 | 12.6 |
L03 1 | Lathyrus laxiflorus (Desf.) Kuntze | Parnassos Mt., 2017 | 5.31 | 0.74 | 9.9 |
L04 1 | Trifolium physodes Steven ex M.Bieb. | Parnassos Mt., 2017 | 0.2 | 0.8 | 11.9 |
L05 1 | Cicer incisum (Willd.) K.Maly | Crete Isl., 2018 | 0.26 | 1.12 | 4.6 |
L06 1 | Bituminaria bituminosa (L.) C.H.Stirt. | Parnassos Mt., 2017 | 1.81 | 1.91 | 12.4 |
L07 2 | Cicer arietinum L. | Kilkis Pref., 2018 | 1.09 | 0.64 | 1.3 |
L08 3 | Trifolium repens L. | Kilkis Pref., 2018 | 1.28 | 0.85 | 11.9 |
Phytochemicals | L01 | L02 | L03 | L04 | L05 | L06 | L07 | L08 |
---|---|---|---|---|---|---|---|---|
TPC 1 | 10.50 ± 0.20 * | 16.20 ± 1.70 *** | 64.80 ± 1.50 * | 27.70 ± 0.30 * | 23.50 ± 0.60 * | 14.50 ± 0.20 ** | 10.18 ± 0.09 * | 24.23 ± 0.01 *** |
TTC 2 | 194.10 ± 11.90 * | tr | 419.60 ± 27.40 * | tr | 31.60 ± 4.10 * | 2.10 ± 0.70 * | 6.60 ± 2.80 * | 14.90 ± 7.60 * |
Procyanidin B1 3 | nd | nd | nd | nd | nd | nd | nd | tr |
Chlorogenic Acid 3 | 0.02 ± 0.00 * | nd | 1.13 ± 0.02 ** | tr | tr | nd | nd | 0.02 ± 0.00 * |
Procyanidin B2 3 | nd | nd | 2.23 ± 0.01 * | nd | nd | nd | nd | nd |
Epicatechin 3 | nd | nd | 1.52 ± 0.06 ** | nd | nd | nd | nd | nd |
Epigallocatechin Gallate 3 | nd | nd | 0.02 ± 0.00 * | nd | nd | nd | nd | nd |
Hesperidin 3 | tr | nd | nd | nd | nd | nd | nd | nd |
Isoquercetin 3 | 0.12 ± 0.00 ** | 0.16 ± 0.04 * | 0.76 ± 0.00 * | 0.93 ± 0.60 *** | 0.17 ± 0.02 ** | 0.01 ± 0.00** | 0.02 ± 0.00** | 1.60 ± 0.20 *** |
Rutin 3 | 1.8 ± 0.1 **** | 0.16 ± 0.01** | 7.79 ± 0.06 ** | nd | nd | nd | nd | 0.05 ± 0.01 * |
Quercetin 3 | 0.14 ± 0.04 **** | nd | 0.11 ± 0.01 **** | 0.86 ± 0.09 **** | 2.30 ± 0.30 *** | nd | nd | 0.30 ± 0.03 **** |
Apigenin 3 | nd | nd | 0.01 ± 0.00 *** | 0.01 ± 0.00 **** | 0.01 ± 0.00 *** | 0.01 ± 0.01 ** | 0.06 ± 0.02 **** | 0.01 ± 0.00 **** |
Kaempferol 3 | nd | nd | nd | tr | nd | nd | 0.22 ± 0.09**** | tr |
Carotenoids | L01 | L02 * | L03 * | L04 * | L05 * | L06 | L07 | L08 * |
---|---|---|---|---|---|---|---|---|
TCC Hex 1 | 0.08 ± 0.00 * | 1.16 ± 0.01 | 0.86 ± 0.01 | 0.76 ± 0.01 | 0.08 ± 0.00 | 5.27 ± 0.02 * | 0.04 ± 0.00 * | 0.10 ± 0.01 |
TCC DCM 1 | 3.10 ± 0.05 * | 22.60 ± 0.07 | 5.03 ± 0.07 | 21.20 ± 0.30 | 4.77 ± 0.01 | 14.20 ± 0.10 * | 2.54 ± 0.03 * | 4.98 ± 0.06 |
Lutein 2 | 0.03 ± 0.00 ** | 0.04 ± 0.00 | nd | 0.05 ± 0.00 | nd | 0.05 ± 0.00 * | nd | nd |
