Alteration of Blood Oxidative Stress Status in Patients with Thoracic Aortic Dissection: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Blood Sample for OSS Analysis
2.3. Determination of OS Biomarkers
2.4. Reference Population
2.5. Statistical Analysis
3. Results
3.1. Characteristics and Risk Factors of the TAD Cohort
3.2. OS Biomarkers in the TAD Cohort
3.3. Effect of Risk Factors on OSS
4. Discussion
4.1. Antioxidants
4.2. Trace Elements
4.3. Biomarkers of Lipid Peroxidation
4.4. Inflammatory Markers
4.5. OSS in Genetically Triggered TAD
4.6. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LePage, M.A.; Quint, L.E.; Sonnad, S.S.; Deeb, G.M.; Williams, D.M. Aortic Dissection: CT Features That Distinguish True Lumen from False Lumen. Am. J. Roentgenol. 2001, 177, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, C.A.; Clough, R.E.; Sakalihasan, N.; Suzuki, T.; Gibbs, R.; Mussa, F.; Jenkins, M.P.; Thompson, M.M.; Evangelista, A.; Yeh, J.S.; et al. Aortic dissection. Nat. Rev. Dis. Primers 2016, 2, 16053. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.P.J.; Banerjee, A.; Fairhead, J.F.; Perkins, J.; Silver, L.E.; Rothwell, P.M. Population-Based Study of Incidence and Outcome of Acute Aortic Dissection and Premorbid Risk Factor Control: 10-Year Results From the Oxford Vascular Study. Circulation 2013, 127, 2031–2037. [Google Scholar] [CrossRef]
- Wu, D.; Shen, Y.H.; Russell, L.; Coselli, J.S.; LeMaire, S.A. Molecular Mechanisms of Thoracic Aortic Dissection. J. Surg. Res. 2013, 184, 907–924. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Choi, J.C.; Sameri, A.; Minard, C.G.; Coselli, J.S.; Shen, Y.H.; LeMaire, S.A. Inflammatory Cell Infiltrates in Acute and Chronic Thoracic Aortic Dissection. Aorta 2013, 1, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Quintana, R.A.; Taylor, W.R. Cellular Mechanisms of Aortic Aneurysm Formation. Circ. Res. 2019, 124, 607–618. [Google Scholar] [CrossRef]
- Sakalihasan, N.; Nienaber, C.A.; Hustinx, R.; Lovinfosse, P.; El Hachemi, M.; Cheramy-Bien, J.-P.; Seidel, L.; Lavigne, J.-P.; Quaniers, J.; Kerstenne, M.-A.; et al. (Tissue PET) Vascular Metabolic Imaging and Peripheral Plasma Biomarkers in the Evolution of Chronic Aortic Dissections. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 626–633. [Google Scholar] [CrossRef]
- Pincemail, J.; Defraigne, J.O.; Cheramy–Bien, J.P.; Dardenne, N.; Donneau, A.F.; Albert, A.; Labropoulos, N.; Sakalihasan, N. On the Potential Increase of the Oxidative Stress Status in Patients with Abdominal Aortic Aneurysm. Redox Rep. 2012, 17, 139–144. [Google Scholar] [CrossRef]
- Branchetti, E.; Poggio, P.; Sainger, R.; Shang, E.; Grau, J.B.; Jackson, B.M.; Lai, E.K.; Parmacek, M.S.; Gorman, R.C.; Gorman, J.H.; et al. Oxidative Stress Modulates Vascular Smooth Muscle Cell Phenotype via CTGF in Thoracic Aortic Aneurysm. Cardiovasc. Res. 2013, 100, 316–324. [Google Scholar] [CrossRef]
- Pisano, C.; Benedetto, U.; Ruvolo, G.; Balisteri, C.R. Oxidative stress in the pathogenesis of aorta diseases as source of potential biomarkers and therapeutic targets, with a particular focus on ascending aorta aneurysms. Antioxidants 2022, 11, 182. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining Oxidative Stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Portelli, S.S.; Hambly, B.D.; Jeremy, R.W.; Robertson, E.N. Oxidative Stress in Genetically Triggered Thoracic Aortic Aneurysm: Role in Pathogenesis and Therapeutic Opportunities. Redox Rep. 2021, 26, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Pisano, C.; Ruvolo, G.; Balisteri, C.R. Oxidative stress inside the pathogenesis of ascending aorta aneurysms: A clearer vision for identtifying promising biomarkers and therapeutic targets. Antioxidants 2022, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: Classification, natural Sources, activity/Capacity measurements, and usefulness for the synthesis of nanoparticles. Materials 2021, 14, 4135. [Google Scholar] [CrossRef]
- Soto, M.E.; Soria-Castro, E.; Guarner-Lans, V.G.; Muruato-Ontiveros, E.M.; Mejia, B.I.H.; Hernandez, H.J.M.; Garcia, R.; Herrera, V.; Perez-Torres, I. Analysis of oxidative stress enzymes and structural and functional proteins on human aortic tissue from different aortopathies. Oxidative Med. Cell. Longev. 2014, 2014, 760694. [Google Scholar] [CrossRef]
- Billaud, M.; Philippi, J.A.; Kotlarczyk, M.P.; Hill, J.C.; Ellis, B.W.; St Croix, C.M.; Cantu-Medélin, N.; Kelley, E.E.; Gleason, T.G. Elevated oxidative stress in the aortic media of patients with bicuspid aortic valve. J. Thorac. Cardiovasc. Surg. 2017, 154, 1756–1762. [Google Scholar] [CrossRef]
- Philippi, J.A.; Hill, J.C.; Green, B.R.; Kotlarczyk, M.P.; Gleason, T.G. Bicuspid aortic valve morphotype correlates with regional antioxidant gene expression profiles in the proximal ascending aorta. Ann. Thorac. Surg. 2017, 104, 79–87. [Google Scholar] [CrossRef]
- Soto, M.E.; Manzano-Pech, L.G.; Guarner-Lans, V.; Diaz-Galindo, J.A.; Vasquez, X.; Casrejon-Tellez, V.; Gamboa, R.; Huesca, C.; Fuentevilla-Alvarez, G.; Perez-Torres, I. Oxidant/antioxidant profile in the thoracic aneurysm of patients with the Loeys-Dietz syndrome. Oxidative Med. Cell. Longev. 2020, 2020, 5392454. [Google Scholar] [CrossRef]
- Rysz, J.; Gluba-Brzozka, A.; Rokicki, R.; Franczyk, B. Oxidative stress-related susceptibility to aneurysm in Marfan’s syndrome. Biomedicines 2021, 9, 117. [Google Scholar] [CrossRef]
- Liao, M.; Liu, Z.; Bao, J.; Zhao, Z.; Hu, J.; Feng, X.; Feng, R.; Lu, Q.; Mei, Z.; Liu, Y.; et al. A Proteomic Study of the Aortic Media in Human Thoracic Aortic Dissection: Implication for Oxidative Stress. J. Thorac. Cardiovasc. Surg. 2008, 136, 65–72.e3. [Google Scholar] [CrossRef]
- Fiorillo, C.; Becatti, M.; Attanasio, M.; Lucarni, L.; Nassi, N.; Evangelisti, I.; Porciani, M.C.; Nassi, P.; Gensini, G.F.; Abbate, R.; et al. Evidence of oxidative stress in plasma of patients with Marfan syndrome. Int. J. Cardiol. 2010, 145, 544–546. [Google Scholar] [CrossRef] [PubMed]
- Irace, F.G.; Cammisotto, V.; Valenti, V.; Forte, M.; Schirone, L.; Bartimoccia, S.; Iaccarino, A.; Peruzzi, M.; Schiavon, S.; Morelli, A.; et al. Role of Oxidative Stress and Autophagy in Thoracic Aortic Aneurysms. J. Am. Coll. Cardiol. Basic Transl. Sci. 2021, 6, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Pincemail, J.; Cavalier, E.; Charlier, C.; Cheramy–Bien, J.-P.; Brevers, E.; Courtois, A.; Fadeur, M.; Meziane, S.; Goff, C.L.; Misset, B.; et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants 2021, 10, 257. [Google Scholar] [CrossRef] [PubMed]
- Pincemail, J.; Rousseau, A.-F.; Kaux, J.-F.; Cheramy-Bien, J.-P.; Bruyère, C.; Prick, J.; Stern, D.; Kaci, M.-M.; De Noordhout, B.M.; Albert, A.; et al. Determination of Redox Status in surviving COVID-19 patients during their recovery in a rehabilitation facility. Potential use of the electrochemical PAOT® technology. A Pilot Study. Biomedicines 2023, 11, 1308. [Google Scholar] [CrossRef]
