Contribution of Saccharomyces and Non-Saccharomyces Yeasts on the Volatile and Phenolic Profiles of Rosehip Mead
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Total Phenolic Content and Antioxidant Activity
2.3. Volatile Compounds by GS/MS Analysis
2.4. Odour Activity Values
2.5. Phenolic Compounds by HPLC-DAD ESI+
2.6. Organic Acids, Glucides and Alcoholic Compounds by HPLC-RID
2.7. Amino Acids Compounds by Gas-Chromatography
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content and Antioxidant Activity
3.2. Individual Phenolic Compounds Analysis
3.3. Volatile Compounds Analysis
3.4. Odour Activity Values
3.5. Determination of Amino Acids Composition
3.6. Determination of Sugars, Organic Acids and Ethanol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilyasoğlu, H. Characterization of Rosehip (Rosa canina L.) Seed and Seed Oil. Int. J. Food Prop. 2014, 17, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.; Valencia, S.; Tereucán, G.; Nahuelcura, J.; Jiménez-Aspee, F.; Cornejo, P.; Ruiz, A. Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.). Molecules 2023, 28, 3544. [Google Scholar] [CrossRef]
- Bhave, A.; Schulzova, V.; Chmelarova, H.; Mrnka, L.; Hajslova, J. Assessment of rosehips based on the content of their biologically active compounds. J. Food Drug Anal. 2017, 25, 681–690. [Google Scholar] [CrossRef]
- Popović-Djordjević, J.; Špirović-Trifunović, B.; Pećinar, I.; de Oliveira, L.F.C.; Krstić, Đ.; Mihajlović, D.; Akšić, M.F.; Simal-Gandara, J. Fatty acids in seed oil of wild and cultivated rosehip (Rosa canina L.) from different locations in Serbia. Ind. Crops Prod. 2023, 191, 115797. [Google Scholar] [CrossRef]
- Winther, K.; Apel, K.; Thamsborg, G. A powder made from seeds and shells of a rose-hip subspecies (Rosa canina) reduces symptoms of knee and hip osteoarthritis: A randomized, double-blind, placebo-controlled clinical trial. Scand. J. Rheumatol. 2005, 34, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Ouerghemmi, S.; Sebei, H.; Siracusa, L.; Ruberto, G.; Saija, A.; Cimino, F.; Cristani, M. Comparative study of phenolic composition and antioxidant activity of leaf extracts from three wild Rosa species grown in different Tunisia regions: Rosa canina L., Rosa moschata Herrm. and Rosa sempervirens L. Ind. Crops Prod. 2016, 94, 167–177. [Google Scholar] [CrossRef]
- Ninomiya, K.; Matsuda, H.; Kubo, M.; Morikawa, T.; Nishida, N.; Yoshikawa, M. Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. Bioorg. Med. Chem. Lett. 2007, 17, 3059–3064. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Cosme, F.; Barbosa, C.; Falco, V.; Inês, A.; Mendes-Faia, A. Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int. J. Food Microbiol. 2010, 144, 193–198. [Google Scholar] [CrossRef]
- Česlová, L.; Pravcová, K.; Juričová, M.; Fischer, J. Rapid HPLC/MS/MS analysis of phenolic content and profile for mead quality assessment. Food Control. 2022, 134, 108737. [Google Scholar] [CrossRef]
- Gomes, T.; Barradas, C.; Dias, T.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Optimization of mead production using response surface methodology. Food Chem. Toxicol. 2013, 59, 680–686. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, X.; Li, F.; Yan, X.; Li, B.; Luo, Y.; Jiang, G.; Liu, X.; Wang, L. Fermentation of mead using Saccharomyces cerevisiae and Lactobacillus paracasei: Strain growth, aroma components and antioxidant capacity. Food Biosci. 2023, 52, 102402. [Google Scholar] [CrossRef]
