Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Experimental Design
2.4. Sonotrode Extraction
2.5. Ultrasonic Bath Extraction
2.6. Determination of Procyanidins via HPLC-FLD-MS
2.7. Antioxidant Assays: ABTS, DPPH and FRAP Methods
2.8. Data Elaboration
3. Results and Discussion
3.1. Determination of Procyanidins and Antioxidant Capacity in Avocado By-Products
3.2. Fitting the Model
3.3. Optimization of Sonotrode Extraction Conditions
3.4. Comparison between Sonotrode and Ultrasonic Bath-Assisted Extractions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; Contreras, M.D.M.; Castro, E. Avocado-derived biomass as a source of bioenergy and bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Statista—The Statistics Portal for Market Data, Market Research and Market Studies. Available online: https://www.statista.com/ (accessed on 18 May 2022).
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Martínez, B.; Ferreira-Santos, P.; Gullón, B.; Teixeira, J.A.; Botelho, C.M.; Yáñez, R. Exploiting the potential of bioactive molecules extracted by ultrasounds from avocado peels—Food and nutraceutical applications. Antioxidants 2021, 10, 1475. [Google Scholar] [CrossRef]
- Aguilar-Mendez, M.A.; Campos-Arias, M.P.; Quiroz-Reyes, C.N.; Ronquillo-de Jesus, E.; Cruz-Hernandez, M.A. Fruit peels as sources of bioactive compounds with antioxidant and antimicrobial properties. Rev. Fac. Cienc. Agrar. 2020, 52, 360–371. [Google Scholar]
- Pineda-Lozano, J.E.; Martínez-Moreno, A.G.; Virgen-Carrillo, C.A. The effects of avocado waste and its functional compounds in animal models on dyslipidemia parameters. Front. Nutr. 2021, 8, 637183. [Google Scholar] [CrossRef]
- Ovalle-Marin, A.; Parra-Ruiz, C.; Rivas, F.; Orellana, J.F.; Garcia-Diaz, D.F.; Jimenez, P. Characterization of Persea Americana mill. Peels and leaves extracts and analysis of its potential in vitro anti-inflammatory properties. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2020, 19, 395–407. [Google Scholar] [CrossRef]
- Cerda-Opazo, P.; Gotteland, M.; Oyarzun-Ampuero, F.A.; Garcia, L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll. 2021, 111, 106370. [Google Scholar] [CrossRef]
- Chavez, F.; Aranda, M.; Garcia, A.; Pastene, E. Antioxidant polyphenols extracted from Avocado epicarp (Persea americana var. Hass) inhibit Helicobacter pylori urease. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2011, 10, 265–280. [Google Scholar]
- Cires, M.J.; Navarrete, P.; Pastene, E.; Carrasco-Pozo, C.; Valenzuela, R.; Medina, D.A.; Andriamihaja, M.; Beaumont, M.; Blachier, F.; Gotteland, M. Protective effect of an avocado peel polyphenolic extract rich in proanthocyanidins on the alterations of colonic homeostasis induced by a high-protein diet. J. Agric. Food Chem. 2019, 67, 11616–11626. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.M.; Wei, M.K.; Wang, R.; Deng, R.G.; Zou, Z.R.; Peng, Y.Y. Avocado proanthocyanidins as a source of tyrosinase inhibitors: Structure characterization, inhibitory activity, and mechanism. J. Agric. Food Chem. 2015, 63, 7381–7387. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT Food Sci. Technol. 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Robbins, R.J.; Leonczak, J.; Johnson, J.C.; Li, J.; Kwik-Uribe, C.; Prior, R.L.; Gu, L. Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples. J. Chromatogr. A 2009, 1216, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free redical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Parejo, I.; Codina, C.; Petrakis, C.; Kefalas, P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods 2000, 44, 507–512. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C.R.F. Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Monzón, L.; Becerra, G.; Aguirre, E.; Rodríguez, G.; Villanueva, E. Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks. Sci. Agropecu. 2021, 12, 33–40. [Google Scholar] [CrossRef]
- Segovia, F.J.; Corral-Pérez, J.J.; Almajano, M.P. Avocado seed: Modeling extraction of bioactive compounds. Ind. Crops Prod. 2016, 85, 213–220. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.G.; Rodríguez-Jasso, R.M.; Ruíz, H.A.; Govea-Salas, M.; Pintado, M.; Aguilar, C.N. Recovery of bioactive components from avocado peels using microwave-assisted extraction. Food Bioprod. Process. 2021, 127, 152–161. [Google Scholar] [CrossRef]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous optimization of microwave-assisted extraction of phenolic compounds and antioxidant activity of avocado (Persea americana mill.) seeds using response surface methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Giavasis, I. Vacuum microwave-assisted aqueous extraction of polyphenolic compounds from avocado (Persea americana) solid waste. Sustainability 2021, 13, 2166. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Aznar-Ramos, M.J.; Verardo, V.; Melgar-Locatelli, S.; Castilla-Ortega, E.; Rodríguez-Pérez, C. Exploring the Nutritional Composition and Bioactive Compounds in Different Cocoa Powders. Antioxidants 2023, 12, 716. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-Cerio, E.; Pasini, F.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Caboni, M.F. Psidium guajava L. leaves as source of proanthocyanidins: Optimization of the extraction method by RSM and study of the degree of polymerization by NP-HPLC-FLD-ESI-MS. J. Pharm. Biomed. Anal. 2017, 133, 1–7. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Extraction and normal-phase HPLC-fluorescence-electrospray MS characterization and quantification of procyanidins in cranberry extracts. J. Food Sci. 2010, 75, 690–696. [Google Scholar] [CrossRef]
- Verardo, V.; Cevoli, C.; Pasini, F.; Gómez-Caravaca, A.M.; Marconi, E.; Fabbri, A.; Caboni, M.F. Analysis of oligomer proanthocyanidins in different barley genotypes using high-performance liquid chromatography-fluorescence detection-mass spectrometry and near-infrared methodologies. J. Agric. Food Chem. 2015, 63, 4130–4137. [Google Scholar] [CrossRef] [PubMed]
- Bombai, G.; Pasini, F.; Verardo, V.; Sevindik, O.; Di Foggia, M.; Tessarin, P.; Bregoli, A.M.; Caboni, M.F.; Rombolà, A.D. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.). J. Sci. Food Agric. 2017, 97, 3058–3064. [Google Scholar] [CrossRef]
- Del Castillo-Llamosas, A.; Rodríguez-Martínez, B.; del Río, P.G.; Eibes, G.; Garrote, G.; Gullón, B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Bioresour. Technol. 2021, 342, 125981. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Mayol, I.; Céspedes-Acuña, C.; Silva, F.L.; Alarcón-Enos, J. Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. J. Food Process Eng. 2019, 42, e13197. [Google Scholar] [CrossRef]
- Aznar-Ramos, M.J.; Razola-Díaz, M.d.C.; Verardo, V.; Gómez-Caravaca, A.M. Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products. Horticulturae 2022, 8, 1014. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Contreras, M.D.M.; Carvalheiro, F.; Duarte, L.C.; Roseiro, L.B.; Romero, I.; Castro, E. Recovery of bioactive compounds from industrial exhausted olive pomace through ultrasound-assisted extraction. Biology 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Sukor, N.; Jusoh, R.; Rahim, S.A.; Kamarudin, N. Ultrasound assisted methods for enhanced extraction of phenolic acids from Quercus infectoria galls. Mater. Today Proc. 2018, 5, 21990–21999. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef] [PubMed]
Independent Factors | Dependent Factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Avocado Peel | Avocado Seed | ||||||||||
Run | Ethanol (%) | Time (min) | Amplitude (%) | Total Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) | Total Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) |
1 | 100 (1) | 5 (−1) | 60 (0) | 1.05 ± 0.02 | 0.31 ± 0.00 | 2.07 ± 0.03 | 1.15 ± 0.00 | 4.29 ± 0.05 | 2.22 ± 0.04 | 4.08 ± 0.07 | 2.53 ± 0.12 |
2 | 30 (−1) | 5 (−1) | 60 (0) | 6.53 ± 0.01 | 7.62 ± 0.07 | 5.18 ± 0.01 | 10.11 ± 0.12 | 12.18 ± 0.06 | 16.88 ± 0.08 | 16.12 ± 0.05 | 17.11 ± 0.20 |
3 | 100 (1) | 45 (1) | 60 (0) | 2.93 ± 0.05 | 0.73 ± 0.01 | 8.44 ± 0.10 | 1.96 ± 0.02 | 8.88 ± 0.07 | 8.26 ± 0.05 | 6.98 ± 0.14 | 9.39 ± 0.01 |
4 | 30 (−1) | 45 (1) | 60 (0) | 8.03 ± 0.03 | 7.80 ± 0.05 | 5.83 ± 0.03 | 11.09 ± 0.06 | 13.05 ± 0.09 | 13.95 ± 0.12 | 4.06 ± 0.22 | 11.56 ± 0.09 |
5 | 100 (1) | 25 (0) | 20 (−1) | 1.89 ± 0.11 | 0.37 ± 0.00 | 1.17 ± 0.04 | 1.05 ± 0.02 | 5.13 ± 0.14 | 1.92 ± 0.02 | 1.93 ± 0.09 | 2.36 ± 0.11 |
6 | 30 (−1) | 25 (0) | 20 (−1) | 8.83 ± 0.06 | 9.23 ± 0.08 | 10.35 ± 0.07 | 11.00 ± 0.01 | 13.81 ± 0.18 | 16.78 ± 0.09 | 20.68 ± 0.13 | 19.41 ± 0.02 |
7 | 100 (1) | 25 (0) | 100 (1) | 3.71 ± 0.01 | 0.70 ± 0.02 | 1.20 ± 0.00 | 1.67 ± 0.09 | 8.35 ± 0.12 | 5.87 ± 0.03 | 1.29 ± 0.10 | 6.50 ± 0.10 |
8 | 30 (−1) | 25 (0) | 100 (1) | 11.44 ± 0.10 | 8.68 ± 0.02 | 5.62 ± 0.11 | 11.38 ± 0.02 | 12.52 ± 0.08 | 13.63 ± 0.03 | 12.29 ± 0.04 | 15.86 ± 0.08 |
9 | 65 (0) | 5 (−1) | 20 (−1) | 9.19 ± 0.08 | 2.58 ± 0.09 | 6.33 ± 0.07 | 8.30 ± 0.04 | 9.95 ± 0.04 | 10.31 ± 0.10 | 7.51 ± 0.09 | 11.48 ± 0.01 |
10 | 65 (0) | 45 (1) | 20 (−1) | 13.32 ± 0.02 | 10.80 ± 0.04 | 23.12 ± 0.06 | 11.65 ± 0.10 | 12.61 ± 0.08 | 15.75 ± 0.07 | 15.22 ± 0.02 | 14.27 ± 0.06 |
11 | 65 (0) | 5 (−1) | 100 (1) | 13.98 ± 0.11 | 10.58 ± 0.08 | 16.09 ± 0.12 | 14.04 ± 0.03 | 15.11 ± 0.03 | 16.89 ± 0.01 | 25.77 ± 0.08 | 20.16 ± 0.20 |
12 | 65 (0) | 45 (1) | 100 (1) | 16.64 ± 0.09 | 12.15 ± 0.10 | 11.03 ± 0.10 | 11.72 ± 0.04 | 16.09 ± 0.11 | 16.88 ± 0.12 | 21.43 ± 0.15 | 24.82 ± 0.03 |
13 | 65 (0) | 25 (0) | 60 (0) | 20.02 ± 0.01 | 12.29 ± 0.04 | 20.07 ± 0.07 | 14.42 ± 0.10 | 15.86 ± 0.12 | 17.10 ± 0.08 | 24.19 ± 0.01 | 22.77 ± 0.05 |
14 | 65 (0) | 25 (0) | 60 (0) | 19.87 ± 0.03 | 12.19 ± 0.11 | 19.14 ± 0.04 | 14.79 ± 0.02 | 15.65 ± 0.02 | 17.11 ± 0.06 | 22.86 ± 0.07 | 22.83 ± 0.01 |
15 | 65 (0) | 25 (0) | 60 (0) | 20.02 ± 0.00 | 12.17 ± 0.07 | 18.80 ± 0.02 | 14.55 ± 0.08 | 15.56 ± 0.04 | 16.70 ± 0.07 | 23.51 ± 0.10 | 22.21 ± 0.02 |
Regression Coefficients | Responses | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avocado Peel | Avocado Seed | |||||||||||||||
Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) | Procyanidins (mg CE/g d.w.) | DPPH (mg TE/g d.w.) | ABTS (mg TE/g d.w.) | FRAP (mg TE/g d.w.) | |||||||||
Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | Effect | p Value | |
β0 | 8.1298 | 0.0000 * | 5.9622 | 0.0000 * | 8.0353 | 0.0006 * | 7.9278 | 0.0000 * | 10.9987 | 0.0000 * | 11.6117 | 0.0000 * | 11.4461 | 0.0003 * | 12.955 | 0.0001 * |
Lineal | ||||||||||||||||
β1 | −5.9731 | 0.0001 * | −7.5989 | 0.0000 * | −2.4340 | 0.0385 * | −9.3072 | 0.0002 * | −6.1622 | 0.0004 * | −10.7447 | 0.0002 * | −7.9975 | 0.0038 * | −9.988 | 0.0007 * |
β2 | 2.2608 | 0.0008 * | 1.8313 | 0.0007 * | 4.2973 | 0.0128 * | 0.7649 | 0.0319 * | 2.4261 | 0.0023 * | 2.1343 | 0.0059 * | −2.4943 | 0.0369 * | 1.676 | 0.0224 * |
β3 | 2.8280 | 0.0005 * | 1.4863 | 0.0010 * | −1.9543 | 0.0579 | 1.3028 | 0.0114 * | 2.0851 | 0.0031 * | 1.5498 | 0.0123 * | 1.0683 | 0.1625 | 3.402 | 0.0056 * |
Crossed | ||||||||||||||||
β12 | 0.1898 | 0.15512 | 0.1202 | 0.1956 | 2.8571 | 0.0494 * | −0.0866 | 0.6902 | 1.8613 | 0.0071 * | 4.4914 | 0.0027 * | 7.4787 | 0.0077 * | 6.205 | 0.0030 * |
β13 | −0.3980 | 0.0427 * | 0.4422 | 0.0196 * | 2.3784 | 0.0691 | 0.1210 | 0.5857 | 2.2557 | 0.0048 * | 3.5437 | 0.0043 * | 3.8723 | 0.0279 * | 3.846 | 0.0078 * |
β23 | −0.7402 | 0.0129 * | −3.3287 | 0.0004 * | −10.9273 | 0.0036 * | −2.8379 | 0.0044 * | −0.8383 | 0.0334 * | −2.7257 | 0.0072 * | −6.0253 | 0.0118 * | 0.933 | 0.1123 |
Quadratic | ||||||||||||||||
β11 | 11.0757 | 0.0000 * | 6.1931 | 0.0000 * | 11.7574 | 0.0009 * | 6.8304 | 0.0002 * | 4.7850 | 0.0003 * | 6.0232 | 0.0004 * | 12.0744 | 0.0008 * | 9.550 | 0.0003 * |
β22 | 4.2587 | 0.0001 * | 1.9114 | 0.0003 * | 2.2010 | 0.0235 * | 1.6789 | 0.0034 * | 1.3009 | 0.0039 * | 0.6176 | 0.0365 * | 3.6357 | 0.0088 * | 2.903 | 0.0037 * |
β33 | 2.4284 | 0.0003 * | 1.2775 | 0.0007 * | 2.9960 | 0.0129 * | 1.4813 | 0.0043 * | 0.9486 | 0.0074 * | 1.3943 | 0.0075 * | 2.3983 | 0.0200 * | 2.016 | 0.0077 * |
