COVID-19 and Male Infertility: Is There a Role for Antioxidants?
Abstract
:1. Introduction
2. Search Strategy
3. The Impact of COVID-19 on Male Fertility Explained: Facts, Evidence, and Proof
3.1. The Role of ACE-2, TMPRSS-2, and Androgen Receptor
3.2. SARS-CoV-2 in Human Sperm Samples
3.3. Implications on the Cellular Level
3.4. Hormonal Imbalance
3.5. COVID-19 Vaccination and Male Reproductive Potential
3.6. Oxidative Stress and Sperm DNA Fragmentation
4. Antioxidants and Male Infertility—What Is Currently Known?
5. Could Antioxidants Play a Role in Counteracting COVID-19 OS-Induced Damage in Male Reproduction?
6. Conclusions, Challenges, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
8-OHdG | 8-Hydroxyguanosine |
ACE-2 | Angiotensin-converting enzyme-2 |
ALT | Alanine transaminase |
AOA | Antioxidant activity |
AR | Androgen receptor |
ART | Assisted reproductive technology |
BAX | Bcl-2-associated X protein |
BCL-2 | B-cell lymphoma 2 |
BTB | Blood–testis barrier |
CAT | Catalase |
cFT | Calculated free testosterone |
CoQ10 | Coenzyme Q10 |
COVID-19 | Coronavirus disease 2019 |
COX | Cyclooxygenase |
CRP | C-reactive protein |
DFI | DNA fragmentation index |
E2 | Estradiol |
EPS | Expressed prostatic secretion |
FSH | Follicular stimulating hormone |
GPx | Glutathione peroxidase |
GSH | Glutathione |
HPT | Hypothalamus–pituitary–testis |
ICSI | Intracytoplasmic sperm injection |
ICU | Intensive care unit |
IFN | Interferon |
IHC | Immunohistochemistry |
IL | Interleukin |
IVF | In vitro fertilization |
LAC | L-Acetyl-carnitine |
LC | L-Carnitine |
LDH | Lactate dehydrogenase |
LH | Luteinizing hormone |
MCP-1 | Monocyte chemoattractant protein-1 |
MDA | Malondialdehyde |
NAC | Ν-Acetylcysteine |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NF-Kb | Nuclear factor kappa light chain enhancer of activated B cells |
NO | Nitric oxide |
Nrf-2 | Nuclear-factor-erythroid-2-related factor 2 |
NT | Nitrotyrosine |
ORP | Oxidation-reduction potential |
OS | Oxidative stress |
PCT | Procalcitonin |
PGE-2 | Prostaglandin E2 |
RCT | Randomized control trial |
ROS | Reactive oxygen species |
RT-PCR | Reverse transcription polymerase chain reaction |
S protein | Spike protein |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus-2 |
Se | Selenium |
SOD | Superoxide dismutase |
sORP | Static oxidation reduction potential |
STAT1 | Signal transducer and activator transcription 1 |
T | Testosterone |
TAC | Total antioxidant capacity |
TBARs | Thiobarbituric acid reactive substances |
TEM | Transmission electron microscopy |
TGF-β | Transforming growth factor-beta |
TLR-4 | Toll like receptor-4 |
TMPRSS-2 | Transmembrane serine protease 2 |
TMC | Total motile count |
TMSC | Total motile sperm count |
TNF-α | Tumor necrosis factor-alpha |
TOSC | Total oxyradical scavenging capacity |
TPMC | Total progressive motile sperm count |
TSC | Total sperm count |
TSM | Total sperm motility |
TT | Total testosterone |
WBC | White blood cells |
WHO | World health organisation |
Zn | Zinc |
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It. 2022. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(COVID-2019)-and-the-virus-that-causes-it (accessed on 17 February 2022).
- Tossetta, G.; Fantone, S.; Delli Muti, N.; Balercia, G.; Ciavattini, A.; Giannubilo, S.R.; Marzioni, D. Preeclampsia and severe acute respiratory syndrome coronavirus 2 infection: A systematic review. J. Hypertens. 2022, 40, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M. How COVID-19 can damage the brain. Nature 2020, 585, 342–343. [Google Scholar] [CrossRef] [PubMed]
- Bitar, R.; Elghoudi, A.A.; Rawat, D.; Azaz, A.; Miqdady, M.; Narchi, H. COVID-19-induced liver injury in infants, children, and adolescents. World J. Clin. Pediatr. 2023, 12, 57–67. [Google Scholar] [CrossRef]
- Jordan, R.E.; Adab, P.; Cheng, K.K. COVID-19: Risk factors for severe disease and death. BMJ 2020, 368, m1198. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Guo, Z.; He, J.; Leng, T.; Wei, Z.; Wang, C.; Chen, F. Semen parameters and sex hormones as affected by SARS-CoV-2 infection: A systematic review. Prog. Urol. 2022, 32, 1431–1439. [Google Scholar] [CrossRef]
- Mintziori, G.; Duntas, L.H.; Veneti, S.; Goulis, D.G. Metabolic, Oxidative and Psychological Stress as Mediators of the Effect of COVID-19 on Male Infertility: A Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 5277. [Google Scholar] [CrossRef]
- Poma, A.M.; Bonuccelli, D.; Giannini, R.; Macerola, E.; Vignali, P.; Ugolini, C.; Torregrossa, L.; Proietti, A.; Pistello, M.; Basolo, A.; et al. COVID-19 autopsy cases: Detection of virus in endocrine tissues. J. Endocrinol. Investig. 2022, 45, 209–214. [Google Scholar] [CrossRef]
- Li, D.; Jin, M.; Bao, P.; Zhao, W.; Zhang, S. Clinical Characteristics and Results of Semen Tests among Men with Coronavirus Disease 2019. JAMA Netw. Open 2020, 3, e208292. [Google Scholar] [CrossRef]
- Song, C.; Wang, Y.; Li, W.; Hu, B.; Chen, G.; Xia, P.; Wang, W.; Li, C.; Diao, F.; Hu, Z.; et al. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patientsdagger. Biol. Reprod. 2020, 103, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Zeng, Q.; Yu, D.; Duan, Y.G. T Lymphocytes and Testicular Immunity: A New Insight into Immune Regulation in Testes. Int. J. Mol. Sci. 2020, 22, 57. [Google Scholar] [CrossRef]
- Li, H.; Xiao, X.; Zhang, J.; Zafar, M.I.; Wu, C.; Long, Y.; Lu, W.; Pan, F.; Meng, T.; Zhao, K.; et al. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine 2020, 28, 100604. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Xie, W.; Li, D.; Shi, L.; Ye, G.; Mao, Y.; Xiong, Y.; Sun, H.; Zheng, F.; Chen, Z.; et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J. Med. Virol. 2021, 93, 456–462. [Google Scholar] [CrossRef]
- Koc, E.; Keseroglu, B.B. Does COVID-19 Worsen the Semen Parameters? Early Results of a Tertiary Healthcare Center. Urol. Int. 2021, 105, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Cinislioglu, A.E.; Cinislioglu, N.; Demirdogen, S.O.; Sam, E.; Akkas, F.; Altay, M.S.; Utlu, M.; Sen, I.A.; Yildirim, F.; Kartal, S.; et al. The relationship of serum testosterone levels with the clinical course and prognosis of COVID-19 disease in male patients: A prospective study. Andrology 2022, 10, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Temiz, M.Z.; Dincer, M.M.; Hacibey, I.; Yazar, R.O.; Celik, C.; Kucuk, S.H.; Alkurt, G.; Doganay, L.; Yuruk, E.; Muslumanoglu, A.Y. Investigation of SARS-CoV-2 in semen samples and the effects of COVID-19 on male sexual health by using semen analysis and serum male hormone profile: A cross-sectional, pilot study. Andrologia 2021, 53, e13912. [Google Scholar] [CrossRef]
- Gacci, M.; Coppi, M.; Baldi, E.; Sebastianelli, A.; Zaccaro, C.; Morselli, S.; Pecoraro, A.; Manera, A.; Nicoletti, R.; Liaci, A.; et al. Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19. Hum. Reprod. 2021, 36, 1520–1529. [Google Scholar] [CrossRef]
- Delgado-Roche, L.; Mesta, F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch. Med. Res. 2020, 51, 384–387. [Google Scholar] [CrossRef]
- Collins, A.B.; Zhao, L.; Zhu, Z.; Givens, N.T.; Bai, Q.; Wakefield, M.R.; Fang, Y. Impact of COVID-19 on Male Fertility. Urology 2022, 164, 33–39. [Google Scholar] [CrossRef]
- Sansone, A.; Mollaioli, D.; Ciocca, G.; Limoncin, E.; Colonnello, E.; Vena, W.; Jannini, E.A. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. J. Endocrinol. Investig. 2021, 44, 223–231. [Google Scholar] [CrossRef]
- Drobnis, E.Z.; Nangia, A.K. Antivirals and Male Reproduction. Adv. Exp. Med. Biol. 2017, 1034, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Pallotti, F.; Esteves, S.C.; Faja, F.; Buonacquisto, A.; Conflitti, A.C.; Hirsch, M.N.; Lenzi, A.; Paoli, D.; Lombardo, F. COVID-19 and its treatments: Lights and shadows on testicular function. Endocrine 2023, 79, 243–251. [Google Scholar] [CrossRef]