- Roldán, A.; van Muiswinkel, G.; Lasanta, C.; Palacios, V.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Bednarek, M.; Szwengiel, A. Distinguishing between saturated and unsaturated meads based on their chemical characteristics. LWT Food Sci. Technol. 2020, 133, 109962. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, Y.; Le, L.; Pan, H.; Zhang, Q.; Yu, C. Road to a bite of rosehip: A comprehensive review of bioactive compounds, biological activities, and industrial applications of fruits. Trends Food Sci. Technol. 2023, 136, 76–91. [Google Scholar] [CrossRef]
- Schwarz, L.V.; Marcon, A.R.; Delamare, A.P.L.; Agostini, F.; Moura, S.; Echeverrigaray, S. Selection of low nitrogen demand yeast strains and their impact on the physicochemical and volatile composition of mead. J. Food Sci. Technol. 2020, 57, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, K.; Saris, P.E.J. Biofilm Formation of Probiotic Saccharomyces cerevisiae var. boulardii on Glass Surface during Beer Bottle Ageing. Beverages 2022, 8, 77. [Google Scholar] [CrossRef]
- Abdo, H.; Catacchio, C.R.; Ventura, M.; D’Addabbo, P.; Calabrese, F.M.; Laurent, J.; David-Vaizant, V.; Alexandre, H.; Guilloux-Bénatier, M.; Rousseaux, S. Colonization of Wild Saccharomyces cerevisiae Strains in a New Winery. Beverages 2020, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Livas, D.; Almering, M.J.; Daran, J.-M.; Pronk, J.T.; Gancedo, J.M. Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A. BMC Genom. 2011, 12, 405. [Google Scholar] [CrossRef] [Green Version]
- Januszek, M.; Satora, P.; Wajda, Ł.; Tarko, T. Saccharomyces bayanus Enhances Volatile Profile of Apple Brandies. Molecules 2020, 25, 3127. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Troianou, V.; Toumpeki, C.; Lola, D.; Goulioti, E.; Tzamourani, A.; Dorignac, E.; Paramithiotis, S.; Kotseridis, Y. Influence of Saccharomyces pastorianus and Saccharomyces bayanus Inoculation Ratio to Oenological Characteristics of Sauvignon Blanc Wine. Appl. Sci. 2023, 13, 3393. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Ye, P.; He, C.; Liu, Y.; Zhang, S.; Huang, J.; Zhou, J.; Zhou, R.; Cai, L. Ethyl esters enhancement of Jinchuan pear wine studied by coculturing Saccharomyces bayanus with Torulaspora delbrueckii and their community and interaction characteristics. Food Biosci. 2022, 46, 101605. [Google Scholar] [CrossRef]
- Azzolini, M.; Tosi, E.; Lorenzini, M.; Finato, F.; Zapparoli, G. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2015, 31, 277–293. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Tian, Y.; Liu, S.; Vaateri, L.; Ma, X.; Haikonen, T.; Yang, B.; Laaksonen, O. Comparison of Phenolic Composition and Sensory Quality among Pear Beverages Made by Saccharomyces cerevisiae and Torulaspora delbrueckii. Food Chem. 2023, 422, 136184. [Google Scholar] [CrossRef] [PubMed]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.-J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef]
- Araújo, G.S.; Gutiérrez, M.P.; Sampaio, K.F.; de Souza, S.M.A.; Rodrigues, R.d.C.L.B.; Martínez, E.A. Mead Production by Saccharomyces cerevisiae Safbrew T-58 and Saccharomyces bayanus (Premier Blanc and Premier Cuvée): Effect of Cowpea (Vigna unguiculata L. Walp) Extract Concentration. Appl. Biochem. Biotechnol. 2020, 191, 212–225. [Google Scholar] [CrossRef]
- Koguchi, M.; Saigusa, N.; Teramoto, Y. Production and Antioxidative Activity of Mead Made from Honey and Black Rice (Oryza sativa var. indica cv. shiun). J. Inst. Brew. 2009, 115, 238–242. [Google Scholar] [CrossRef]
- Mead Beverages Market by Product, Distribution Channel, and Geography: Forecast and Analysis 2022–2026. 2022. Available online: https://www.technavio.com/report/mead-beverages-market-industry-analysis (accessed on 8 July 2023).
- European Commission. Honey Market Presentation Expert Group for Agricultural Markets; European Commission: Brussels, Belgium; Luxembourg, 2023. [Google Scholar]
- Socaci, S.A.; Socaciu, C.; Mureşan, C.; Fărcaş, A.; Tofană, M.; Vicaş, S.; Pintea, A. Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content. Phytochem. Anal. 2014, 25, 161–169. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Călugăr, A.; Coldea, T.E.; Pop, C.R.; Pop, T.I.; Babeș, A.C.; Bunea, C.I.; Manolache, M.; Gal, E. Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine. Processes 2020, 8, 1000. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Dias, L.G.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Volatile Composition and Sensory Properties of Mead. Microorganisms 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhong, M.; Mu, S.; Han, Y.; Shi, Y.; Li, X.; Li, D. Assessment of the contributions of Saccharomyces cerevisiae, Hansenula sp. and Pichia kudriavzevii to volatile organic compounds and sensory characteristics of waxy rice wine. Eur. Food Res. Technol. 2023, 249, 685–697. [Google Scholar] [CrossRef]
- Starowicz, M.; Granvogl, M. Effect of Wort Boiling on Volatiles Formation and Sensory Properties of Mead. Molecules 2022, 27, 710. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Yuan, G.; Ren, J.; Wang, L.; Wang, M.; Li, Y.; Zhang, B.; Zhu, B. Aromatic compounds and organoleptic features of fermented wolfberry wine: Effects of maceration time. Int. J. Food Prop. 2017, 20, 2234–2248. [Google Scholar] [CrossRef] [Green Version]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.-B. The EZ: Faast Family of Amino Acid Analysis Kits: Application of the GC-FID Kit for Rapid Determination of Plasma Tryptophan and Other Amino Acids. Methods Mol. Biol. 2019, 2030, 119–130. [Google Scholar] [CrossRef]
- Xu, A.; Xiao, Y.; He, Z.; Liu, J.; Wang, Y.; Gao, B.; Chang, J.; Zhu, D. Use of Non-Saccharomyces Yeast Co-Fermentation with Saccharomyces cerevisiae to Improve the Polyphenol and Volatile Aroma Compound Contents in Nanfeng Tangerine Wines. J. Fungi 2022, 8, 128. [Google Scholar] [CrossRef]
- Minnaar, P.P.; Du Plessis, H.W.; Jolly, N.P.; van der Rijst, M.; Du Toit, M. Non-Saccharomyces yeast and lactic acid bacteria in Co-inoculated fermentations with two Saccharomyces cerevisiae yeast strains: A strategy to improve the phenolic content of Syrah wine. Food Chem. X 2019, 4, 100070. [Google Scholar] [CrossRef]
- Butkevičiūtė, A.; Urbštaitė, R.; Liaudanskas, M.; Obelevičius, K.; Janulis, V. Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L. Antioxidants 2022, 11, 912. [Google Scholar] [CrossRef]
- Rigling, M.; Liu, Z.; Hofele, M.; Prozmann, J.; Zhang, C.; Ni, L.; Fan, R.; Zhang, Y. Aroma and catechin profile and in vitro antioxidant activity of green tea infusion as affected by submerged fermentation with Wolfiporia cocos (Fu Ling). Food Chem. 2021, 361, 130065. [Google Scholar] [CrossRef]
- Tanaka, T.; Miyata, Y.; Tamaya, K.; Kusano, R.; Matsuo, Y.; Tamaru, S.; Tanaka, K.; Matsui, T.; Maeda, M.; Kouno, I. Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves. J. Agric. Food Chem. 2009, 57, 5816–5822. [Google Scholar] [CrossRef]
- Akalın, H.; Bayram, M.; Anlı, R.E. Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J. Inst. Brew. 2017, 123, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anačkov, G.T.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Socha, R.; Pająk, P.; Fortuna, T.; Buksa, K. Phenolic Profile and Antioxidant Activity of Polish Meads. Int. J. Food Prop. 2015, 18, 2713–2725. [Google Scholar] [CrossRef]
- Kahoun, D.; Rezkova, S.; Veskrnova, K.; Kralovsky, J.; Holcapek, M. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection. J. Chromatogr. A 2008, 1202, 19–33. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, X.-Y.; Fu, Y.; Zhang, Q.; Wang, X.-H.; Cui, M.-Y.; Ma, Y.-Y.; Gao, X.-L. Effects of Torulaspora delbrueckii co-fermented with Saccharomyces cerevisiae on physicochemical and aromatic profiles of blueberry-fermented beverage. Food Chem. 2023, 409, 135284. [Google Scholar] [CrossRef]
- Li, R.; Sun, Y. Effects of Honey Variety and Non-Saccharomyces cerevisiae on the Flavor Volatiles of Mead. J. Am. Soc. Brew. Chem. 2019, 77, 40–53. [Google Scholar] [CrossRef]
- Cordente, A.G.; Schmidt, S.; Beltran, G.; Torija, M.J.; Curtin, C.D. Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Appl. Microbiol. Biotechnol. 2019, 103, 4325–4336. [Google Scholar] [CrossRef]
- Stribny, J.; Gamero, A.; Pérez-Torrado, R.; Querol, A. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. Int. J. Food Microbiol. 2015, 205, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Büyüksırıt-Bedir, T.; Kuleaşan, H. Aroma Profile and Phenolic Content of Honey Wine Produced from Wild Rose Fruit. JSIR 2022, 81, 426–433. [Google Scholar] [CrossRef]
- Pereira, A.P.; Dias, T.; Andrade, J.; Ramalhosa, E.; Estevinho, L.M. Mead production: Selection and characterization assays of Saccharomyces cerevisiae strains. Food Chem. Toxicol. 2009, 47, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Sottil, C.; Salor-Torregrosa, J.M.; Moreno-Garcia, J.; Peinado, J.; Mauricio, J.C.; Moreno, J.; Garcia-Martinez, T. Using Torulaspora delbrueckii, Saccharomyces cerevisiae and Saccharomyces bayanus wine yeasts as starter cultures for fermentation and quality improvement of mead. Eur. Food Res. Technol. 2019, 245, 2705–2714. [Google Scholar] [CrossRef]
- Chen, D.; Liu, S.-Q. Impact of simultaneous and sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on non-volatiles and volatiles of lychee wines. LWT Food Sci. Technol. 2016, 65, 53–61. [Google Scholar] [CrossRef]
- Zeng, F.; Ou, J.; Huang, Y.; Li, Q.; Xu, G.; Liu, Z.; Yang, S. Determination of 21 Free Amino Acids in Fruit Juices by HPLC Using a Modification of the 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate (AQC) Method. Food Anal. Methods 2015, 8, 428–437. [Google Scholar] [CrossRef]
- Yan, X.; Li, S.; Tu, T.; Li, Y.; Niu, M.; Tong, Y.; Yang, Y.; Xu, T.; Zhao, J.; Shen, C.; et al. Free amino acids identification and process optimization in greengage wine fermentation and flavor formation. J. Food Sci. 2023, 88, 988–1003. [Google Scholar] [CrossRef]