β-cryptoxanthin 2 | nd | nd | 0.02 ± 0.00 | nd | nd | nd | nd | 0.02 ± 0.00 |
α-carotene 2 | 0.06 ± 0.00 * | nd | 0.03 ± 0.00 | 0.06 ± 0.00 | nd | nd | nd | 0.06 ± 0.00 |
β-carotene 2 | 0.09 ± 0.00 * | nd | nd | 0.09 ± 0.00 | nd | 0.37 ± 0.00 **** | 0.09 ± 0.00 *** | 0.09 ± 0.00 |
Sample | FRAP (mmol Fe(II)/g Extract) | DPPH (mg TE/g Extract) | ||||
---|---|---|---|---|---|---|
Hex | DCM | MeOH | Hex | DCM | MeOH | |
L01 | 1.02 ± 0.03 *** | 0.97 ± 0.01 ** | 0.14 ± 0.06 **** | <LOD | 9.54 ± 0.06 ** | 0.23 ± 0.09 ** |
L02 | 0.71 ± 0.00 ** | 1.21 ± 0.01* | 0.22 ± 0.00 * | 1.50 ± 0.60 ** | 18.40 ± 0.20 **** | 6.50 ± 0.40 *** |
L03 | 0.90 ± 0.00 * | 1.54 ± 0.01 *** | 1.20 ± 0.40 **** | 1.60 ± 0.70 * | 8.60 ± 0.30 ** | 77.41 ± 0.07 *** |
L04 | 0.76 ± 0.01 * | 1.39 ± 0.01 * | 0.51 ± 0.02 * | 11.40 ± 1.10 ** | 11.80 ± 0.04 * | 14.30 ± 0.30 ** |
L05 | 1.03 ± 0.02 *** | 0.80 ± 0.00 * | 0.46 ± 0.01 * | 3.60 ± 0.20 ** | 39.03 ± 0.05 *** | 18.20 ± 1.60 *** |
L06 | 0.80 ± 0.01 *** | 1.59 ± 0.00 * | 0.32 ± 0.01 * | 16.10 ± 0.40 * | 21.04 ± 0.03 **** | 5.60 ± 0.50 *** |
L07 | 0.62 ± 0.00 ** | 0.76 ± 0.01 * | 0.11 ± 0.00 * | <LOD | 6.85 ± 0.01 * | <LOD |
L08 | 1.03 ± 0.00 * | 1.18 ± 0.00 * | 0.31 ± 0.01 ** | 7.00 ± 1.20 ** | 31.92 ± 0.06 *** | 6.20 ± 1.50 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myrtsi, E.D.; Evergetis, E.; Koulocheri, S.D.; Haroutounian, S.A. Bioactivity of Wild and Cultivated Legumes: Phytochemical Content and Antioxidant Properties. Antioxidants 2023, 12, 852. https://doi.org/10.3390/antiox12040852
Myrtsi ED, Evergetis E, Koulocheri SD, Haroutounian SA. Bioactivity of Wild and Cultivated Legumes: Phytochemical Content and Antioxidant Properties. Antioxidants. 2023; 12(4):852. https://doi.org/10.3390/antiox12040852
Chicago/Turabian StyleMyrtsi, Eleni D., Epameinondas Evergetis, Sofia D. Koulocheri, and Serkos A. Haroutounian. 2023. "Bioactivity of Wild and Cultivated Legumes: Phytochemical Content and Antioxidant Properties" Antioxidants 12, no. 4: 852. https://doi.org/10.3390/antiox12040852
APA StyleMyrtsi, E. D., Evergetis, E., Koulocheri, S. D., & Haroutounian, S. A. (2023). Bioactivity of Wild and Cultivated Legumes: Phytochemical Content and Antioxidant Properties. Antioxidants, 12(4), 852. https://doi.org/10.3390/antiox12040852