- Mohamad, N.V.; Wong, S.K.; Wan Hasan, W.N.; Jolly, J.J.; Nur-Farhana, M.F.; Ima-Nirwana, S.; Chin, K.Y. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019, 22, 129–140. [Google Scholar] [CrossRef]
- Selvaraj, K.; Ravichandran, S.; Krishnan, S.; Radhakrishnan, R.K.; Manickam, N.; Kandasamy, M. Testicular Atrophy and Hypothalamic Pathology in COVID-19: Possibility of the Incidence of Male Infertility and HPG Axis Abnormalities. Reprod. Sci. 2021, 28, 2735–2742. [Google Scholar] [CrossRef]
- Kaur, R.J.; Dutta, S.; Bhardwaj, P.; Charan, J.; Dhingra, S.; Mitra, P.; Singh, K.; Yadav, D.; Sharma, P.; Misra, S. Adverse Events Reported from COVID-19 Vaccine Trials: A Systematic Review. Indian. J. Clin. Biochem. 2021, 36, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Delli Muti, N.; Finocchi, F.; Tossetta, G.; Salvio, G.; Cutini, M.; Marzioni, D.; Balercia, G. Could SARS-CoV-2 infection affect male fertility and sexuality? APMIS 2022, 130, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Navarra, A.; Albani, E.; Castellano, S.; Arruzzolo, L.; Levi-Setti, P.E. Coronavirus Disease-19 Infection: Implications on Male Fertility and Reproduction. Front. Physiol. 2020, 11, 574761. [Google Scholar] [CrossRef]
- Akhigbe, R.E.; Dutta, S.; Hamed, M.A.; Ajayi, A.F.; Sengupta, P.; Ahmad, G. Viral Infections and Male Infertility: A Comprehensive Review of the Role of Oxidative Stress. Front. Reprod. Health 2022, 4, 782915. [Google Scholar] [CrossRef]
- Kopa, Z.; Keszthelyi, M.; Sofikitis, N. Administration of Antioxidants in the Infertile Male: When it may have a Beneficial Effect? Curr. Pharm. Des. 2021, 27, 2665–2668. [Google Scholar] [CrossRef]
- Symeonidis, E.N.; Evgeni, E.; Palapelas, V.; Koumasi, D.; Pyrgidis, N.; Sokolakis, I.; Hatzichristodoulou, G.; Tsiampali, C.; Mykoniatis, I.; Zachariou, A.; et al. Redox Balance in Male Infertility: Excellence through Moderation—“Μέτρον ἄριστον”. Antioxidants 2021, 10, 1534. [Google Scholar] [CrossRef]
- Dimitriadis, F.; Symeonidis, E.N.; Tsounapi, P.; Kaltsas, A.; Hatzichristodoulou, G.; Sokolakis, I.; Zachariou, A.; Takenaka, A.; Sofikitis, N. Administration of Antioxidants in Infertile Male: When it may have a Detrimental Effect? Curr. Pharm. Des. 2021, 27, 2796–2801. [Google Scholar] [CrossRef]
- Henkel, R.; Sandhu, I.S.; Agarwal, A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia 2019, 51, e13162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitriadis, F.; Tsounapi, P.; Zachariou, A.; Kaltsas, A.; Sokolakis, I.; Hatzichristodoulou, G.; Symeonidis, E.N.; Kotsiris, D.; Gabales, M.R.; Vlachopoulou, E.; et al. Therapeutic Effects of Micronutrient Supplements on Sperm Parameters: Fact or Fiction? Curr. Pharm. Des. 2021, 27, 2757–2769. [Google Scholar] [CrossRef]
- Avila, C.; Vinay, J.I.; Arese, M.; Saso, L.; Rodrigo, R. Antioxidant Intervention against Male Infertility: Time to Design Novel Strategies. Biomedicines 2022, 10, 3058. [Google Scholar] [CrossRef] [PubMed]
- Minhas, S.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gul, M.; et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur Urol 2021, 80, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Dutta, S.; Roychoudhury, S.; D’Souza, U.J.A.; Govindasamy, K.; Kolesarova, A. COVID-19, Oxidative Stress and Male Reproduction: Possible Role of Antioxidants. Antioxidants 2022, 11, 548. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Dutta, S.; Slama, P.; Roychoudhury, S. COVID-19, oxidative stress, and male reproductive dysfunctions: Is vitamin C a potential remedy? Physiol. Res. 2022, 71, 47–54. [Google Scholar] [CrossRef]
- Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance against Progressive COVID-19. Nutrients 2020, 12, 2358. [Google Scholar] [CrossRef]
- Sethuram, R.; Bai, D.; Abu-Soud, H.M. Potential Role of Zinc in the COVID-19 Disease Process and its Probable Impact on Reproduction. Reprod. Sci. 2022, 29, 1–6. [Google Scholar] [CrossRef]
- Sengupta, P.; Dutta, S. N-acetyl cysteine as a potential regulator of SARS-CoV-2-induced male reproductive disruptions. Middle East. Fertil. Soc. J. 2022, 27, 14. [Google Scholar] [CrossRef]
- Ahmadi, A.R.; Ayazi-Nasrabadi, R. Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19. Iran. J. Microbiol. 2021, 13, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Zeginiadou, T.; Symeonidis, E.N.; Symeonidis, A.; Vakalopoulos, I. SARS-CoV-2 infection (COVID-19) and male fertility: Something we should be worried about? Urologia 2023, 3915603231175941. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020, 9, 920. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Lin, B.; Ferguson, C.; White, J.T.; Wang, S.; Vessella, R.; True, L.D.; Hood, L.; Nelson, P.S. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999, 59, 4180–4184. [Google Scholar]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Qi, L.; Chi, X.; Yang, J.; Wei, X.; Gong, E.; Peh, S.; Gu, J. Orchitis: A complication of severe acute respiratory syndrome (SARS). Biol. Reprod. 2006, 74, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Chen, S.; Huang, B.; Zhong, J.M.; Su, H.; Chen, Y.J.; Cao, Q.; Ma, L.; He, J.; Li, X.F.; et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. Eur. Urol. Focus. 2020, 6, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender Differences in Patients with COVID-19: Focus on Severity and Mortality. Front. Public. Health 2020, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Rastrelli, G.; Di Stasi, V.; Inglese, F.; Beccaria, M.; Garuti, M.; Di Costanzo, D.; Spreafico, F.; Greco, G.F.; Cervi, G.; Pecoriello, A.; et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021, 9, 88–98. [Google Scholar] [CrossRef]
- Machado, B.; Barcelos Barra, G.; Scherzer, N.; Massey, J.; Dos Santos Luz, H.; Henrique Jacomo, R.; Herinques Santa Rita, T.; Davis, R. Presence of SARS-CoV-2 RNA in Semen-Cohort Study in the United States COVID-19 Positive Patients. Infect. Dis. Rep. 2021, 13, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Delaroche, L.; Bertine, M.; Oger, P.; Descamps, D.; Damond, F.; Genauzeau, E.; Meicler, P.; Le Hingrat, Q.; Lamazou, F.; Gschwind, R.; et al. Evaluation of SARS-CoV-2 in semen, seminal plasma, and spermatozoa pellet of COVID-19 patients in the acute stage of infection. PLoS ONE 2021, 16, e0260187. [Google Scholar] [CrossRef] [PubMed]
- Saylam, B.; Uguz, M.; Yarpuzlu, M.; Efesoy, O.; Akbay, E.; Cayan, S. The presence of SARS-CoV-2 virus in semen samples of patients with COVID-19 pneumonia. Andrologia 2021, 53, e14145. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Korukluoglu, G.; Hasanoglu, I.; Kalem, A.K.; Eser, F.; Akinci, E.; Guner, R. Investigation of SARS-CoV-2 in Semen of Patients in the Acute Stage of COVID-19 Infection. Urol. Int. 2020, 104, 678–683. [Google Scholar] [CrossRef]
- Rawlings, S.A.; Ignacio, C.; Porrachia, M.; Du, P.; Smith, D.M.; Chaillon, A. No Evidence of SARS-CoV-2 Seminal Shedding Despite SARS-CoV-2 Persistence in the Upper Respiratory Tract. Open Forum Infect. Dis. 2020, 7, ofaa325. [Google Scholar] [CrossRef]
- Burke, C.A.; Skytte, A.B.; Kasiri, S.; Howell, D.; Patel, Z.P.; Trolice, M.P.; Parekattil, S.J.; Michael, S.F.; Paul, L.M. A cohort study of men infected with COVID-19 for presence of SARS-CoV-2 virus in their semen. J. Assist. Reprod. Genet. 2021, 38, 785–789. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, S.; Li, W.; Wang, Y.; Li, L.; Jiang, S.; Ren, W.; Yuan, Q.; Zhang, F.; Kong, F.; et al. Absence of SARS-CoV-2 in semen of a COVID-19 patient cohort. Andrology 2021, 9, 42–47. [Google Scholar] [CrossRef]
- Holtmann, N.; Edimiris, P.; Andree, M.; Doehmen, C.; Baston-Buest, D.; Adams, O.; Kruessel, J.S.; Bielfeld, A.P. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil. Steril. 2020, 114, 233–238. [Google Scholar] [CrossRef]
- Ruan, Y.; Hu, B.; Liu, Z.; Liu, K.; Jiang, H.; Li, H.; Li, R.; Luan, Y.; Liu, X.; Yu, G.; et al. No detection of SARS-CoV-2 from urine, expressed prostatic secretions, and semen in 74 recovered COVID-19 male patients: A perspective and urogenital evaluation. Andrology 2021, 9, 99–106. [Google Scholar] [CrossRef]
- Pan, F.; Xiao, X.; Guo, J.; Song, Y.; Li, H.; Patel, D.P.; Spivak, A.M.; Alukal, J.P.; Zhang, X.; Xiong, C.; et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil. Steril. 2020, 113, 1135–1139. [Google Scholar] [CrossRef]
- Sharma, A.P.; Sahoo, S.; Goyal, K.; Chandna, A.; Kirubanandhan, S.; Sharma, V.; Grover, S.; Singh, M.P.; Bhalla, A.; Singh, S.K. Absence of SARS-CoV-2 infection in the semen of men recovering from COVID-19 infection: An exploratory study and review of literature. Andrologia 2021, 53, e14136. [Google Scholar] [CrossRef] [PubMed]
- Best, J.C.; Kuchakulla, M.; Khodamoradi, K.; Lima, T.F.N.; Frech, F.S.; Achua, J.; Rosete, O.; Mora, B.; Arora, H.; Ibrahim, E.; et al. Evaluation of SARS-CoV-2 in Human Semen and Effect on Total Sperm Number: A Prospective Observational Study. World J. Mens. Health 2021, 39, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Donders, G.G.G.; Bosmans, E.; Reumers, J.; Donders, F.; Jonckheere, J.; Salembier, G.; Stern, N.; Jacquemyn, Y.; Ombelet, W.; Depuydt, C.E. Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: A prospective, observational study and validation of the SpermCOVID test. Fertil. Steril. 2022, 117, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Barton, L.M.; Duval, E.J.; Stroberg, E.; Ghosh, S.; Mukhopadhyay, S. COVID-19 Autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020, 153, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enikeev, D.; Taratkin, M.; Morozov, A.; Petov, V.; Korolev, D.; Shpikina, A.; Spivak, L.; Kharlamova, S.; Shchedrina, I.; Mestnikov, O.; et al. Prospective two-arm study of the testicular function in patients with COVID-19. Andrology 2022, 10, 1047–1056. [Google Scholar] [CrossRef]
- Fan, C.; Lu, W.; Li, K.; Ding, Y.; Wang, J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Infection in COVID-19 Patients. Front. Med. 2020, 7, 563893. [Google Scholar] [CrossRef]
- Erbay, G.; Sanli, A.; Turel, H.; Yavuz, U.; Erdogan, A.; Karabakan, M.; Yaris, M.; Gultekin, M.H. Short-term effects of COVID-19 on semen parameters: A multicenter study of 69 cases. Andrology 2021, 9, 1060–1065. [Google Scholar] [CrossRef]
- Pazir, Y.; Eroglu, T.; Kose, A.; Bulut, T.B.; Genc, C.; Kadihasanoglu, M. Impaired semen parameters in patients with confirmed SARS-CoV-2 infection: A prospective cohort study. Andrologia 2021, 53, e14157. [Google Scholar] [CrossRef] [PubMed]
- Camici, M.; Zuppi, P.; Lorenzini, P.; Scarnecchia, L.; Pinnetti, C.; Cicalini, S.; Nicastri, E.; Petrosillo, N.; Palmieri, F.; D’Offizi, G.; et al. Role of testosterone in SARS-CoV-2 infection: A key pathogenic factor and a biomarker for severe pneumonia. Int. J. Infect. Dis. 2021, 108, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Cayan, S.; Uguz, M.; Saylam, B.; Akbay, E. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: A cohort study. Aging Male 2020, 23, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Kadihasanoglu, M.; Aktas, S.; Yardimci, E.; Aral, H.; Kadioglu, A. SARS-CoV-2 Pneumonia Affects Male Reproductive Hormone Levels: A Prospective, Cohort Study. J. Sex. Med. 2021, 18, 256–264. [Google Scholar] [CrossRef]
- Karkin, K.; Gurlen, G. Does COVID-19 cause testicular damage? A cross-sectional study comparing hormonal parameters. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3745–3750. [Google Scholar] [CrossRef]
- Afshari, P.; Zakerkish, M.; Abedi, P.; Beheshtinasab, M.; Maraghi, E.; Meghdadi, H. Effect of COVID-19 infection on sex hormone levels in hospitalized patients: A prospective longitudinal study in Iran. Health Sci. Rep. 2023, 6, e1011. [Google Scholar] [CrossRef]
- Salonia, A.; Pontillo, M.; Capogrosso, P.; Gregori, S.; Carenzi, C.; Ferrara, A.M.; Rowe, I.; Boeri, L.; Larcher, A.; Ramirez, G.A.; et al. Testosterone in males with COVID-19: A 7-month cohort study. Andrology 2022, 10, 34–41. [Google Scholar] [CrossRef]
- Abd, Z.H.; Muter, S.A.; Saeed, R.A.M.; Ammar, O. Effects of COVID-19 vaccination on different semen parameters. Basic. Clin. Androl. 2022, 32, 13. [Google Scholar] [CrossRef]
- Diaz, P.; Dullea, A.; Patel, M.; Blachman-Braun, R.; Reddy, R.; Khodamoradi, K.; Ibrahim, E.; Bidhan, J.; Ramasamy, R. Long-term evaluation of sperm parameters after coronavirus disease 2019 messenger ribonucleic acid vaccination. F. S. Rep. 2022, 3, 211–213. [Google Scholar] [CrossRef]
- Gonzalez, D.C.; Nassau, D.E.; Khodamoradi, K.; Ibrahim, E.; Blachman-Braun, R.; Ory, J.; Ramasamy, R. Sperm Parameters before and after COVID-19 mRNA Vaccination. JAMA 2021, 326, 273–274. [Google Scholar] [CrossRef]
- Barda, S.; Laskov, I.; Grisaru, D.; Lehavi, O.; Kleiman, S.; Wenkert, A.; Azem, F.; Hauser, R.; Michaan, N. The impact of COVID-19 vaccine on sperm quality. Int. J. Gynaecol. Obstet. 2022, 158, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Gat, I.; Kedem, A.; Dviri, M.; Umanski, A.; Levi, M.; Hourvitz, A.; Baum, M. Covid-19 vaccination BNT162b2 temporarily impairs semen concentration and total motile count among semen donors. Andrology 2022, 10, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Karavani, G.; Chill, H.H.; Meirman, C.; Gutman-Ido, E.; Herzberg, S.; Tzipora, T.; Imbar, T.; Ben-Meir, A. Sperm quality is not affected by the BNT162b2 mRNA SARS-CoV-2 vaccine: Results of a 6-14 months follow-up. J. Assist. Reprod. Genet. 2022, 39, 2249–2254. [Google Scholar] [CrossRef] [PubMed]
- Safrai, M.; Herzberg, S.; Imbar, T.; Reubinoff, B.; Dior, U.; Ben-Meir, A. The BNT162b2 mRNA COVID-19 vaccine does not impair sperm parameters. Reprod. Biomed. Online 2022, 44, 685–688. [Google Scholar] [CrossRef]
- Olana, S.; Mazzilli, R.; Salerno, G.; Zamponi, V.; Tarsitano, M.G.; Simmaco, M.; Paoli, D.; Faggiano, A. 4BNT162b2 mRNA COVID-19 vaccine and semen: What do we know? Andrology 2022, 10, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Elhabak, D.M.; Abdelsamie, R.A.; Shams, G.M. COVID-19 vaccination and male fertility issues: Myth busted. Is taking COVID-19 vaccine the best choice for semen protection and male fertility from risky infection hazards? Andrologia 2022, 54, e14574. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Zhang, F.; Zhu, Y.; Du, M.R.; Tao, Z.W.; Sun, C.; Ma, H.T.; Li, Y.D.; Liang, G.Q.; et al. Evaluation of inactivated COVID-19 vaccine on semen parameters in reproductive-age males: A retrospective cohort study. Asian J. Androl. 2022, 24, 441–444. [Google Scholar] [CrossRef]
- Meitei, H.Y.; Uppangala, S.; Lakshmi, V.; Kalthur, G.; Adiga, S.K. Semen characteristics of individuals before and after CovishieldTM vaccination. Reprod. Fertil. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Orvieto, R.; Noach-Hirsh, M.; Segev-Zahav, A.; Haas, J.; Nahum, R.; Aizer, A. Does mRNA SARS-CoV-2 vaccine influence patients’ performance during IVF-ET cycle? Reprod. Biol. Endocrinol. 2021, 19, 69. [Google Scholar] [CrossRef]
- Reschini, M.; Pagliardini, L.; Boeri, L.; Piazzini, F.; Bandini, V.; Fornelli, G.; Dolci, C.; Cermisoni, G.C.; Vigano, P.; Somigliana, E.; et al. COVID-19 Vaccination Does Not Affect Reproductive Health Parameters in Men. Front. Public. Health 2022, 10, 839967. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, J.; Hu, Y.; Fang, L.; Wu, S. Investigate the effect of COVID-19 inactivated vaccine on sperm parameters and embryo quality in in vitro fertilization. Andrologia 2022, 54, e14483. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, Q.; Zhu, L.; Jin, L. Investigating Impacts of CoronaVac Vaccination in Males on In Vitro Fertilization: A Propensity Score Matched Cohort Study. World J. Mens. Health 2022, 40, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Hajizadeh Maleki, B.; Tartibian, B. COVID-19 and male reproductive function: A prospective, longitudinal cohort study. Reproduction 2021, 161, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Falahieh, F.M.; Zarabadipour, M.; Mirani, M.; Abdiyan, M.; Dinparvar, M.; Alizadeh, H.; Paktinat, S.; Hosseinirad, H. Effects of moderate COVID-19 infection on semen oxidative status and parameters 14 and 120 days after diagnosis. Reprod. Fertil. Dev. 2021, 33, 683–690. [Google Scholar] [CrossRef]
- Shcherbitskaia, A.D.; Komarova, E.M.; Milyutina, Y.P.; Ishchuk, M.A.; Sagurova, Y.M.; Safaryan, G.K.; Lesik, E.A.; Gzgzyan, A.M.; Bespalova, O.N.; Kogan, I.Y. Oxidative Stress Markers and Sperm DNA Fragmentation in Men Recovered from COVID-19. Int. J. Mol. Sci. 2022, 23, 60. [Google Scholar] [CrossRef]
- Moghimi, N.; Eslami Farsani, B.; Ghadipasha, M.; Mahmoudiasl, G.R.; Piryaei, A.; Aliaghaei, A.; Abdi, S.; Abbaszadeh, H.A.; Abdollahifar, M.A.; Forozesh, M. COVID-19 disrupts spermatogenesis through the oxidative stress pathway following induction of apoptosis. Apoptosis 2021, 26, 415–430. [Google Scholar] [CrossRef]
- Majzoub, A.; Arafa, M.; Mahdi, M.; Agarwal, A.; Al Said, S.; Al-Emadi, I.; El Ansari, W.; Alattar, A.; Al Rumaihi, K.; Elbardisi, H. Oxidation-reduction potential and sperm DNA fragmentation, and their associations with sperm morphological anomalies amongst fertile and infertile men. Arab. J. Urol. 2018, 16, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.; Cheng, J.W.; Ko, E.Y. Role of reactive oxygen species in male infertility: An updated review of literature. Arab. J. Urol. 2018, 16, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Kanwar, K.C. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: An in vitro analysis. Andrologia 1998, 30, 325–329. [Google Scholar] [CrossRef]
- Menezo, Y.J.; Hazout, A.; Panteix, G.; Robert, F.; Rollet, J.; Cohen-Bacrie, P.; Chapuis, F.; Clement, P.; Benkhalifa, M. Antioxidants to reduce sperm DNA fragmentation: An unexpected adverse effect. Reprod. Biomed. Online 2007, 14, 418–421. [Google Scholar] [CrossRef]
- Bleau, G.; Lemarbre, J.; Faucher, G.; Roberts, K.D.; Chapdelaine, A. Semen selenium and human fertility. Fertil. Steril. 1984, 42, 890–894. [Google Scholar] [CrossRef]
- Balercia, G.; Buldreghini, E.; Vignini, A.; Tiano, L.; Paggi, F.; Amoroso, S.; Ricciardo-Lamonica, G.; Boscaro, M.; Lenzi, A.; Littarru, G. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: A placebo-controlled, double-blind randomized trial. Fertil. Steril. 2009, 91, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Balercia, G.; Regoli, F.; Armeni, T.; Koverech, A.; Mantero, F.; Boscaro, M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil. Steril. 2005, 84, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Busetto, G.M.; Agarwal, A.; Virmani, A.; Antonini, G.; Ragonesi, G.; Del Giudice, F.; Micic, S.; Gentile, V.; De Berardinis, E. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia 2018, 50, e12927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremellen, K.; Miari, G.; Froiland, D.; Thompson, J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust. N. Z. J. Obstet. Gynaecol. 2007, 47, 216–221. [Google Scholar] [CrossRef]
- Greco, E.; Iacobelli, M.; Rienzi, L.; Ubaldi, F.; Ferrero, S.; Tesarik, J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J. Androl. 2005, 26, 349–353. [Google Scholar] [CrossRef]
- Rolf, C.; Cooper, T.G.; Yeung, C.H.; Nieschlag, E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: A randomized, placebo-controlled, double-blind study. Hum. Reprod. 1999, 14, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Humaidan, P.; Haahr, T.; Povlsen, B.B.; Kofod, L.; Laursen, R.J.; Alsbjerg, B.; Elbaek, H.O.; Esteves, S.C. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: A pilot study. Int. Braz. J. Urol. 2022, 48, 131–156. [Google Scholar] [CrossRef]
- Knudtson, J.F.; Sun, F.; Coward, R.M.; Hansen, K.R.; Barnhart, K.T.; Smith, J.; Legro, R.S.; Diamond, M.P.; Krawetz, S.A.; Zhang, H.; et al. The relationship of plasma antioxidant levels to semen parameters: The Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. J. Assist. Reprod. Genet. 2021, 38, 3005–3013. [Google Scholar] [CrossRef]
- Khaw, S.C.; Wong, Z.Z.; Anderson, R.; Martins da Silva, S. l-carnitine and l-acetylcarnitine supplementation for idiopathic male infertility. Reprod. Fertil. 2020, 1, 67–81. [Google Scholar] [CrossRef]
- Szymanski, M.; Wandtke, T.; Wasilow, K.; Andryszczyk, M.; Janicki, R.; Domaracki, P. Comparison of 3- and 6-Month Outcomes of Combined Oral L-Carnitine Fumarate and Acetyl-L-Carnitine Therapy, Included in an Antioxidant Formulation, in Patients with Idiopathic Infertility. Am. J. Mens. Health 2021, 15, 15579883211036790. [Google Scholar] [CrossRef] [PubMed]
- Nazari, L.; Salehpour, S.; Hosseini, S.; Allameh, F.; Jahanmardi, F.; Azizi, E.; Ghodssi-Ghassemabadi, R.; Hashemi, T. Effect of antioxidant supplementation containing L-carnitine on semen parameters: A prospective interventional study. JBRA Assist. Reprod. 2021, 25, 76–80. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Naemi, R. Predictors of pregnancy and time to pregnancy in infertile men with idiopathic oligoasthenospermia pre- and post-coenzyme Q10 therapy. Andrologia 2022, 54, e14385. [Google Scholar] [CrossRef] [PubMed]
- Alahmar, A.T.; Sengupta, P.; Dutta, S.; Calogero, A.E. Coenzyme Q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia. Clin. Exp. Reprod. Med. 2021, 48, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Maghsoumi-Norouzabad, L.; Zare Javid, A.; Mansoori, A.; Dadfar, M.; Serajian, A. The effects of Vitamin D3 supplementation on Spermatogram and endocrine factors in asthenozoospermia infertile men: A randomized, triple blind, placebo-controlled clinical trial. Reprod. Biol. Endocrinol. 2021, 19, 102. [Google Scholar] [CrossRef]
- Rafiee, B.; Bagher Tabei, S.M. The effect of N-acetyl cysteine consumption on men with abnormal sperm parameters due to positive history of COVID-19 in the last three months. Arch. Ital. Urol. Androl. 2021, 93, 465–467. [Google Scholar] [CrossRef]
- Kurashova, N.A.; Dashiev, B.G.; Kolesnikov, S.I.; Dmitrenok, P.S.; Kozlovskaya, E.P.; Kasyanov, S.P.; Epur, N.V.; Usov, V.G.; Kolesnikova, L.I. Changes in Spermatogenesis, Lipoperoxidation Processes, and Antioxidant Protection in Men with Pathozoospermia after COVID-19. The Effectiveness of Correction with a Promising Antioxidant Complex. Bull. Exp. Biol. Med. 2022, 173, 606–610. [Google Scholar] [CrossRef]
- Aschauer, J.; Sima, M.; Imhof, M. Recovery of sperm quality after COVID-19 disease in male adults under the influence of a micronutrient combination: A prospective study. Arch. Ital. Urol. Androl. 2023, 95, 11157. [Google Scholar] [CrossRef]
- Hunt, C.D.; Johnson, P.E.; Herbel, J.; Mullen, L.K. Effects of dietary zinc depletion on seminal volume and zinc loss, serum testosterone concentrations, and sperm morphology in young men. Am. J. Clin. Nutr. 1992, 56, 148–157. [Google Scholar] [CrossRef]
- Jannatifar, R.; Parivar, K.; Roodbari, N.H.; Nasr-Esfahani, M.H. Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reprod. Biol. Endocrinol. 2019, 17, 24. [Google Scholar] [CrossRef] [Green Version]
- Comhaire, F.H.; Christophe, A.B.; Zalata, A.A.; Dhooge, W.S.; Mahmoud, A.M.; Depuydt, C.E. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot. Essent. Fatty Acids 2000, 63, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Salvio, G.; Cutini, M.; Ciarloni, A.; Giovannini, L.; Perrone, M.; Balercia, G. Coenzyme Q10 and Male Infertility: A Systematic Review. Antioxidants 2021, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Tsampoukas, G.; Gkeka, K.; Dellis, A.; Brown, D.; Katsouri, A.; Alneshawy, A.; Moussa, M.; Papatsoris, A.; Buchholz, N. Vitamins as primary or adjunctive treatment in infertile men with varicocele: A systematic review. Arab. J. Urol. 2021, 19, 264–273. [Google Scholar] [CrossRef]
- Fabiao, J.; Sassi, B.; Pedrollo, E.F.; Gerchman, F.; Kramer, C.K.; Leitao, C.B.; Pinto, L.C. Why do men have worse COVID-19-related outcomes? A systematic review and meta-analysis with sex adjusted for age. Braz. J. Med. Biol. Res. 2022, 55, e11711. [Google Scholar] [CrossRef] [PubMed]
- Pyrgidis, N.; Sokolakis, I.; Palapelas, V.; Tishukov, M.; Mykoniatis, I.; Symeonidis, E.N.; Zachariou, A.; Kaltsas, A.; Sofikitis, N.; Hatzichristodoulou, G.; et al. The Effect of Antioxidant Supplementation on Operated or Non-Operated Varicocele-Associated Infertility: A Systematic Review and Meta-Analysis. Antioxidants 2021, 10, 1067. [Google Scholar] [CrossRef]
- Showell, M.G.; Mackenzie-Proctor, R.; Brown, J.; Yazdani, A.; Stankiewicz, M.T.; Hart, R.J. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2014, 3, CD007411. [Google Scholar] [CrossRef]
- Smits, R.M.; Mackenzie-Proctor, R.; Yazdani, A.; Stankiewicz, M.T.; Jordan, V.; Showell, M.G. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2019, 3, CD007411. [Google Scholar] [CrossRef]
- Zhou, Z.; Cui, Y.; Zhang, X.; Zhang, Y. The role of N-acetyl-cysteine (NAC) orally daily on the sperm parameters and serum hormones in idiopathic infertile men: A systematic review and meta-analysis of randomised controlled trials. Andrologia 2021, 53, e13953. [Google Scholar] [CrossRef]
- Wei, G.; Zhou, Z.; Cui, Y.; Huang, Y.; Wan, Z.; Che, X.; Chai, Y.; Zhang, Y. A Meta-Analysis of the Efficacy of L-Carnitine/L-Acetyl-Carnitine or N-Acetyl-Cysteine in Men with Idiopathic Asthenozoospermia. Am. J. Mens. Health 2021, 15, 15579883211011371. [Google Scholar] [CrossRef]
- Aitken, R.J. COVID-19 and male infertility: An update. Andrology 2022, 10, 8–10. [Google Scholar] [CrossRef]
- Chen, W.; Lan, Y.; Yuan, X.; Deng, X.; Li, Y.; Cai, X.; Li, L.; He, R.; Tan, Y.; Deng, X.; et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg. Microbes Infect. 2020, 9, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaifel, A.; Guzzetta, M.; Occidental, M.; Najari, B.B.; Melamed, J.; Thomas, K.M.; Deng, F.M. Testicular Changes Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Arch. Pathol. Lab. Med. 2021, 145, 8–9. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sengupta, P. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: Can testicular-adrenal crosstalk be ruled-out? J. Basic. Clin. Physiol. Pharmacol. 2020, 31. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Dutta, S. Does SARS-CoV-2 infection cause sperm DNA fragmentation? Possible link with oxidative stress. Eur. J. Contracept. Reprod. Health Care 2020, 25, 405–406. [Google Scholar] [CrossRef]
- Aitken, R.J. Antioxidant trials-the need to test for stress. Hum. Reprod. Open 2021, 2021, hoab007. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef]
- Yao, J.S.; Paguio, J.A.; Dee, E.C.; Tan, H.C.; Moulick, A.; Milazzo, C.; Jurado, J.; Della Penna, N.; Celi, L.A. The Minimal Effect of Zinc on the Survival of Hospitalized Patients With COVID-19: An Observational Study. Chest 2021, 159, 108–111. [Google Scholar] [CrossRef]
- Marin, L.; Ambrosini, G.; Nuzzi, L.; Bordin, L.; Andrisani, A. A suggestion to overcome potential risks for infertility due to COVID-19: A response to Aitken. Andrology 2022, 10, 11–12. [Google Scholar] [CrossRef]
- Pavone, C.; Giammanco, G.M.; Baiamonte, D.; Pinelli, M.; Bonura, C.; Montalbano, M.; Profeta, G.; Curcuru, L.; Bonura, F. Italian males recovering from mild COVID-19 show no evidence of SARS-CoV-2 in semen despite prolonged nasopharyngeal swab positivity. Int. J. Impot. Res. 2020, 32, 560–562. [Google Scholar] [CrossRef]
- Ma, X.; Guan, C.; Chen, R.; Wang, Y.; Feng, S.; Wang, R.; Qu, G.; Zhao, S.; Wang, F.; Wang, X.; et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell Mol. Immunol. 2021, 18, 487–489. [Google Scholar] [CrossRef]
- Wambier, C.G.; Goren, A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J. Am. Acad. Dermatol. 2020, 83, 308–309. [Google Scholar] [CrossRef]
- Barbagallo, F.; Calogero, A.E.; Cannarella, R.; Condorelli, R.A.; Mongioi, L.M.; Aversa, A.; La Vignera, S. The testis in patients with COVID-19: Virus reservoir or immunization resource? Transl. Androl. Urol. 2020, 9, 1897–1900. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Xiao, X.; Aierken, A.; Yue, W.; Wu, X.; Liao, M.; Hua, J. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J. Cell Mol. Med. 2020, 24, 9472–9477. [Google Scholar] [CrossRef] [PubMed]
- Carto, C.; Nackeeran, S.; Ramasamy, R. COVID-19 vaccination is associated with a decreased risk of orchitis and/or epididymitis in men. Andrologia 2022, 54, e14281. [Google Scholar] [CrossRef] [PubMed]
- Wambier, C.G.; Goren, A.; Vano-Galvan, S.; Ramos, P.M.; Ossimetha, A.; Nau, G.; Herrera, S.; McCoy, J. Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev. Res. 2020, 81, 771–776. [Google Scholar] [CrossRef]
- Sengupta, P.; Dutta, S. COVID-19 and hypogonadism: Secondary immune responses rule-over endocrine mechanisms. Hum. Fertil. 2021, 26, 182–185. [Google Scholar] [CrossRef]
- La, J.; Katz, D.J. Linking COVID-19 vaccine and male infertility—Not on fertile ground. BJU Int. 2022, 130 (Suppl. 1), 20–21. [Google Scholar] [CrossRef]
- Auerbach, J.M.; Khera, M. Testosterone’s Role in COVID-19. J. Sex. Med. 2021, 18, 843–848. [Google Scholar] [CrossRef]
- Salonia, A.; Corona, G.; Giwercman, A.; Maggi, M.; Minhas, S.; Nappi, R.E.; Sofikitis, N.; Vignozzi, L. SARS-CoV-2, testosterone and frailty in males (PROTEGGIMI): A multidimensional research project. Andrology 2021, 9, 19–22. [Google Scholar] [CrossRef]
- Bian, X.W.; Team, C.-P. Autopsy of COVID-19 patients in China. Natl. Sci. Rev. 2020, 7, 1414–1418. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. SARS-CoV-2 and Male Infertility: Possible Multifaceted Pathology. Reprod. Sci. 2021, 28, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Masterson, J.M.; Bui, C.; Hasan, W.; Zhang, Y.; Huynh, C.; Jawanda, H.; Luthringer, D.; Tourtellotte, W.; Vail, E.; Garcia, M.M. Case series—COVID-19 is unlikely to affect male fertility: Results of histopathological and reverse transcriptase polymerase chain reaction analysis. Can. Urol. Assoc. J. 2022, 16, E558–E562. [Google Scholar] [CrossRef]
- Gharagozloo, P.; Cartagena, S.; Moazamian, A.; Drevet, J.R.; Somkuti, S.; Aitken, R.J. Rapid impact of COVID-19 infection on semen quality: A case report. Transl. Androl. Urol. 2022, 11, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Mannur, S.; Jabeen, T.; Khader, M.A.; Rao, L.S.S. Post-COVID-19-associated decline in long-term male fertility and embryo quality during assisted reproductive technology. QJM 2021, 114, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. The antioxidant paradox. Lancet 2000, 355, 1179–1180. [Google Scholar] [CrossRef]
- Steiner, A.Z.; Hansen, K.R.; Barnhart, K.T.; Cedars, M.I.; Legro, R.S.; Diamond, M.P.; Krawetz, S.A.; Usadi, R.; Baker, V.L.; Coward, R.M.; et al. The effect of antioxidants on male factor infertility: The Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil. Steril. 2020, 113, 552–560.e3. [Google Scholar] [CrossRef]
- Agarwal, A.; Durairajanayagam, D.; Halabi, J.; Peng, J.; Vazquez-Levin, M. Proteomics, oxidative stress and male infertility. Reprod. Biomed. Online 2014, 29, 32–58. [Google Scholar] [CrossRef] [Green Version]
TYPE | NUMBER | REFERENCES |
---|---|---|
REVIEWS | 30 | [3,4,8,12,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] |
ORIGINAL RESEARCH | 88 | [1,10,13,14,15,16,17,18,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122] |
SYSTEMATIC REVIEW | 3 | [7,123,124] |
SYSTEMATIC REVIEW AND METANALYSIS | 6 | [125,126,127,128,129,130] |
LETTER TO THE EDITOR | 9 | [131,132,133,134,135,136,137,138,139] |
CORRESPONDENCES | 3 | [11,140,141] |
EDITORIAL | 3 | [6,142,143] |
COMMUNICATION | 3 | [9,144,145] |
COMMENTARY | 4 | [5,146,147,148] |
OPINION | 2 | [149,150] |
PERSPECTIVES | 2 | [151,152] |
CASE REPORT | 3 | [153,154,155] |
VIEWPOINT | 1 | [156] |
TOTAL | 157 |
Author | Study Design | Sample Size, Stage | Specimen | Time since Diagnosis (Days) | Clinical Category | Results |
---|---|---|---|---|---|---|
Li et al. [10] | Cohort study | 15 acute stage 23 recovery stage | Semen | 6 to 16 | NP | Positive 4 of 15 and 2 of 23 |
Machado et al. [55] | Cross-sectional study | 15 active phase | Semen | 2 to 8 | 2 asymptomatic, 13 mild symptoms | Positive 1 case |
Delaroche et al. [56] | Prospective observational study | 32 acute stage | Semen | 0 to 1 | NP | Positive 1 case in semen and seminal plasma not spermatozoa pellet |
Saylam et al. [57] | Cross-sectional study | 30 acute stage | Semen, urine | 1 | NP | Positive 4 semen samples, 7 urine samples |
Kayaaslan et al. [58] | Cross-sectional study | 16 acute stage | Semen | 0 to 7 | 11 mild, 5 moderate disease | Negative |
Rawlings et al. [59] | Cross-sectional study | 6 acute or late phase | Semen | 6 to 15 | NP | Negative |
Burke et al. [60] | Cohort study | 18 acute and recovery phase | Semen | 1 to 28 | 1 asymptomatic, 2 mild, 15 moderate | Negative |
Guo et al. [61] | Cross-sectional study | 23 acute and recovery stage | Semen | 27 to 33 | 18 mild, 5 moderate | Negative |
Holtman et al. [62] | Cohort study | 18 recovery stage 2 acute stage | Semen | 37 to 52 | 1 asymptomatic, 15 mild, 4 moderate | Negative |
Ruan et al. [63] | Cohort study | 74 recovery stage | Semen, urine, prostatic secretion | NP | 11 mild, 31 moderate type, 32 severe pneumonia | Negative |
Pan et al. [64] | Cross-sectional study | 34 recovery stage | Semen | 8 to 75 | Mild, moderate symptoms | Negative |
Ma et al. [14] | Cross-sectional | 12 recovery stage | Semen | 56 to 109 | 1 mild, 11 moderate type | Negative |
Sharma et al. [65] | Prospective observational study | 11 recovery stage | Semen | 19 to 59 | 9 mild, 2 moderate | Negative |
Best et al. [66] | Prospective observational study | 30 recovery stage | Semen | 11 to 64 | 1 asymptomatic, 29 symptomatic | Negative |
Pavone et al. [140] | Cross-sectional | 9 recovery phase | Semen | 7 to 88 | 1 asymptomatic, 8 mild symptoms | Negative |
Donders et al. [67] | Prospective cohort study | 120 recovery stage | Semen | 18 to 88 | NA | Negative |
Author | Study Characteristics | Vaccine Type | Study Group | Interval Time after Vaccination | Results |
---|---|---|---|---|---|
Abd et al. [79] | 2 centre prospective observational study. Semen parameters pre and post vaccine. | mRNA (Pfizer) | 60 healthy men with previous normal semen analysis | Second dose at least 90 days before the new semen analysis | No difference in semen parameters, except total and progressive motility. Clinically insignificant difference and within WHO normal ranges. |
Diaz et al. [80] | Single center prospective study. Semen parameters pre- and post-vaccine (long follow-up). | mRNA (Pfizer, Moderna) | 12 young healthy men | Follow up sample 3 and 9 months after 2nd dose | No changes in any semen parameters between baseline and follow-up samples. |
Gonzalez et al. [81] | Single-center prospective study. Semen parameters pre- and post-vaccine (short follow-up). | mRNA (Pfizer, Moderna) | 45 healthy men | Follow-up sample 70 to 86 days after 2nd dose | Semen volume, concentration, motility, and TMSC ↑ in the follow-up sample. Men with oligospermia did not show further decline. |
Barda et al. [82] | Prospective observational cohort study. Semen parameters pre- and post-vaccine (short, long follow-up). | mRNA (Pfizer) | 33 sperm donors | Multiple semen samples pre- and post-vaccine; at least one sperm sample 72 days after 2nd dose | TSC ↑, TMSC ↑, number of samples available for freezing ↑ and the presence of motile sperm after freezing ↑ post-vaccine. |
Gat et al. [83] | Retrospective multicenter cohort study. Semen parameters pre- and post- vaccine (short, intermediate, and long evaluation). | mRNA (Pfizer) | 37 semen donors | Multiple pre- and post-vaccine semen samples, at 3 time frames (15–45, 75–125, and over 145 days after 2nd dose) | Temporary decline of sperm concentration and TMC 3 months after vaccine, followed by recovery. |
Karavani et al. [84] | Retrospective cohort study. Semen parameters pre- and post-vaccine (long follow-up). | mRNA (Pfizer) | 58 men undergoing IVF (normal, abnormal semen analysis) | Follow-up sample 6 to 14 months after 1st dose | No difference in pre- and post-vaccine semen analysis, as well as subgroups with normal and abnormal semen parameters pre-vaccine. |
Safrai et al. [85] | Retrospective cohort study. Semen parameters pre- and post-vaccine. | mRNA | 72 men undergoing IVF (normal, abnormal semen analysis) | Follow-up sample 40 to 104 days after 1st dose | No changes pre- and post-vaccine among men with normal and abnormal semen analysis. |
Olana et al. [86] | Single-center prospective study. Semen parameters, OS, inflammation, cell membrane activity pre- and post-vaccine. | mRNA (Pfizer) | 47 subjects | Follow-up sample 3 months after 2nd dose | No difference in semen parameters, oxidative stress analysis, and IL-6 and electrolyte function pre- and post-vaccine. |
Elhabak et al. [87] | Prospective cohort study. Semen characteristics pre- and post-vaccine (short follow-up). | Inactivated virus (Sinopharm), viral vector (AstraZeneca) | 100 healthy men | Follow-up sample 70 days after 2nd dose | No differences in all semen characteristics pre- and post-vaccine. |
Zhu et al. [88] | Retrospective cohort study. Semen parameters pre- and post-vaccine. | Inactivated virus | 43 sperm donors | Follow-up sample 21 days after 1st dose and 60 days after 2nd dose | No changes in semen parameters pre- and post-vaccine. |
Meitei et al. [89] | Retrospective observational study. Semen parameters pre- and post-vaccine. | Viral vector (Covishield) | 53 subfertile men | Follow-up sample 83 days after 2nd dose | No variation in semen parameters pre- and post-vaccine, except morphology moderate ↓, clinically insignificant. |
Orvieto et al. [90] | Observational study. Effect of vaccine on IVF cycle attempt. | mRNA | 36 couples undergoing IVF | IVF cycles pre-vaccine and 7 to 85 days after 2nd dose | No difference in fertilization rate, pregnancy rate, and number of oocytes retrieved pre- and post- vaccination. |
Reschini et al. [91] | Multicenter retrospective study. Semen parameters and fertilization rate pre- and post-vaccine. | mRNA (Pfizer, Moderna), viral vector (AstraZeneca, Johnson & Johnson) | 106 men undergoing ART | ART cycles pre-vaccine and 28 to 100 days after 2nd dose | No difference in fertilization rate and sperm analysis. |
Xia et al. [92] | Cohort study. Impact of vaccine on IVF cycles. | Inactivated virus (Sinovac, Sinopharm) | Vaccinated men (n = 105); unvaccinated men (n = 155) | NP | No difference in semen parameters, IVF laboratory outcomes, and pregnancy rates between 2 groups. |
Wang et al. [93] | Single-center prospective cohort study. Impact of vaccine on IVF outcomes. | Inactivated virus (Sinovac) | Vaccinated men (n = 275); unvaccinated men (n = 944) | NP | No difference in laboratory and clinical outcomes during ART between 2 groups. |
Author | Study Characteristics | Sample Size—Disease Severity | Specimen | Time | Results |
---|---|---|---|---|---|
Hajizadeh Maleki et al. [94] | Prospective cohort study. Impact on multiple seminal biomarkers. | 84 recovering fertile men—different severity, 105 healthy controls | Semen | Hospital discharge, every 10 days until 2 months | ROS levels ↑, pro- and anti-inflammatory cytokines ↑, apoptotic variables ↑, semen ACE-2 enzymatic activity ↑, SOD activity ↓ ↔ defective semen quality, disease severity |