- Tian, T.; Sun, J.; Wu, D.; Xiao, J.; Lu, J. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles. Food Chem. 2021, 340, 128179. [Google Scholar] [CrossRef]
- Ni, Z.; Ye, P.; Liu, J.; Huang, J.; Zhou, R. Research on improving the flavor of greengage wine based on co-cultivation of Torulaspora delbrueckii and Saccharomyces cerevisiae. Eur. Food Res. Technol. 2021, 247, 2765–2776. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Falque, E.; Orriols, I.; Miras-Avalos, J.M. Effects of irrigation over three years on the amino acid composition of Treixadura (Vitis vinifera L.) musts and wines, and on the aromatic composition and sensory profiles of its wines. Food Chem. 2018, 240, 707–716. [Google Scholar] [CrossRef]
- Klikarova, J.; Ceslova, L.; Fischer, J. Rapid analysis of phenyl isothiocyanate derivatives of amino acids present in Czech meads. J. Chromatogr. A 2021, 1644, 462134. [Google Scholar] [CrossRef] [PubMed]
- The Council of The European Union. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities 2001, 10, 47–52. [Google Scholar]
- Trinh, T.; Woon, W.Y.; Yu, B.; Curran, P.; Liu, S.-Q. Effect of L-isoleucine and L-phenylalanine Addition on Aroma Compound Formation during Longan Juice Fermentation by a Co-culture of Saccharomyces cerevisiae and Williopsis saturnus. SAJEV 2016, 31, 1408. [Google Scholar] [CrossRef]
- Ardö, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Kelkar, S.; Dolan, K. Modeling the effects of initial nitrogen content and temperature on fermentation kinetics of hard cider. J. Food Eng. 2012, 109, 588–596. [Google Scholar] [CrossRef]
- Ye, M.; Yue, T.; Yuan, Y. Changes in the profile of volatile compounds and amino acids during cider fermentation using dessert variety of apples. Eur. Food Res. Technol. 2014, 239, 67–77. [Google Scholar] [CrossRef]
- Lee, K.-M.; Kim, S.-K.; Lee, Y.-G.; Park, K.-H.; Seo, J.-H. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae. Bioresour. Technol. 2018, 268, 271–277. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Tai, S.L.; Boer, V.M.; de Winde, J.H.; Pronk, J.T.; Daran, J.M. A new physiological role for Pdr12p in Saccharomyces cerevisiae: Export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res. 2006, 6, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.-Q.; Luan, Y.; Duan, C.-Q.; Yan, G.-L. Use of Torulaspora delbrueckii Co-fermentation with Two Saccharomyces cerevisiae Strains with Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile. Front. Microbiol. 2018, 9, 606. [Google Scholar] [CrossRef]
- Belda, I.; Navascues, E.; Marquina, D.; Santos, A.; Calderon, F.; Benito, S. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl. Microbiol. Biotechnol. 2015, 99, 1911–1922. [Google Scholar] [CrossRef]
- Alvarez-Fernandez, M.A.; Fernandez-Cruz, E.; Cantos-Villar, E.; Troncoso, A.M.; Garcia-Parrilla, M.C. Determination of hydroxytyrosol produced by winemaking yeasts during alcoholic fermentation using a validated UHPLC-HRMS method. Food Chem. 2018, 242, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Benito, S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl. Microbiol. Biotechnol. 2018, 102, 3081–3094. [Google Scholar] [CrossRef] [PubMed]
