Non-Thyroidal Illness in Chronic Renal Failure: Triiodothyronine Levels and Modulation of Extra-Cellular Superoxide Dismutase (ec-SOD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Enrolments
- -
- Acute Haemodialysis (AH) group: 1–3 months of treatment
- -
- Chronic Haemodialysis (CH) group: 12–180 months of treatment
2.2. Sample Collection
2.3. Hormonal and Metabolic Parameters
2.4. Oxidative Parameters
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fliers, E.; Boelen, A. An update on non-thyroidal illness syndrome. J. Endocrinol. Investig. 2021, 44, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Chopra, J. Euthyroid sick syndrome: Is it a misnomer? J. Clin. Endocrinol. Metab. 1997, 82, 329–334. [Google Scholar] [CrossRef] [PubMed]
- De Groot, L. Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit. Care Clin. 2006, 22, 57–86. [Google Scholar] [CrossRef]
- De Groot, L. The Non-Thyroidal Illness Syndrome. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2015. [Google Scholar]
- Boelen, A.; Kwakkel, J.; Fliers, E. Beyond low plasma T3: Local thyroid hormone metabolism during inflammation and infection. Endocr. Rev. 2011, 32, 670–693. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, A.; Mordente, A.; Martino, G.; Bruno, C.; Meucci, E.; Vergani, E.; Mancini, A. The Role of Selenium in Oxidative Stress and in Nonthyroidal Illness Syndrome (NTIS): An Overview. Curr. Med. Chem. 2020, 27, 423–449. [Google Scholar] [CrossRef] [PubMed]
- van der Spek, A.H.; Surovtseva, O.V.; Jim, K.K.; van Oudenaren, A.; Brouwer, M.C.; Vandenbroucke-Grauls, C.M.J.E.; Leenen, P.J.M.; van de Beek, D.; Hernandez, A.; Fliers, E.; et al. Regulation of Intracellular Triiodothyronine Is Essential for Optimal Macrophage Function. Endocrinology 2018, 159, 2241–2252. [Google Scholar] [CrossRef]
- Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Currò, D. Thyroid hormones, oxidative stress, and inflammation. Mediat. Inflamm. 2016, 2016, 6757154. [Google Scholar] [CrossRef]
- Sciacchitano, S.; Capalbo, C.; Napoli, C.; Anibaldi, P.; Salvati, V.; De Vitis, C.; Mancini, R.; Coluzzi, F.; Rocco, M. Nonthyroidal illness syndrome: To treat or not to treat? Have we answered the question? A review of metanalyses. Front. Endocrinol. 2022, 13, 850328. [Google Scholar] [CrossRef]
- St Germain, D.L.; