Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Experimental Design
2.4. Sonotrode Extraction
2.5. Ultrasonic Bath Extraction
2.6. Determination of Procyanidins via HPLC-FLD-MS
2.7. Antioxidant Assays: ABTS, DPPH and FRAP Methods
2.8. Data Elaboration
3. Results and Discussion
3.1. Determination of Procyanidins and Antioxidant Capacity in Avocado By-Products
3.2. Fitting the Model
3.3. Optimization of Sonotrode Extraction Conditions
3.4. Comparison between Sonotrode and Ultrasonic Bath-Assisted Extractions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; Contreras, M.D.M.; Castro, E. Avocado-derived biomass as a source of bioenergy and bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Statista—The Statistics Portal for Market Data, Market Research and Market Studies. Available online: https://www.statista.com/ (accessed on 18 May 2022).
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Ferreira-Santos, P.; Gullón, B.; Teixeira, J.A.; Botelho, C.M.; Yáñez, R. Exploiting the potential of bioactive molecules extracted by ultrasounds from avocado peels—Food and nutraceutical applications. Antioxidants 2021, 10, 1475. [Google Scholar] [CrossRef]
- Aguilar-Mendez, M.A.; Campos-Arias, M.P.; Quiroz-Reyes, C.N.; Ronquillo-de Jesus, E.; Cruz-Hernandez, M.A. Fruit peels as sources of bioactive compounds with antioxidant and antimicrobial properties. Rev. Fac. Cienc. Agrar. 2020, 52, 360–371. [Google Scholar]
- Pineda-Lozano, J.E.; Martínez-Moreno, A.G.; Virgen-Carrillo, C.A. The effects of avocado waste and its functional compounds in animal models on dyslipidemia parameters. Front. Nutr. 2021, 8, 637183. [Google Scholar] [CrossRef]
- Ovalle-Marin, A.; Parra-Ruiz, C.; Rivas, F.; Orellana, J.F.; Garcia-Diaz, D.F.; Jimenez, P. Characterization of Persea Americana mill. Peels and leaves extracts and analysis of its potential in vitro anti-inflammatory properties. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2020, 19, 395–407. [Google Scholar] [CrossRef]
- Cerda-Opazo, P.; Gotteland, M.; Oyarzun-Ampuero, F.A.; Garcia, L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll. 2021, 111, 106370. [Google Scholar] [CrossRef]
- Chavez, F.; Aranda, M.; Garcia, A.; Pastene, E. Antioxidant polyphenols extracted from Avocado epicarp (Persea americana var. Hass) inhibit Helicobacter pylori urease. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2011, 10, 265–280. [Google Scholar]
- Cires, M.J.; Navarrete, P.; Pastene, E.; Carrasco-Pozo, C.; Valenzuela, R.; Medina, D.A.; Andriamihaja, M.; Beaumont, M.; Blachier, F.; Gotteland, M. Protective effect of an avocado peel polyphenolic extract rich in proanthocyanidins on the alterations of colonic homeostasis induced by a high-protein diet. J. Agric. Food Chem. 2019, 67, 11616–11626. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.M.; Wei, M.K.; Wang, R.; Deng, R.G.; Zou, Z.R.; Peng, Y.Y. Avocado proanthocyanidins as a source of tyrosinase inhibitors: Structure characterization, inhibitory activity, and mechanism. J. Agric. Food Chem. 2015, 63, 7381–7387. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT Food Sci. Technol. 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Robbins, R.J.; Leonczak, J.; Johnson, J.C.; Li, J.; Kwik-Uribe, C.; Prior, R.L.; Gu, L. Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples. J. Chromatogr. A 2009, 1216, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free redical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Parejo, I.; Codina, C.; Petrakis, C.; Kefalas, P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods 2000, 44, 507–512. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C.R.F. Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef]
- Monzón, L.; Becerra, G.; Aguirre, E.; Rodríguez, G.; Villanueva, E. Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks. Sci. Agropecu. 2021, 12, 33–40. [Google Scholar] [CrossRef]
- Segovia, F.J.; Corral-Pérez, J.J.; Almajano, M.P. Avocado seed: Modeling extraction of bioactive compounds. Ind. Crops Prod. 2016, 85, 213–220. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.G.; Rodríguez-Jasso, R.M.; Ruíz, H.A.; Govea-Salas, M.; Pintado, M.; Aguilar, C.N. Recovery of bioactive components from avocado peels using microwave-assisted extraction. Food Bioprod. Process. 2021, 127, 152–161. [Google Scholar] [CrossRef]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous optimization of microwave-assisted extraction of phenolic compounds and antioxidant activity of avocado (Persea americana mill.) seeds using response surface methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Giavasis, I. Vacuum microwave-assisted aqueous extraction of polyphenolic compounds from avocado (Persea americana) solid waste. Sustainability 2021, 13, 2166. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Aznar-Ramos, M.J.; Verardo, V.; Melgar-Locatelli, S.; Castilla-Ortega, E.; Rodríguez-Pérez, C. Exploring the Nutritional Composition and Bioactive Compounds in Different Cocoa Powders. Antioxidants 2023, 12, 716. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-Cerio, E.; Pasini, F.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Caboni, M.F. Psidium guajava L. leaves as source of proanthocyanidins: Optimization of the extraction method by RSM and study of the degree of polymerization by NP-HPLC-FLD-ESI-MS. J. Pharm. Biomed. Anal. 2017, 133, 1–7. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Extraction and normal-phase HPLC-fluorescence-electrospray MS characterization and quantification of procyanidins in cranberry extracts. J. Food Sci. 2010, 75, 690–696. [Google Scholar] [CrossRef]
- Verardo, V.; Cevoli, C.; Pasini, F.; Gómez-Caravaca, A.M.; Marconi, E.; Fabbri, A.; Caboni, M.F. Analysis of oligomer proanthocyanidins in different barley genotypes using high-performance liquid chromatography-fluorescence detection-mass spectrometry and near-infrared methodologies. J. Agric. Food Chem. 2015, 63, 4130–4137. [Google Scholar] [CrossRef] [PubMed]
- Bombai, G.; Pasini, F.; Verardo, V.; Sevindik, O.; Di Foggia, M.; Tessarin, P.; Bregoli, A.M.; Caboni, M.F.; Rombolà, A.D. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.). J. Sci. Food Agric. 2017, 97, 3058–3064. [Google Scholar] [CrossRef]
- Del Castillo-Llamosas, A.; Rodríguez-Martínez, B.; del Río, P.G.; Eibes, G.; Garrote, G.; Gullón, B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Bioresour. Technol. 2021, 342, 125981. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Mayol, I.; Céspedes-Acuña, C.; Silva, F.L.; Alarcón-Enos, J. Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. J. Food Process Eng. 2019, 42, e13197. [Google Scholar] [CrossRef]
- Aznar-Ramos, M.J.; Razola-Díaz, M.d.C.; Verardo, V.; Gómez-Caravaca, A.M. Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products. Horticulturae 2022, 8, 1014. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Contreras, M.D.M.; Carvalheiro, F.; Duarte, L.C.; Roseiro, L.B.; Romero, I.; Castro, E. Recovery of bioactive compounds from industrial exhausted olive pomace through ultrasound-assisted extraction. Biology 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Sukor, N.; Jusoh, R.; Rahim, S.A.; Kamarudin, N. Ultrasound assisted methods for enhanced extraction of phenolic acids from Quercus infectoria galls. Mater. Today Proc. 2018, 5, 21990–21999. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef] [PubMed]
Independent Factors | Dependent Factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Avocado Peel | Avocado Seed | ||||||||||
Run | Ethanol (%) | Time (min) | Amplitude (%) | Total Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) | Total Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) |
1 | 100 (1) | 5 (−1) | 60 (0) | 1.05 ± 0.02 | 0.31 ± 0.00 | 2.07 ± 0.03 | 1.15 ± 0.00 | 4.29 ± 0.05 | 2.22 ± 0.04 | 4.08 ± 0.07 | 2.53 ± 0.12 |
2 | 30 (−1) | 5 (−1) | 60 (0) | 6.53 ± 0.01 | 7.62 ± 0.07 | 5.18 ± 0.01 | 10.11 ± 0.12 | 12.18 ± 0.06 | 16.88 ± 0.08 | 16.12 ± 0.05 | 17.11 ± 0.20 |
3 | 100 (1) | 45 (1) | 60 (0) | 2.93 ± 0.05 | 0.73 ± 0.01 | 8.44 ± 0.10 | 1.96 ± 0.02 | 8.88 ± 0.07 | 8.26 ± 0.05 | 6.98 ± 0.14 | 9.39 ± 0.01 |
4 | 30 (−1) | 45 (1) | 60 (0) | 8.03 ± 0.03 | 7.80 ± 0.05 | 5.83 ± 0.03 | 11.09 ± 0.06 | 13.05 ± 0.09 | 13.95 ± 0.12 | 4.06 ± 0.22 | 11.56 ± 0.09 |
5 | 100 (1) | 25 (0) | 20 (−1) | 1.89 ± 0.11 | 0.37 ± 0.00 | 1.17 ± 0.04 | 1.05 ± 0.02 | 5.13 ± 0.14 | 1.92 ± 0.02 | 1.93 ± 0.09 | 2.36 ± 0.11 |
6 | 30 (−1) | 25 (0) | 20 (−1) | 8.83 ± 0.06 | 9.23 ± 0.08 | 10.35 ± 0.07 | 11.00 ± 0.01 | 13.81 ± 0.18 | 16.78 ± 0.09 | 20.68 ± 0.13 | 19.41 ± 0.02 |
7 | 100 (1) | 25 (0) | 100 (1) | 3.71 ± 0.01 | 0.70 ± 0.02 | 1.20 ± 0.00 | 1.67 ± 0.09 | 8.35 ± 0.12 | 5.87 ± 0.03 | 1.29 ± 0.10 | 6.50 ± 0.10 |
8 | 30 (−1) | 25 (0) | 100 (1) | 11.44 ± 0.10 | 8.68 ± 0.02 | 5.62 ± 0.11 | 11.38 ± 0.02 | 12.52 ± 0.08 | 13.63 ± 0.03 | 12.29 ± 0.04 | 15.86 ± 0.08 |
9 | 65 (0) | 5 (−1) | 20 (−1) | 9.19 ± 0.08 | 2.58 ± 0.09 | 6.33 ± 0.07 | 8.30 ± 0.04 | 9.95 ± 0.04 | 10.31 ± 0.10 | 7.51 ± 0.09 | 11.48 ± 0.01 |