- Czabaj, S.; Kawa-Rygielska, J.; Kucharska, A.Z.; Kliks, J. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity. Molecules 2017, 22, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sroka, P.; Tuszyński, T. Changes in organic acid contents during mead wort fermentation. Food Chem. 2007, 104, 1250–1257. [Google Scholar] [CrossRef]
- Curiel, J.A.; Morales, P.; Gonzalez, R.; Tronchoni, J. Different Non-Saccharomyces Yeast Species Stimulate Nutrient Consumption in S. cerevisiae Mixed Cultures. Front. Microbiol. 2017, 8, 2121. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Liu, S.; Marsol-Vall, A.; Tähti, R.; Laaksonen, O.; Karhu, S.; Yang, B.; Ma, X. Chemical composition, sensory profile and antioxidant capacity of low-alcohol strawberry beverages fermented with Saccharomyces cerevisiae and Torulaspora delbrueckii. LWT Food Sci. Technol. 2021, 149, 111910. [Google Scholar] [CrossRef]
- Starowicz, M.; Granvogl, M. Trends in food science & technology an overview of mead production and the physicochemical, toxicological, and sensory characteristics of mead with a special emphasis on flavor. Trends Food Sci. Technol. 2020, 106, 402–416. [Google Scholar] [CrossRef]
Compunds | Wort | V1 | V2 | V3 | V4 | Sig |
---|---|---|---|---|---|---|
p-Anisaldehyde | 9.36 ± 2.07 ab | 12.21 ± 1.52 a | 8.81± 1.91 ab | 5.74 ± 0.73 ab | 8.38 ± 1.47 ab | * |
Gallic acid-glucoside | 15.08 ± 1.03 d | 41.47 ± 4.72 a | 35.79 ± 2.19 ab | 22.83 ± 1.01 c | 31.89 ± 2.02 b | *** |
2,3-Dihydroxybenzoic acid | 13.65 ± 2.07 c | 25.76 ± 0.90 a | 23.67 ± 1.04 a | 18.84 ± 0.96 b | 23.69 ± 1.04 a | ** |
Gallic acid | 13.95 ± 1.24 c | 22.66 ± 1.56 a | 21.24 ± 1.94 a | 16.57 ± 0.96 bc | 19.90 ± 0.86 ab | ** |
Ethyl gallate | 15.63 ± 0.99 b | 33.43 ± 1.04 a | 38.22 ± 3.00 a | 34.44 ± 1.24 a | 33.65 ± 2.03 a | * |
Gentisic acid | 4.52 ± 0.30 d | 35.55±2.33 a | 30.70 ± 2.94 ab | 22.73 ± 1.05 c | 28.05 ± 1.76 b | *** |
Protocatechuic aldehyde | 8.64 ± 1.25 d | 82.81 ± 3.02 a | 81.81 ± 2.15 a | 53.71 ± 1.92 c | 66.44 ± 2.36 b | *** |
Protocatechuic acid | 25.74 ± 1.43 a | 16.96 ± 0.26 b | 17.80 ± 1.45 b | 9.07 ± 0.84 c | 10.12 ± 0.92 c | *** |
3-Caffeoyquinic acid | 3.71 ± 0.61 d | 10.59 ± 0.75 bc | 9.78 ± 0.70 c | 12.80 ± 1.02 b | 15.69 ± 1.11 a | *** |
Catechin | 80.18 ± 0.46 a | 84.22 ± 0.81 a | 60.72 ± 5.84 b | 39.62 ± 0.37 d | 48.87 ± 0.28 c | *** |
5-Caffeoyquinic acid | 3.35 ± 0.24 d | 19.64 ± 1.14 a | 16.96 ± 1.32 b | 13.38 ± 0.32 c | 16.22 ± 1.12 b | *** |
Vanilic acid | 0.46 ± 0.06 d | 5.84 ± 1.06 a | 4.86 ± 1.35 a | 2.47 ± 0.24 bc | 4.32 ± 0.60 ab | *** |
p-Coumaric acid | 3.49 ± 0.34 d | 10.18 ± 2.30 a | 8.33 ± 0.76 ab | 5.51 ± 1.65 bc | 8.18 ± 0.47 ab | *** |
Total Phenolics | 197.77 ± 11.72 d | 401.34 ± 19.35 a | 358.70 ± 21.94 b | 255.89 ± 12.00 c | 315.40 ± 15.28 b | *** |
Compounds | V1 | V2 | V3 | V4 | Sig |
---|---|---|---|---|---|
Cyclopropane. 1.2-dimethyl-. cis- | 23.47 ± 0.26 c | 114.63 ± 1.06 a | 90.87 ± 0.85 b | 11.16 ± 0.10 d | *** |
1-Propanol. 2-methyl- | 21.72 ± 0.19 a | nd | 15.97 ± 0.15 b | 22.55 ± 0.21 a | ** |
1-Butanol. 3-methyl- | 1346.98 ± 13.48 a | 174.23 ± 1.65 d | 879.18 ± 9.33 c | 1156.36 ± 10.42 b | *** |