- Maury, J.; Gouzi, F.; De Rigal, P.; Heraud, N.; Pincemail, J.; Molinari, N.; Pomiès, P.; Laoudj-Chenivesse, D.; Mercier, J.; Préfaut, C.; et al. Heterogeneity of systemic oxidative stress profiles in COPD: A potential role of gender. Oxidative Med. Cell. Longev. 2015, 2015, 201843. [Google Scholar] [CrossRef]
- Turki, A.; Hayot, M.; Carnac, G.; Pillard, F.; Passerieux, E.; Bommart, S.; de Mauverger, E.R.; Hugon, G.; Pincemail, J.; Pietri, S.; et al. Functional Muscle Impairment in Facioscapulohumeral Muscular Dystrophy Is Correlated with Oxidative Stress and Mitochondrial Dysfunction. Free Radic. Biol. Med. 2012, 53, 1068–1079. [Google Scholar] [CrossRef]
- Richter, R.J.; Jarvik, G.P.; Furlong, C.E. Paraoxonase 1 (PON1) Status and Substrate Hydrolysis. Toxicol. Appl. Pharmacol. 2009, 235, 1–9. [Google Scholar] [CrossRef]
- Pincemail, J.; Le Goff, C.; Charlier, C.; Gillion, P.; Cheramy-Bien, J.-P.; Van Honacker, E.; Chapelle, J.-P.; Defraigne, J.-O. Evaluation biologique du stress oxydant. Application en routine clinique. Nutr. Endocrinol. 2010, 16–31. [Google Scholar]
- Pincemail, J.; Christelbach, S.; Gillain, S.; Ricour, C.; Dardenne, N.; Cheramy-Bien, J.-P.; Defraigne, J.-O.; Petermans, J. Oxidative stress or not in healty older subjects. In Proceedings of the OCC Meeting 2015, Poster P61, Valencia, Spain, 24–26 June 2015. [Google Scholar]
- Siegel, S.; Castellan, N.J. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; McGraw-Hill: Boston, MA, USA, 2003. [Google Scholar]
- Spiegel, M.R.; Lindstrom, D.P. Schaum’s Easy Outlines: Statistics: Based on Schaum’s Outline of Theory and Problems of Statistics; Schaum’s Outline Series; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Gey, K.F. Optimum Plasma Levels of Antioxidant Micronutrients. Ten years of antioxidant hypothesis on arteriosclerosis. Bibl. Nutr. Dieta 1994, 51, 84–99. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxidative Med. Cell. Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Lindblad, M.; Tveden-Nyborg, P.; Lykkesfeldt, J. Regulation of Vitamin C Homeostasis during Deficiency. Nutrients 2013, 5, 2860–2879. [Google Scholar] [CrossRef] [PubMed]
- Turell, L.; Radi, R.; Alvarez, B. The Thiol Pool in Human Plasma: The Central Contribution of Albumin to Redox Processes. Free Radic. Biol. Med. 2013, 65, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef]
- She, Z.-G.; Chen, H.-Z.; Yan, Y.; Li, H.; Liu, D.-P. The Human Paraoxonase Gene Cluster As a Target in the Treatment of Atherosclerosis. Antioxid. Redox Signal. 2012, 16, 597–632. [Google Scholar] [CrossRef]
- Abelló, D.; Sancho, E.; Camps, J.; Joven, J. Exploring the Role of Paraoxonases in the Pathogenesis of Coronary Artery Disease: A Systematic Review. Int. J. Mol. Sci. 2014, 15, 20997–21010. [Google Scholar] [CrossRef]
- Hill, A.; Borgs, C.; Fitzner, C.; Stoppe, C. Perioperative vitamin C and E levels in cardiac surgery patients and their clinical significance. Nutrients 2019, 11, 2157. [Google Scholar] [CrossRef]
