Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chlorogenic Acid Implementation
2.2. Medicinal Plants Extracts Preparation
2.3. Spectrophotometric Technique
2.4. Antiradical Antioxidant Analysis
2.5. HPLC Analysis
2.6. Quantitative Validation
3. Results and Discussion
3.1. Redox Status of the Systems with Chemicals and Plant Extracts
3.2. Acidity Dependence of Polyphenols AOA
3.3. Study of Extraction Efficiency of Water–Propylene Glycol Mixture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AO | antioxidant |
AOA | antioxidant activity |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
HAT | hydrogen atom abstraction |
HPLC | high-performance liquid chromatography |
HPLC-MS/MS | high-performance liquid chromatography/tandem mass spectrometry |
LC | liquid chromatography |
MS | mass-spectrometry |
NMR | nuclear magnetic resonance |
RE | rutin equivalents |
SPLET | sequential proton loss—electron transfer mechanism |
UV | ultraviolet |
References
- Spector, A. Oxidative stress and disease. J. Ocul. Pharmacol. Ther. 2000, 16, 193–201. [Google Scholar] [CrossRef]
- Yamane, Y.; Kashino, Y.; Koike, H.; Satoh, K. Effects of high temperatures on the photosynthetic systems in spinach: Oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth. Res. 1998, 57, 51–59. [Google Scholar] [CrossRef]
- Sirota, T.V. Novel approach to the study od adrenaline auto-oxidation and its use for the measurements of superoxide dismutase activity. Vopr. Meditsinskoi Khimii–Probl. Med. Chem. 1999, 45, 263–272. [Google Scholar]
- Filrppenko, T.A.; Grobova, N.Y. Antioxidant effect of medicinal plants extracts and their phenolic compounds fractions. Khimiya Rastit. Syr’ya–Chem. Plant Raw Mater. 2012, 2012, 77–81. Available online: https://www.elibrary.ru/item.asp?id=17906980 (accessed on 23 July 2023).
- Ryabinina, E.I.; Zotova, E.E.; Vetrova, E.N.; Ponomareva, N.I.; Ilyushina, T.N. New approach to evaluation of plant raw material’s antioxidant activity on the adrenaline autoxidation process research. Khimiya Rastit. Syr’ya–Chem. Plant Raw Mater. 2011, 2011, 117–121. Available online: https://www.elibrary.ru/item.asp?id=16986837 (accessed on 23 July 2023).
- Naimushina, L.V.; Satornik, A.D.; Zykova, I.D. Inhibition of the adrenaline auto-oxidation reaction by the biologically active substances of pomelo (Citrus maxima). Vestn. KrasGAU–Her. Krasn. State Agrar. Univ. 2015, 106, 115–119. Available online: https://www.elibrary.ru/item.asp?id=23881681 (accessed on 23 July 2023).
- Sirota, T.V. Use of nitro blue tetrazolium in the reaction of adrenaline autooxidation for the determination of superoxide dismutase activity. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2012, 6, 254–260. [Google Scholar] [CrossRef]
- Bindoli, A.; Rigobello, M.P.; Deeble, D.J. Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radic. Biol. Med. 1992, 13, 391–405. [Google Scholar] [CrossRef]
- Sirota, T.V. The effect of fixed valence metal ions on the free radical process of epinephrine autoxidation. Biophysics 2016, 61, 17–21. [Google Scholar] [CrossRef]
- Heacock, R.A.; Powell, W.S. 6 Adrenochrome and Related Compounds. Prog. Med. Chem. 1973, 9, 275–340. [Google Scholar] [CrossRef]
- Remião, F.; Milhazes, N.; Borges, F.; Carvalho, F.; Bastos, M.L.; Lemos-Amado, F.; Domingues, P.; Ferrer-Correia, A. Synthesis and analysis of aminochromes by HPLC-photodiode array. Adrenochrome evaluation in rat blood. Biomed. Chromatogr. 2003, 17, 6–13. [Google Scholar] [CrossRef]
- Marques, F.; Duarte, R.O.; Moura, J.J.G.; Bicho, M.P. Conversion of adrenaline to indolic derivatives by the human erythrocyte plasma membrane. Neurosignals 2004, 5, 275–282. [Google Scholar] [CrossRef]
- Sirota, T.V. A chain reaction of adrenaline autoxidation is a model of quinoid oxidation of catecholamines. Biophysics 2020, 65, 548–556. [Google Scholar] [CrossRef]