Hexanoic acid. ethyl ester | 3.19 ± 0.03 | nd | nd | nd | |
Propanoic acid. 2-hydroxy-. ethyl ester | 6.83 ± 0.06 a | nd | 3.11 ± 0.02 b | 3.99 ± 0.04 b | ** |
1-Propanol. 3-ethoxy- | 12.14 ± 0.13 b | 3.02 ± 0.03 c | 11.96 ± 0.11 b | 13.36 ± 0.46 a | *** |
Acetic acid | 4.87 ± 0.04 a | nd | nd | 4.38 ± 0.04 a | ns |
2.3-Butanediol. [R-([email protected]@)]- | 3.79 ± 0.03 | nd | nd | nd | |
Propanoic acid. 2-methyl- | 5.44 ± 0.05 c | 6.64 ± 0.06 b | nd | 12.92 ± 0.11 a | *** |
Butanoic acid | 3.11 ± 0.04 | nd | nd | nd | |
Butanedioic acid. diethyl ester | 3.33 ± 0.03 | nd | nd | nd | |
Butanoic acid. 2-methyl- | 9.52 ± 0.09 a | nd | 3.22 ± 0.03 c | 5.24 ± 0.05 b | *** |
1.3-Propanediol. diacetate | 15.04 ± 0.17 | nd | nd | nd | |
Methyl 4-O-methyl-d-arabinopyranoside | 32.54 ± 0.29 a | nd | 11.45 ± 0.11 b | 10.10 ± 0.09 c | *** |
Hexanoic acid | 32.96 ± 0.30 a | nd | 6.53 ± 0.07 b | 4.82 ± 0.05 c | *** |
Phenylethyl Alcohol | 1075.74 ± 9.56 a | 221.71 ± 2.04 d | 823.49 ± 8.91 c | 983.33 ± 8.72 b | *** |
Octanoic Acid | 27.58 ± 0.25 a | 4.22 ± 0.05 d | 9.92 ± 0.09 b | 8.70 ± 0.08 c | *** |
1,2-Cyclohexanediol, 1-methyl-4-(1-methylethenyl)- | 6.69 ± 0.07 a | 1.33 ± 0.02 c | 3.05 ± 0.04 b | 3.16 ± 0.03 b | *** |
Ethyl hydrogen succinate | 25.78 ± 0.23 | nd | nd | nd | |
4-Oxo-.beta.-isodamascol | 81.48 ± 0.82 a | 16.74 ± 0.16 c | 23.24 ± 0.24 b | 27.03 ± 0.27 b | *** |
Ethyl Acetate | nd | 3.12 ± 0.02 c | 4.42 ± 0.05 b | 5.42 ± 0.05 a | *** |
Butanoic acid, 3-methyl-, ethyl ester | nd | 5.42 ± 0.05 | nd | nd | |
1-Propanol, 3-(methylthio)- | nd | nd | 4.77 ± 0.07 | nd | |
2H-Pyran-2,6(3H)-dione | nd | nd | 1.21 ± 0.02 b | 2.57 ± 0.03 a | *** |
1-{2-[3-(2-Acetyloxiran-2-yl)-1, 1-dimethylpropyl]cycloprop-2-enyl}ethanone | nd | nd | 3.54 ± 0.03 | nd | |
Benzenemethanol, 3,4-dimethoxy- | nd | nd | 4.60 ± 0.04 | nd | |
2-Butanone, 3-hydroxy- | nd | nd | nd | 1.53 ± 0.01 | |
1-Hexanol, 2-ethyl- | nd | nd | nd | 1.07 ± 0.01 | |
1-Propanol, 3-(methylthio)- | nd | nd | nd | 4.70 ± 0.04 | |
Methyl 4-O-methyl-d-arabinopyranoside | nd | nd | nd | 10.10 ± 0.09 |
Compounds | Odor Descriptors a | Odor Threshold (µg/L) | V1 | V2 | V3 | V4 | References |
---|---|---|---|---|---|---|---|
1-Propanol. 2-methyl- | Whiskey; malty | 5 | 4.3 | nd | 3.2 | 4.5 | [33,34] |
1-Butanol. 3-methyl- | cheese; nail polish; malty | 30,000 | 44.9 | 5.8 | 29.3 | 38.5 | [32,33] |
Hexanoic acid. ethyl ester | fruity; aniseed; green apple | 14 | 227.8 | nd | nd | nd | [12,32] |
1-Propanol. 3-ethoxy- | Fruity | 100 | 121.4 | 30.2 | 119.6 | 133.6 | [15] |
2,3-Butanediol | Fruity, sweet, butter | 150,000 | <0.2 | nd | nd | nd | [33,35] |
Hexanoic acid | cheese; sweaty | 420 | 78.5 | nd | 15.5 | 11.5 | [32] |
Phenylethyl Alcohol | roses; flowery; lilac | 14,000 | 76.8 | 15.8 | 58.8 | 70.2 | [12,32] |
Octanoic Acid | fatty; rancid; butter; cheese | 500 | 55.2 | 8.4 | 19.8 | 17.4 | [12,32] |
Ethyl Acetate | solvent; nail polish | 12 | nd | 260 | 368 | 452 | [12,32] |
Compounds | Wort | V1 | V2 | V3 | V4 | Sig |
---|---|---|---|---|---|---|
alanine (Ala) | 0.14 ± 0.02 a | nd | nd | 0.15 ± 0.04 a | 0.14 ± 0.02 a | ns |