10 | 65 (0) | 45 (1) | 20 (−1) | 13.32 ± 0.02 | 10.80 ± 0.04 | 23.12 ± 0.06 | 11.65 ± 0.10 | 12.61 ± 0.08 | 15.75 ± 0.07 | 15.22 ± 0.02 | 14.27 ± 0.06 |
11 | 65 (0) | 5 (−1) | 100 (1) | 13.98 ± 0.11 | 10.58 ± 0.08 | 16.09 ± 0.12 | 14.04 ± 0.03 | 15.11 ± 0.03 | 16.89 ± 0.01 | 25.77 ± 0.08 | 20.16 ± 0.20 |
12 | 65 (0) | 45 (1) | 100 (1) | 16.64 ± 0.09 | 12.15 ± 0.10 | 11.03 ± 0.10 | 11.72 ± 0.04 | 16.09 ± 0.11 | 16.88 ± 0.12 | 21.43 ± 0.15 | 24.82 ± 0.03 |
13 | 65 (0) | 25 (0) | 60 (0) | 20.02 ± 0.01 | 12.29 ± 0.04 | 20.07 ± 0.07 | 14.42 ± 0.10 | 15.86 ± 0.12 | 17.10 ± 0.08 | 24.19 ± 0.01 | 22.77 ± 0.05 |
14 | 65 (0) | 25 (0) | 60 (0) | 19.87 ± 0.03 | 12.19 ± 0.11 | 19.14 ± 0.04 | 14.79 ± 0.02 | 15.65 ± 0.02 | 17.11 ± 0.06 | 22.86 ± 0.07 | 22.83 ± 0.01 |
15 | 65 (0) | 25 (0) | 60 (0) | 20.02 ± 0.00 | 12.17 ± 0.07 | 18.80 ± 0.02 | 14.55 ± 0.08 | 15.56 ± 0.04 | 16.70 ± 0.07 | 23.51 ± 0.10 | 22.21 ± 0.02 |
Regression Coefficients | Responses | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avocado Peel | Avocado Seed | |||||||||||||||
Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) | Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) | |||||||||
Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | |
β0 | 8.1298 | 0.0000 * | 5.9622 | 0.0000 * | 8.0353 | 0.0006 * | 7.9278 | 0.0000 * | 10.9987 | 0.0000 * | 11.6117 | 0.0000 * | 11.4461 | 0.0003 * | 12.955 | 0.0001 * |
Lineal | ||||||||||||||||
β1 | −5.9731 | 0.0001 * | −7.5989 | 0.0000 * | −2.4340 | 0.0385 * | −9.3072 | 0.0002 * | −6.1622 | 0.0004 * | −10.7447 | 0.0002 * | −7.9975 | 0.0038 * | −9.988 | 0.0007 * |
β2 | 2.2608 | 0.0008 * | 1.8313 | 0.0007 * | 4.2973 | 0.0128 * | 0.7649 | 0.0319 * | 2.4261 | 0.0023 * | 2.1343 | 0.0059 * | −2.4943 | 0.0369 * | 1.676 | 0.0224 * |
β3 | 2.8280 | 0.0005 * | 1.4863 | 0.0010 * | −1.9543 | 0.0579 | 1.3028 | 0.0114 * | 2.0851 | 0.0031 * | 1.5498 | 0.0123 * | 1.0683 | 0.1625 | 3.402 | 0.0056 * |
Crossed | ||||||||||||||||
β12 | 0.1898 | 0.15512 | 0.1202 | 0.1956 | 2.8571 | 0.0494 * | −0.0866 | 0.6902 | 1.8613 | 0.0071 * | 4.4914 | 0.0027 * | 7.4787 | 0.0077 * | 6.205 | 0.0030 * |
β13 | −0.3980 | 0.0427 * | 0.4422 | 0.0196 * | 2.3784 | 0.0691 | 0.1210 | 0.5857 | 2.2557 | 0.0048 * | 3.5437 | 0.0043 * | 3.8723 | 0.0279 * | 3.846 | 0.0078 * |
β23 | −0.7402 | 0.0129 * | −3.3287 | 0.0004 * | −10.9273 | 0.0036 * | −2.8379 | 0.0044 * | −0.8383 | 0.0334 * | −2.7257 | 0.0072 * | −6.0253 | 0.0118 * | 0.933 | 0.1123 |
Quadratic | ||||||||||||||||
β11 | 11.0757 | 0.0000 * | 6.1931 | 0.0000 * | 11.7574 | 0.0009 * | 6.8304 | 0.0002 * | 4.7850 | 0.0003 * | 6.0232 | 0.0004 * | 12.0744 | 0.0008 * | 9.550 | 0.0003 * |
β22 | 4.2587 | 0.0001 * | 1.9114 | 0.0003 * | 2.2010 | 0.0235 * | 1.6789 | 0.0034 * | 1.3009 | 0.0039 * | 0.6176 | 0.0365 * | 3.6357 | 0.0088 * | 2.903 | 0.0037 * |
β33 | 2.4284 | 0.0003 * | 1.2775 | 0.0007 * | 2.9960 | 0.0129 * | 1.4813 | 0.0043 * | 0.9486 | 0.0074 * | 1.3943 | 0.0075 * | 2.3983 | 0.0200 * | 2.016 | 0.0077 * |