- Rodemeister, S.; Duquesne, M.; Adolph, M.; Nohr, D.; Biesalski, H.K.; Unertl, K. Massive and long-fasting decrease in vitamin C plasma levels as a consequence of extracorporeal circulation. Nutrition 2014, 30, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Clasen, K.C.; Wendt, S.; Majoros, A.G.; Stoppe, C.; Ad-hikari, N.K.J.; Heyland, D.K.; Benstoem, C. Effects of Vitamin C On Organ Function In Cardiac Surgery Patients: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2103. [Google Scholar] [CrossRef] [PubMed]
- Gaetke, L. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxidative Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef]
- Guo, C.-H.; Chen, P.-C.; Yeh, M.-S.; Hsiung, D.-Y.; Wang, C.-L. Cu/Zn Ratios Are Associated with Nutritional Status, Oxidative Stress, Inflammation, and Immune Abnormalities in Patients on Peritoneal Dialysis. Clin. Biochem. 2011, 44, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.-H.; Wang, C.-L. Effects of Zinc Supplementation on Plasma Copper/Zinc Ratios, Oxidative Stress, and Immunological Status in Hemodialysis Patients. Int. J. Med. Sci. 2013, 10, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mateo, G.; Navas-Acien, A.; Pastor-Barriuso, R.; Guallar, E. Selenium and Coronary Heart Disease: A Meta-Analysis. Am. J. Clin. Nutr. 2006, 84, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Ito, F.; Sono, Y.; Ito, T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef]
- Klein, K.M.; Jovin, I.S. Statins for Patients Undergoing Thoracic Aortic Aneurysm Repair Surgery: What to Do? Aorta 2021, 9, 169–170. [Google Scholar] [CrossRef]
- Jamialahmadi, T.; Baratzadeh, F.; Reiner, Ž.; Mannarino, M.R.; Cardenia, V.; Simental-Mendía, L.E.; Pirro, M.; Watts, G.F.; Sahebkar, A. The Effects of Statin Therapy on Oxidized LDL and Its Antibodies: A Systematic Review and Meta-Analysis. Oxidative Med. Cell. Longev. 2022, 2022, 7850659. [Google Scholar] [CrossRef]
- Ye, J.; Wang, M.; Jiang, H.; Ji, Q.; Huang, Y.; Liu, J.; Zeng, T.; Xu, Y.; Wang, Z.; Lin, Y.; et al. Increased Levels of Interleukin-22 in Thoracic Aorta and Plasma from Patients with Acute Thoracic Aortic Dissection. Clin. Chim. Acta 2018, 486, 395–401. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef]
- Saxena, R. Correlation of Paraoxonase Status with Disease Activity Score and Systemic Inflammation in Rheumatoid Arthritic Patients. J. Clin. Diagn. Res. 2016, 10, BC01–BC05. [Google Scholar] [CrossRef]
- Ran, L.; Zhao, W.; Tan, X.; Wang, H.; Mizuno, K.; Takagi, K.; Zhao, Y.; Bu, H. Association between serum vitamin C and the blood pressure: A systematic review and meta-analysis of observational studies. Cardiovasc. Ther. 2020, 2020, 4940673. [Google Scholar] [CrossRef]
- Sinclair, A.J.; Taylor, P.B.; Lunec, J.; Girling, A.J.; Barnett, A.H. Low plasma ascorbate levels in patients with type 2 diabetes mellitus consuming adequate dietary vitamin C. Diabetes Med. 1994, 11, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Giraud, D.W.; Martin, D.H.; Driskell, J.A. Plasma and dietary vitamin C and E levels in tobacco chewers, smokers and non-smokers. J. Am. Diet. Assoc. 1995, 6, 798–801. [Google Scholar] [CrossRef] [PubMed]
Variable | Total, N = 18 (%) |
---|---|
Age (years) | 62 (55–68) |
Gender (M/W) | 10/8 (56/44) |
BMI (kg/m2) | 27.0 (23.7–28.4) |
Smoking Status | |
Never | 4 (22) |
Former | 5 (28) |
Current | 9 (50) |
Diabetes | 3 (17) |
HT | 14 (78) |
Dyslipidemia | 7 (39) |
CAD | 1 (5) |
PAD | 2 (11) |
RI | 6 (33) |
COPD | 3 (17) |
Other Aneurysms | 2 (11) |
NSAID | 7 (39) |
β-blockers | 4 (22) |
Parameters | Reference Interval | Median (IQR) (N = 18) | K | p-Value |
---|---|---|---|---|