valine (Val) | 0.01 ± 0.00 b | nd | 0.12 ± 0.03 a | nd | 0.01 ± 0.00 b | ** |
b-aminoisobutyric acid (βAIB) | 0.19 ± 0.01 a | nd | nd | nd | 0.20 ± 0.01 a | ns |
proline (Pro) | 5.78 ± 0.95 a | 2.23 ± 0.09 b | 0.44 ± 0.03 c | 0.72 ± 0.03 c | 5.78 ± 0.95 a | ** |
asparagine (Asn) | nd | 1.08 ± 0.05 a | 1.13 ± 0.03 a | 0.59 ± 0.28 b | nd | * |
aspartic acid (Asp) | 0.31 ± 0.02 ab | nd | nd | 0.59 ± 0.33 a | 0.31 ± 0.01 ab | ns |
glutamic acid(Glu) | nd | nd | 0.26 ± 0.02 | nd | nd | |
phenylalanine (Phe) | 0.75 ± 0.03 a | nd | nd | nd | 0.76 ± 0.03 a | ns |
lysine (Lys) | 0.33 ± 0.02 a | nd | nd | nd | 0.33 ± 0.02 a | ns |
histidine (His) | 0.46 ± 0.05 a | nd | nd | nd | 0.46 ± 0.05 a | ns |
tyrosine (Tyr) | 0.33 ± 0.04 a | nd | nd | nd | 0.33 ± 0.04 a | ns |
Total | 12.45 ± 1.13 a | 3.31 ± 0.14 c | 1.95 ± 0.06 d | 2.05 ± 0.61 d | 8.33 ± 1.13 b | *** |
Compound | Wort | V1 | V2 | V3 | V4 | Sig |
---|---|---|---|---|---|---|
Oxalic acid | 0.29 ± 0.01 d | 0.81 ± 0.04 a | 0.71 ± 0.07 ab | 0.45 ± 0.07 c | 0.64 ± 0.03 b | *** |
Citric acid | 0.25 ± 0.03 c | 2.20 ± 0.15 a | 1.91 ± 0.07 a | 1.01 ± 0.07 b | 1.72 ± 0.37 a | ** |
Glucose | 52.19 ± 2.08 a | 1.68 ± 0.09 b | 1.25 ± 0.05 b | 0.71 ± 0.03 b | 1.22 ± 0.13 b | * |
Fructose | 58.19 ± 2.26 a | 0.94 ± 0.02 b | 0.73 ± 0.01 b | 0.47 ± 0.02 b | 0.81 ± 0.02 b | * |
Sorbitol | nd | 0.24 ± 0.03 a | 0.20 ± 0.04 ab | 0.17 ± 0.01 b | 0.18 ± 0.01 ab | * |
Succinic acid | nd | 0.85 ± 0.05 a | 0.69 ± 0.02 b | 0.58 ± 0.05 c | 0.78 ± 0.03 ab | ** |
Lactic acid | 0.67 ± 0.02 c | 3.17 ± 0.27 a | 2.31 ± 0.02 b | 2.05 ± 0.64 b | 2.74 ± 0.10 ab | ** |
Acetic acid | nd | nd | nd | 0.35 ± 0.47 a | 0.16 ± 0.02 a | ns |
Ethanol | 4.41 ± 0.08 d | 45.64 ± 1.50 a | 35.01 ± 0.49 b | 20.58 ± 0.10 c | 32.77 ± 1.25 b | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avîrvarei, A.-C.; Pop, C.R.; Mudura, E.; Ranga, F.; Hegheș, S.-C.; Gal, E.; Zhao, H.; Fărcaș, A.C.; Chiș, M.S.; Coldea, T.E. Contribution of Saccharomyces and Non-Saccharomyces Yeasts on the Volatile and Phenolic Profiles of Rosehip Mead. Antioxidants 2023, 12, 1457. https://doi.org/10.3390/antiox12071457
Avîrvarei A-C, Pop CR, Mudura E, Ranga F, Hegheș S-C, Gal E, Zhao H, Fărcaș AC, Chiș MS, Coldea TE. Contribution of Saccharomyces and Non-Saccharomyces Yeasts on the Volatile and Phenolic Profiles of Rosehip Mead. Antioxidants. 2023; 12(7):1457. https://doi.org/10.3390/antiox12071457
Chicago/Turabian StyleAvîrvarei, Alexandra-Costina, Carmen Rodica Pop, Elena Mudura, Floricuța Ranga, Simona-Codruța Hegheș, Emese Gal, Haifeng Zhao, Anca Corina Fărcaș, Maria Simona Chiș, and Teodora Emilia Coldea. 2023. "Contribution of Saccharomyces and Non-Saccharomyces Yeasts on the Volatile and Phenolic Profiles of Rosehip Mead" Antioxidants 12, no. 7: 1457. https://doi.org/10.3390/antiox12071457
APA StyleAvîrvarei, A. -C., Pop, C. R., Mudura, E., Ranga, F., Hegheș, S. -C., Gal, E., Zhao, H., Fărcaș, A. C., Chiș, M. S., & Coldea, T. E. (2023). Contribution of Saccharomyces and Non-Saccharomyces Yeasts on the Volatile and Phenolic Profiles of Rosehip Mead. Antioxidants, 12(7), 1457. https://doi.org/10.3390/antiox12071457