R2 | 0.9996 | 0.9997 | 0.9635 | 0.9971 | 0.9907 | 0.9885 | 0.9878 | 0.9933 | ||||||||
p model | 0.0000 * | 0.0014 * | 0.0031 * | 0.0000 * | 0.0004 * | 0.0018 * | 0.0212 * | 0.0058 * | ||||||||
p lack of fit | 0.1551 | 0.1956 | 0.1279 | 0.2794 | 0.0899 | 0.0762 | 0.1625 | 0.1123 |
Parameters | Optimal Conditions | |||||||
Avocado Peel | Avocado Seed | |||||||
Ethanol (%) | 60 | 55 | ||||||
Time (min) | 30 | 30 | ||||||
Amplitude (%) | 70 | 90 | ||||||
Procyanidins | DPPH | ABTS | FRAP | Procyanidins | DPPH | ABTS | FRAP | |
Predicted Value (mg/g d.w.) | 20.73 ± 0.59 | 13.45 ± 0.44 | 19.20 ± 2.23.5 | 15.14 ± 0.63 | 16.99 ± 0.57 | 17.99 ± 0.83 | 25.41 ± 2.39 | 25.47 ± 1.24 |
Obtained value (mg/g d.w.) | 20.80 ± 0.10 | 13.80 ± 0.22 | 20.23 ± 0.12 | 14.97 ± 0.25 | 16.70 ± 0.20 | 17.76 ± 0.15 | 25.87 ± 0.33 | 26.62 ± 0.92 |
CV (%) | 0.23 | 1.81 | 3.69 | 0.78 | 1.22 | 0.91 | 1.26 | 3.12 |
Control (mg/g d.w.) | 9.66 ± 0.24 | 5.26 ± 0.11 | 6.99 ± 0.34 | 5.00 ± 0.22 | 7.64 ± 0.34 | 5.36 ± 0.26 | 6.12 ± 0.19 | 8.00 ± 0.19 |
Avocado Peel (mg/g d.w.) | Avocado Seed (mg/g d.w.) | |||
---|---|---|---|---|
Sonotrode | Ultrasound Bath | Sonotrode | Ultrasound Bath | |
Monomer | 8.17 ± 0.04 | 4.53 ± 0.06 | 0.72 ± 0.05 | 0.48 ± 0.05 |
dp2 | 1.40 ± 0.01 | 0.76 ± 0.02 | 4.58 ± 0.02 | 2.68 ± 0.08 |
dp3 | 1.15 ± 0.00 | 0.91 ± 0.04 | 1.65 ± 0.03 | 1.09 ± 0.06 |
dp4 | 1.09 ± 0.02 | 0.91 ± 0.03 | 1.09 ± 0.02 | 0.68 ± 0.04 |
dp5 | 0.90 ± 0.01 | 0.68 ± 0.01 | 0.75 ± 0.01 | 0.46 ± 0.03 |
dp6 | 0.54 ± 0.00 | 0.49 ± 0.01 | 0.64 ± 0.01 | 0.38 ± 0.01 |
dp7 | 0.48 ± 0.00 | 0.29 ± 0.01 | 0.48 ± 0.01 | 0.29 ± 0.02 |
dp8 | 0.24 ± 0.00 | 0.16 ± 0.00 | 0.35 ± 0.00 | 0.21 ± 0.00 |
dp9 | 0.06 ± 0.00 | 0.07 ± 0.00 | 0.23 ± 0.00 | 0.15 ± 0.00 |
dp10 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.15 ± 0.00 | 0.09 ± 0.00 |
Polymer | 6.72 ± 0.03 | 0.83 ± 0.06 | 6.03 ± 0.05 | 1.15 ± 0.10 |
Total procyanidins | 20.80 ± 0.10 | 9.66 ± 0.24 | 16.69 ± 0.20 | 7.64 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razola-Díaz, M.d.C.; Verardo, V.; Guerra-Hernández, E.J.; García-Villanova Ruiz, B.; Gómez-Caravaca, A.M. Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants 2023, 12, 1409. https://doi.org/10.3390/antiox12071409
Razola-Díaz MdC, Verardo V, Guerra-Hernández EJ, García-Villanova Ruiz B, Gómez-Caravaca AM. Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants. 2023; 12(7):1409. https://doi.org/10.3390/antiox12071409
Chicago/Turabian StyleRazola-Díaz, María del Carmen, Vito Verardo, Eduardo Jesús Guerra-Hernández, Belén García-Villanova Ruiz, and Ana María Gómez-Caravaca. 2023. "Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction" Antioxidants 12, no. 7: 1409. https://doi.org/10.3390/antiox12071409
APA StyleRazola-Díaz, M. d. C., Verardo, V., Guerra-Hernández, E. J., García-Villanova Ruiz, B., & Gómez-Caravaca, A. M. (2023). Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants, 12(7), 1409. https://doi.org/10.3390/antiox12071409