- Heacock, R.A. The chemistry of adrenochrome and related compounds. Chem. Rev. 1959, 59, 181–237. [Google Scholar] [CrossRef]
- Guzov, E.A.; Kazin, V.N.; Moshareva, V.A.; Zhukova, A.A. Application of electronic spectroscopy and quantum-chemical modeling for analysis of products of autoxidation of adrenaline. J. Appl. Spectrosc. 2019, 85, 1107–1113. [Google Scholar] [CrossRef]
- Trautner, E.M.; Bradley, T.R. The early stages of the oxidation of adrenaline in dilute solution. Aust. J. Biol. Sci. 1951, 4, 303–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirota, T.V. A novel approach to study the reaction of adrenaline autooxidation: A possibility for polarographic determination of superoxide dismutase activity and antioxidant properties of various preparations. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2011, 5, 253–259. [Google Scholar] [CrossRef]
- Palumbo, A.; d’Ischia, M.; Misuraca, G.; Prota, G. A new look at the rearrangement of adrenochrome under biomimetic conditions. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1989, 990, 297–302. [Google Scholar] [CrossRef]
- Kondrashove, M.N.; Grigorenko, E.V.; Tikhonov, A.V.; Sirota, T.V.; Temnov, A.V.; Stavrovskaja, I.G.; Kosyakova, N.I.; Lange, N.V.; Tikhonov, V.P. The primary physico-chemical mechanism for the beneficial biological/medical effects of negative air ions. IEEE Trans. Plasma Sci. 2000, 28, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Cichorek, M.; Wachulska, M.; Stasiewicz, A.; Tymińska, A. Skin melanocytes: Biology and development. Postępy Dermatol. I Alergol.–Adv. Dermatol. Allergol. 2013, 30, 30–41. [Google Scholar] [CrossRef]
- Burlakova, E.B. Bioantioxidants. Ross. Khimicheskij Zhurnal–Russ. Chem. J. 2007, 51, 3–12. Available online: https://www.elibrary.ru/item.asp?id=9503272 (accessed on 23 July 2023). [CrossRef]
- Peaston, R.T.; Weinkove, C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem. 2004, 41, 17–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewett, S.L.; Eddy, L.J.; Hochstein, P. Is the autoxidation of catecholamines involved in ischemia-reperfusion injury? Free Radic. Biol. Med. 1989, 6, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Osmond, H.; Smythies, J. Schizophrenia: A new approach. J. Ment. Sci. 1952, 98, 309–315. [Google Scholar] [CrossRef]
- Smythies, J. The adrenochrome hypothesis of schizophrenia revisited. Neurotox. Res. 2002, 4, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Sueishi, Y.; Hori, M.; Ishikawa, M.; Matsu-Ura, K.; Kamogawa, E.; Honda, Y.; Kita, M.; Ohara, K. Scavenging rate constants of hydrophilic antioxidants against multiple reactive oxygen species. J. Clin. Biochem. Nutr. 2014, 54, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Belaya, N.I.; Belyi, A.V.; Zarechnaya, O.M.; Shcherbakov, I.N.; Pomeshchenko, A.I.; Gorban’, O.A. Spectrokinetic studies of the products of conversion of natural phenols in radical reactions. Kinet. Catal. 2019, 60, 28–36. [Google Scholar] [CrossRef]
- Volkov, V.A.; Voronkov, M.V.; Misin, V.M.; Fedorova, E.S.; Rodin, I.A.; Stavrianidi, A.N. Aqueous propylene glycol extracts from medicinal plants: Chemical composition, antioxidant activity, standardization, and extraction kinetics. Inorg. Mater. 2021, 57, 1404–1412. [Google Scholar] [CrossRef]
- Dawson, R.; Elliot, D.; Elliot, W.; Jones, K. Biochemist’s Handbook: Translated from English; Mir: Moscow, Russia, 1991; p. 360. [Google Scholar]
- Bondet, V.; Brand-Williams, W.; Berset, C.L.W.T. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT-Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Volkov, V.A.; Sazhina, N.N.; Pakhomov, P.M.; Misin, V.M. Content and activity of low-molecular antioxidants in food and medicinal plants. Russ. J. Phys. Chem. B 2010, 4, 676–679. [Google Scholar] [CrossRef]