Falahieh et al. [95] | Prospective cohort study. Impact on semen oxidative status and parameters. | 20 recovering fertile men—moderate disease | Semen | 14 and 120 days after COVID-19 diagnosis | 14 days: sperm morphology, total and progressive motility ↓, peroxidative-positive leucocytes ↑, DFI ↑, ROS ↑, MDA ↑, TAC ↓ 120 days: all parameters improved |
Gharagozloo et al. [154] | Case report. Longitudinal analysis of semen quality. | Recovering man—moderate disease | Semen | Pre- and post-COVID-19 | Spermatogenesis disruption, oxidative DNA damage levels ↑ |
Shcherbitskaia et al. [96] | Prospective cohort study. Oxidative stress markers and sperm DNA fragmentation. | 17 recovering men, 22 controls | Semen | 5 months after infection | COVID-19 not always correlated with DNA fragmentation levels; COVID-19 patients with abnormal TUNNEL rate → NT ↓, TAC ↓, Zn ↓, 8-OHdG ↑, round cell numbers ↑ |
Moghimi et al. [97] | Incidence of apoptosis within the testes of patients succumbed from COVID-19. | 6 COVID-19 deceased men, 6 controls | Testicular tissue | 20 to 32 days disease duration | Seminiferous tubules, interstitial tissue damage, testicular cells ↓, ↑ ROS, ↓ GSH Ace-2, caspase-3, BAX ↑–BCL-2 expression ↓, apoptotic cells % ↑ |
Flaifel et al. [133] | Morphologic features in testes obtained from patients with COVID-19. | 10 COVID-19 deceased men | Testicular, epididymis tissue | 7 to 27 days disease duration | Morphologic alterations attributable to OS (chromatin condensation, nuclear fragmentation, and acidophilic cytoplasm); sloughing of spermatocytes into the tubular lumen and accumulation in the epididymis, spermatids elongation, damage of Sertoli cells, multifocal microthrombi, ↑ platelets in testicular vessels, ↑ mononuclear inflammatory infiltrates in the interstitial and other evidence related to OS |
Author | Study Type, Objectives | Antioxidants | Study Groups | Results |
---|---|---|---|---|
Verma et al. [100] | Sperm motility, viability, and lipid peroxidation assessed in Ringer–Tyrode supplemented with different concentrations of ascorbic acid. | Ascorbic acid | Samples with motility higher than 60% and sperm count over 20 million/mL were used. | Concentrations below 1000 μΜ of ascorbic acid increased sperm motility and decreased lipid peroxidation. However, concentrations above 1000 μM caused the complete reverse effect. |
Menezo et al. [101] | DNA fragmentation index and the degree of sperm decondensation were assessed before and after antioxidant supplementation at specific doses. | Vitamins C and E, β-carotene, zinc, and selenium | 58 patients who had at least 2 IVF or ICSI failure attempts were included. | DNA fragmentation index decreased and DNA decondensation increased after 90 days of treatment. |
Bleau et al. [102] | Association between selenium concentrations in semen and semen quality. | Selenium | 125 men from couples consulted for infertility. | Se levels <35 ng/mL were corelated with male infertility. Se levels between 40 and 70 ng/mL were optimal. Se levels >80 ng/mL were associated with a high abortion rate, decreased motility, and asthenospermia. |
Balercia et al. [103] | Placebo-controlled, double-blind randomized trial. Effectiveness of antioxidants in improving semen quality in men with idiopathic infertility. | Coenzyme Q10 (CoQ10) | 55 patients with idiopathic infertility. | CoQ10 and ubiquinol were increased in semen, and sperm kinetic features were improved after treatment. In the treated group, six pregnancies were observed, twice as many as those observed in the control group. |
Balercia et al. [104] | Placebo-controlled, double-blind, randomized trial. Effectiveness of antioxidants in improving semen kinetic parameters and the total oxyradical scavenging capacity in semen. | L-carnitine (LC) or L acetylcarnitine (LAC) or combined LC and LAC | 59 patients with infertility. | Sperm cell motility improvement was detected in patients administered with LAC single treatment or in combination with LC. TOSC assay improved hydroxyl and peroxyl radicals for treated patients. Nine pregnancies were achieved during the therapy in the treated group. |
Busetto et al. [105] | Monocentric, randomized, double-blind, placebo-controlled trial. Effect of antioxidants on sperm quality. | LC, LAC, fructose, fumarate, vitamin C, vitamin B12 citric acid, zinc, selenium, CoQ10 | 94 patients with oligo- and/or astheno- and/or teratozoospermia with or without varicocele. | Sperm concentration, total sperm count, and total-progressive motility were increased in the supplemented group. Ten pregnancies were recorded during the follow-up period in the treated group. |
Tremellen et al. [106] | Prospective randomised double-blind placebo-controlled trial. Effect of antioxidant supplementation on embryo quality and pregnancy outcome during IVF-ICSI. | Vitamins C and E, selenium, garlic lycopene, zinc, and folic acid | 60 couples with severe male factor infertility. | Improvement in viable pregnancy rate was found in the antioxidant-administered group. No improvement was detected in the two groups in oocyte fertilization and embryo quality rates. |
Salvio et al. [123] | Systematic review. Semen quality assessed by conventional, advanced methods, and pregnancy rates to determine CoQ10 therapy usefulness in infertile men. 24 studies included. | CoQ10 alone or in combination with other antioxidants | - | Improvement in sperm quality, especially sperm motility, was noted after CoQ10 administration. |
Tsampoukas et al. [124] | Systematic review. The role of L-carnitine in the treatment of varicocele. Four studies included. | L-carnitine administration alone or in duet | - | Semen parameters of men with varicocele-related infertility were improved after antioxidant supplementation. |
Greco et al. [107] | Randomized, placebo-controlled, double-blind study. Reduction of the incidence of sperm DNA Fragmentation after antioxidant treatment. | Vitamins C and E | 64 men with unexplained infertility and elevated percentage of DNA fragmented spermatozoa in the semen. | No differences in basic sperm parameters were found. DNA-fragmented spermatozoa reduced in the antioxidant treatment group. |
Rolf et al. [108] | Single-centre randomized, placebo-controlled, double-blind study. Effect of antioxidants intake on semen parameters of infertile men. | Vitamins C and E | 31 men with asthenozoospermia or moderate oligoasthenozoospermia. | No changes in semen parameters were observed during treatment, and no pregnancies were initiated during the treatment period. |
Pyrgidis et al. [126] | Systematic review and meta-analysis. The effect of antioxidant intake on operated or non-operated varicocele-associated infertility. Fourteen studies included. | Various antioxidants | - | Antioxidant did not seem to improve pregnancy rates, DNA fragmentation, and semen parameters in patients with varicocele-related infertility. |
Showell et al. [127] | Systematic review and meta-analysis. Effectiveness and safety of antioxidants intake for subfertile male partners in couples seeking fertility assistance. Thirty-four RCTs included. | Various antioxidants | - | Antioxidant therapy positively affected the number of pregnancies and live births in sub-fertile couples undergoing ART treatment. |
Smits et al. [128] | Meta-analysis. Effectiveness and safety of antioxidants in subfertile men. Sixty-one RCTs included. | 18 different oral antioxidants | - | Antioxidants may lead to increased live birth and clinical pregnancy rates. |
Humaidan et al. [109] | Prospective study. The combined effect of lifestyle changes and antioxidant therapy on sperm DNA fragmentation and seminal OS in IVF patients. | Coenzyme Q10, omega-3, and oligo-elements | 93 infertile males with a history of failed IVF/ICSI. 10 healthy male volunteers as controls. | No differences in semen quality and sORP were observed. |
Steiner et al. [157] | Multi-center, double blind, randomized, placebo-controlled trial with an internal pilot study. Effect of antioxidants intake on semen parameters, DNA fragmentation and live birth. | Vitamins C and E, selenium, L-carnitine, zinc, folic acid, and lycopene | 174 infertile men. Attempts to conceive naturally the first 3 months and with clomiphene citrate with intrauterine insemination in months 4 to 6. | No difference in the cumulative live birth rate was observed. The interval pilot study that assessed the semen parameter and DFI changes detected no improvement. |
Knudtson et al. [110] | Secondary analysis of randomized clinical trial. Relationship of plasma antioxidant levels to semen parameters. | Vitamin E, zinc, or selenium | Men attending fertility centers. | No association between selenium, zinc, or vitamin E levels and semen parameters or DNA fragmentation. |
Khaw et al. [111] | Systematic review and meta-analysis. Safety and efficacy of carnitine supplementation for idiopathic male infertility. Seven studies included. | L-carnitine and L-acetylcarnitine | - | Carnitines improved total sperm motility, progressive sperm motility, and sperm morphology. No effect on clinical pregnancy rate in the five studies that included that outcome. |
Zhou et al. [111] | Systematic review and meta-analysis. Effect of antioxidants on sperm parameters and serum hormones in idiopathic infertile men. Three RCTs included. | N-acetyl-cysteine | - | Improvement in sperm concentration, ejaculate volume, sperm motility, and normal morphology. No significant influence in serum hormones. |
Szymanski et al. [112] | Retrospective study. The use of antioxidants to improve qualitative and quantitative deficiencies in the male gametes. | LC, LAC vitamin C, coenzyme Q10, zinc, folic acid, selenium, and vitamin B12 | 78 men with idiopathic infertility. | Improvement in semen parameters, except the percentage of sperm of abnormal morphology and semen volume after treatment. |
Nazari et al. [113] | Prospective interventional study. Efficacy of antioxidant supplementation on semen parameters. | Antioxidant supplements containing L-carnitine | 59 infertile male patients with idiopathic oligoastenoteratozoospermia. | Improvement in the sperm Concentration and sperm morphology. Sperm motility was not altered after treatment. |
Wei et al. [130] | Metanalysis. Efficacy of antioxidant supplementation in men with idiopathic asthenozoospermia. Seven RCTs were included. | L-carnitine, L-acetylcarnitine, and N-acetyl-cysteine | - | LC/LAC and NAC improved sperm motility and normal morphology. NAC positively affected sperm concentration and semen volume. |
Alahmar et al. [114] | Prospective controlled clinical study. Determination of the biochemical and clinical predictors of pregnancy and time to pregnancy in infertile patients with idiopathic oligoasthenospermia before and after CoQ10 supplementation. | Coenzyme Q10 | 178 male patients with idiopathic oligoasthenospermia and 84 fertile men (controls). | CoQ10 intake increased CoQ10 levels in seminal plasma and ameliorated semen parameters, SDF, and antioxidant capacity with a pregnancy rate of 24.2%. CoQ10 levels, semen parameters, ROS, GPx, and male age could be used as diagnostic biomarkers for male fertility and predictors for time to pregnancy and pregnancy outcome. |
Alahmar et al. [115] | Prospective controlled study. Effect of CoQ10 on sperm DNA damage and OS markers in infertile men with idiopathic oligoastenoteratozoospermia. | Coenzyme Q10 | Fifty patients with idiopathic oligoastenoteratozoospermia and 50 fertile men (controls). | Improved sperm quality and seminal antioxidant status and reduced total ROS and SDF levels after treatment compared to pre-treatment values. |
Maghsoumi-Norouzabad et al. [116] | Randomized, triple blind, placebo-controlled clinical trial. Effect of vitamin D3 on semen parameters and endocrine markers in infertile patients with asthenozoospermia. | Vitamin D3 | 86 infertile men with asthenozoospermia and serum 25 hydroxy vitamin D3 <30 ng/mL in the infertility clinic. | Increased serum 25 hydroxy vitamin D3, parathyroid hormone, phosphorus, seminal and serum calcium, T/LH ratio, and total and progressive sperm motility in infertile men with asthenozoospermia. |
Author, Year | Study Type, Objective | Study Group | Treatment Regimen | Treatment Results |
Rafiee et al. 2021 [117] | Interventional study. Εffect of NAC on abnormal semen parameters in men infected by COVID-19 the last 2 months. | Two-hundred men referred to infertility clinics due to female factor infertility, diseased by COVID-19. Divided into 2 groups: supplemented group (n = 100), and the control group (n = 100). | N-acetylcysteine | Sperm concentration ↑ *, sperm total motility ↑ *, sperm morphology ↑ *; semen parameters were comparable to pre-COVID-19 values in the supplemented group. Not significant in the control group. |
Kurashova et al. 2022 [118] | Original paper. Efficacy of an antioxidant regimen on men with pathozoospermia after COVID-19 infection. | Twenty-five men with pathozoospermia pre-existing COVID-19. | Astaxanthin, Omega-3 fatty acids | Sperm motility ↑ *, number of leucocytes in semen ↓ *, TBARS ↓ *, and AOA levels ↑ * in the blood after treatment. |
Mannur et al. 2021 [155] | Case report. | Normozoospermic man undergoing infertility treatments due to female fertility factor developed oligo-astheno-teratozospermia with severe sperm DNA damage 1 month after recovery from mild COVID-19. | Coenzyme Q10, lycopene, docosahexaenoic acid, folic acid, selenium, and zinc | Sperm count ↑, sperm motility ↑; however, morphology and sperm DNA damage remained defected after treatment. |
Aschauer et al. 2023 [119] | Prospective comparative pilot study. Efficacy of micronutrient supplementation to improve seminal OS and semen variables after symptomatic SARS-CoV-2 infection. | Forty men without subfertility history recently recovered from symptomatic COVID-19. Suplemented group (n = 30), and the control group (n = 10). | L-carnitine, L-arginine, vitamin E, glutathione, coenzyme Q10, folic acid, selenium, and zinc | Sperm total and progressive motility ↑ *, sperm vitality ↑ *, and the number of patients with normal semen analysis values ↑ * in the study group. No changes in the control group. sORP levels ↓ in both groups, with the decrease more evident in the study group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalfas, T.; Kaltsas, A.; Symeonidis, E.N.; Symeonidis, A.; Zikopoulos, A.; Moustakli, E.; Tsiampali, C.; Tsampoukas, G.; Palapela, N.; Zachariou, A.; et al. COVID-19 and Male Infertility: Is There a Role for Antioxidants? Antioxidants 2023, 12, 1483. https://doi.org/10.3390/antiox12081483
Kalfas T, Kaltsas A, Symeonidis EN, Symeonidis A, Zikopoulos A, Moustakli E, Tsiampali C, Tsampoukas G, Palapela N, Zachariou A, et al. COVID-19 and Male Infertility: Is There a Role for Antioxidants? Antioxidants. 2023; 12(8):1483. https://doi.org/10.3390/antiox12081483
Chicago/Turabian StyleKalfas, Thomas, Aris Kaltsas, Evangelos N. Symeonidis, Asterios Symeonidis, Athanasios Zikopoulos, Efthalia Moustakli, Chara Tsiampali, Georgios Tsampoukas, Natalia Palapela, Athanasios Zachariou, and et al. 2023. "COVID-19 and Male Infertility: Is There a Role for Antioxidants?" Antioxidants 12, no. 8: 1483. https://doi.org/10.3390/antiox12081483
APA StyleKalfas, T., Kaltsas, A., Symeonidis, E. N., Symeonidis, A., Zikopoulos, A., Moustakli, E., Tsiampali, C., Tsampoukas, G., Palapela, N., Zachariou, A., Sofikitis, N., & Dimitriadis, F. (2023). COVID-19 and Male Infertility: Is There a Role for Antioxidants? Antioxidants, 12(8), 1483. https://doi.org/10.3390/antiox12081483