Vitamin C (µg/mL) | 6.21–18.00 | 3.23 (1.84–7.35) | 16 (L) | <0.002 |
Vitamin E as α-tocopherol (µg/mL) | 8.60–19.24 | 12.03 (9.91–13.22) | 16 (L) | <0.002 |
Vitamin E as γ-tocopherol (µg/mL) | 0.39–2.42 | <0.39 | 16 (L) | <0.002 |
Vitamin C (µM)/Vitamin E (µM) | 1.3–1.5 * | 0.69 (0.5–1.80) | 10 (L) | 1 |
β-carotene (µg/mL) | 0.06–0.68 | 0.15 (0.08–0.31) | 18 (L) | <0.0001 |
PSH (µM) | 314–516 | 246 (216–330) | 17 (L) | <0.001 |
GPx (IU/g Hb) | 20–58 | 61 (55.5–84) | 18 (H) | <0.0001 |
PON (IU/L) | 39–408 | 62.7 (42.4–134.6) | 17 (L) | <0.001 |
Se (µg/L) | 73–110 | 64.8 (53.8–83.1) | 15 (L) | 0.008 |
Cu (mg/L) | 0.70–1.1 | 1.36 (1.14–1.58) | 17 (H) | <0.001 |
Zn (mg/L) | 0.70–1.20 | 0.87 (0.67–0.97) | 9 (L) | 1 |
Cu/Zn | 1–1.17 | 1.63 (1.44–2.00) | 17 (H) | <0.001 |
tROOH (µM) | 0–432 | 1439 (785–1901) | 18 (H) | <0.0001 |
Ox-LDL (ng/mL) | 28–70 | 36.5 (31–49.75) | 4 (H) | 1 |
CRP (mg/L) | 0–5 | 67.6 (12.05–124.6) | 18 (H) | <0.0001 |
IL-6 (pg/mL) | 0–1 ** | 14.07 (7.49–26.88) | 18 (H) | <0.0001 |
Association | Correlation | p-Value | |
---|---|---|---|
Cu/Zn | Copper | 0.58 | 0.010 |
Cu/Zn | CRP | 0.90 | <0.0001 |
Cu/Zn | tROOH | 0.65 | 0.0032 |
Cu/Zn | IL-6 | 0.66 | 0.002 |
CRP | tROOH | 0.59 | 0.009 |
CRP | IL-6 | 0.75 | 0.0003 |
CRP | Selenium | −0.47 | 0.049 |
CRP | Vitamin E | −0.48 | 0.04 |
IL-6 | Vitamin E | −0.54 | 0.026 |
IL-6 | Selenium | −0.53 | 0.022 |
IL-6 | PON | −0.49 | 0.037 |
Parameters | Reference Interval | Smoking Habits | p-Value | |
---|---|---|---|---|
No (N = 9) | Yes (N = 9) | |||
Vitamin C (µg/mL) | 6.21–18.00 | 6.5 (2.6–9.3) | 2.6 (1.5–3.5) | 0.05 |
PON (IU/L) | 39.5–408.2 | 132.6 (72.6–141) | 43 (32–54) | 0.0008 |
PSH (µM) | 314–516 | 283 (246–359) | 227 (212–246) | 0.070 |
CRP (mg/L) | 0–5 | 12.8 (8.4–56.3) | 110.6 (87.3–159) | 0.011 |
Hypertension | ||||
No (N = 4) | Yes (N = 14) | |||
Cu (mg/L) | 0.70–1.1 | 1.00 (0.91–1.10) | 1.47 (1.27–1.67) | 0.011 |
Cu/Zn | 1–1.17 | 1.28 (0.99–1.50) | 1.78 (1.60–2.05) | 0.025 |
tROOH (µM) | 0–432 | 689 (514–828) | 1630 (1353–2023) | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pincemail, J.; Tchana-Sato, V.; Courtois, A.; Musumeci, L.; Cheramy-Bien, J.-P.; Munten, J.; Labropoulos, N.; Defraigne, J.-O.; Sakalihasan, N. Alteration of Blood Oxidative Stress Status in Patients with Thoracic Aortic Dissection: A Pilot Study. Antioxidants 2023, 12, 1106. https://doi.org/10.3390/antiox12051106
Pincemail J, Tchana-Sato V, Courtois A, Musumeci L, Cheramy-Bien J-P, Munten J, Labropoulos N, Defraigne J-O, Sakalihasan N. Alteration of Blood Oxidative Stress Status in Patients with Thoracic Aortic Dissection: A Pilot Study. Antioxidants. 2023; 12(5):1106. https://doi.org/10.3390/antiox12051106
Chicago/Turabian StylePincemail, Joël, Vincent Tchana-Sato, Audrey Courtois, Lucia Musumeci, Jean-Paul Cheramy-Bien, Jacobine Munten, Nicos Labropoulos, Jean-Olivier Defraigne, and Natzi Sakalihasan. 2023. "Alteration of Blood Oxidative Stress Status in Patients with Thoracic Aortic Dissection: A Pilot Study" Antioxidants 12, no. 5: 1106. https://doi.org/10.3390/antiox12051106
APA StylePincemail, J., Tchana-Sato, V., Courtois, A., Musumeci, L., Cheramy-Bien, J. -P., Munten, J., Labropoulos, N., Defraigne, J. -O., & Sakalihasan, N. (2023). Alteration of Blood Oxidative Stress Status in Patients with Thoracic Aortic Dissection: A Pilot Study. Antioxidants, 12(5), 1106. https://doi.org/10.3390/antiox12051106