- Śliwa, K.; Sikora, E.; Ogonowski, J.; Oszmiański, J.; Kolniak-Ostek, J. A micelle mediated extraction as a new method of obtaining the infusion of Bidens tripartita. Acta Biochim. Pol. 2016, 63, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Toplan, G.G.; Taşkın, T.; İşcan, G.; Göger, F.; Kürkçüoğlu, M.; Civaş, A.; Ecevit-Genç, G.; Mat, A.; Başer, K.H.C. Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey. Molecules 2022, 27, 1956. [Google Scholar] [CrossRef] [PubMed]
- Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res. Pharm. Sci. 2014, 9, 31–37. [Google Scholar] [PubMed]
- Volkov, V.A.; Dorofeeva, N.A.; Pakhomov, P.M. Kinetic method for studying the antiradical activity of medicinal plant extracts. Pharm. Chem. J. 2009, 43, 333–337. [Google Scholar] [CrossRef]
- Ganzera, M.; Guggenberger, M.; Stuppner, H.; Zidorn, C. Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla cv. BONA. Planta Medica 2008, 74, 453–457. [Google Scholar] [CrossRef]
- Weber, B.; Herrmann, M.; Hartmann, B.; Joppe, H.; Schmidt, C.O.; Bertram, H.J. HPLC/MS and HPLC/NMR as hyphenated techniques for accelerated characterization of the main constituents in Chamomile (Chamomilla recutita [L.] Rauschert). Eur. Food Res. Technol. 2008, 226, 755–760. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N. Quantitative analysis of flavonoids in chamomile flowers (Matricaria chamomilla L.) by microcolumn HPLC-UV. Russ. J. Bioorg. Chem. 2017, 43, 783–789. [Google Scholar] [CrossRef]
Vextract, µL | D347 (Buffer Solution, Adrenaline, and Extract) | ΔD347(no adrenaline) (Buffer Solution and Extract) | ΔD347 = D347- ΔD347(no adrenaline) |
---|---|---|---|
20 | 0.230 ± 0.011 | 0.025 ± 0.005 | 0.204 ± 0.010 |
7 | 0.146 ± 0.007 | −0.002 | 0.148 ± 0.007 |
2 | 0.172 ± 0.009 | 0.002 | 0.170 ± 0.009 |
0.66 | 0.188 ± 0.009 | −0.001 | 0.189 ± 0.009 |
C, µmol | D347 (Buffer Solution, Adrenaline, and Chlorogenic Acid) | ΔD347(no adrenaline) (Buffer Solution and Chlorogenic Acid) | ΔD347= D347- ΔD347(no adrenaline) |
---|---|---|---|
0.75 | 0.311 ± 0.016 | −0.001 | 0.312 ± 0.016 |
1.5 | 0.301 ± 0.015 | −0.002 | 0.303 ± 0.015 |
7.5 | 0.351 ± 0.018 | −0.003 | 0.354 ± 0.018 |
15 | 0.357 ± 0.018 | −0.015 ± 0.005 | 0.372 ± 0.019 |
37.5 | 0.367 ± 0.019 | −0.04 ± 0.005 | 0.407 ± 0.020 |
Object | ΔD347(ctrl) | ΔD347(exp)min | AOA, % | CAO in Extract by DPPH, mg/L RE | CAO Corresponding to Maximum Inhibitory Effect, µM RE |
---|---|---|---|---|---|
Water–propylene glycol extract of yarrow (Achillea millefolium L.) | 0.411 ± 0.020 | 0.148 ±0.007 | 64.0 ± 3.2 | 1240 ± 60 | 3.2 |
Water–propylene glycol extract of camomile (Matricaria chamomilla L.) | 0.381 ± 0.019 | 0.318 ± 0.016 | 16.5 ± 0.8 | 148 ± 11 | 0.07 |
Water–propylene glycol extract of bur beggar-ticks (Bidens tripartita L). | 0.356 ± 0.018 | 0.323 ± 0.016 | 9.3 ± 0.5 | 262 ± 19 | 0.12 |
Chlorogenic acid solution | 0.371 ± 0.018 | 0.301 ± 0.015 | 18.0 ± 0.9 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, V.; Lobanov, A.; Voronkov, M.; Baygildiev, T.; Misin, V.; Tsivileva, O. Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research. Antioxidants 2023, 12, 1530. https://doi.org/10.3390/antiox12081530
Volkov V, Lobanov A, Voronkov M, Baygildiev T, Misin V, Tsivileva O. Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research. Antioxidants. 2023; 12(8):1530. https://doi.org/10.3390/antiox12081530
Chicago/Turabian StyleVolkov, Vladimir, Anton Lobanov, Mikhail Voronkov, Timur Baygildiev, Vyacheslav Misin, and Olga Tsivileva. 2023. "Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research" Antioxidants 12, no. 8: 1530. https://doi.org/10.3390/antiox12081530
APA StyleVolkov, V., Lobanov, A., Voronkov, M., Baygildiev, T., Misin, V., & Tsivileva, O. (2023). Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research. Antioxidants, 12(8), 1530. https://doi.org/10.3390/antiox12081530