R2 | 0.9996 | 0.9997 | 0.9635 | 0.9971 | 0.9907 | 0.9885 | 0.9878 | 0.9933 | ||||||||
p model | 0.0000 * | 0.0014 * | 0.0031 * | 0.0000 * | 0.0004 * | 0.0018 * | 0.0212 * | 0.0058 * | ||||||||
p lack of fit | 0.1551 | 0.1956 | 0.1279 | 0.2794 | 0.0899 | 0.0762 | 0.1625 | 0.1123 |
Parameters | Optimal Conditions | |||||||
Avocado Peel | Avocado Seed | |||||||
Ethanol (%) | 60 | 55 | ||||||
Time (min) | 30 | 30 | ||||||
Amplitude (%) | 70 | 90 | ||||||
Procyanidins | DPPH | ABTS | FRAP | Procyanidins | DPPH | ABTS | FRAP | |
Predicted Value (mg/g d.w.) | 20.73 ± 0.59 | 13.45 ± 0.44 | 19.20 ± 2.23.5 | 15.14 ± 0.63 | 16.99 ± 0.57 | 17.99 ± 0.83 | 25.41 ± 2.39 | 25.47 ± 1.24 |
Obtained value (mg/g d.w.) | 20.80 ± 0.10 | 13.80 ± 0.22 | 20.23 ± 0.12 | 14.97 ± 0.25 | 16.70 ± 0.20 | 17.76 ± 0.15 | 25.87 ± 0.33 | 26.62 ± 0.92 |
CV (%) | 0.23 | 1.81 | 3.69 | 0.78 | 1.22 | 0.91 | 1.26 | 3.12 |
Control (mg/g d.w.) | 9.66 ± 0.24 | 5.26 ± 0.11 | 6.99 ± 0.34 | 5.00 ± 0.22 | 7.64 ± 0.34 | 5.36 ± 0.26 | 6.12 ± 0.19 | 8.00 ± 0.19 |
Avocado Peel (mg/g d.w.) | Avocado Seed (mg/g d.w.) | |||
---|---|---|---|---|
Sonotrode | Ultrasound Bath | Sonotrode | Ultrasound Bath | |
Monomer | 8.17 ± 0.04 | 4.53 ± 0.06 | 0.72 ± 0.05 | 0.48 ± 0.05 |
dp2 | 1.40 ± 0.01 | 0.76 ± 0.02 | 4.58 ± 0.02 | 2.68 ± 0.08 |
dp3 | 1.15 ± 0.00 | 0.91 ± 0.04 | 1.65 ± 0.03 | 1.09 ± 0.06 |
dp4 | 1.09 ± 0.02 | 0.91 ± 0.03 | 1.09 ± 0.02 | 0.68 ± 0.04 |
dp5 | 0.90 ± 0.01 | 0.68 ± 0.01 | 0.75 ± 0.01 | 0.46 ± 0.03 |
dp6 | 0.54 ± 0.00 | 0.49 ± 0.01 | 0.64 ± 0.01 | 0.38 ± 0.01 |
dp7 | 0.48 ± 0.00 | 0.29 ± 0.01 | 0.48 ± 0.01 | 0.29 ± 0.02 |
dp8 | 0.24 ± 0.00 | 0.16 ± 0.00 | 0.35 ± 0.00 | 0.21 ± 0.00 |
dp9 | 0.06 ± 0.00 | 0.07 ± 0.00 | 0.23 ± 0.00 | 0.15 ± 0.00 |
dp10 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.15 ± 0.00 | 0.09 ± 0.00 |
Polymer | 6.72 ± 0.03 | 0.83 ± 0.06 | 6.03 ± 0.05 | 1.15 ± 0.10 |
Total procyanidins | 20.80 ± 0.10 | 9.66 ± 0.24 | 16.69 ± 0.20 | 7.64 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razola-Díaz, M.d.C.; Verardo, V.; Guerra-Hernández, E.J.; García-Villanova Ruiz, B.; Gómez-Caravaca, A.M. Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants 2023, 12, 1409. https://doi.org/10.3390/antiox12071409
Razola-Díaz MdC, Verardo V, Guerra-Hernández EJ, García-Villanova Ruiz B, Gómez-Caravaca AM. Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants. 2023; 12(7):1409. https://doi.org/10.3390/antiox12071409
Chicago/Turabian StyleRazola-Díaz, María del Carmen, Vito Verardo, Eduardo Jesús Guerra-Hernández, Belén García-Villanova Ruiz, and Ana María Gómez-Caravaca. 2023. "Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction" Antioxidants 12, no. 7: 1409. https://doi.org/10.3390/antiox12071409
APA StyleRazola-Díaz, M. d. C., Verardo, V., Guerra-Hernández, E. J., García-Villanova Ruiz, B., & Gómez-Caravaca, A. M. (2023). Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants, 12(7), 1409. https://doi.org/10.3390/antiox12071409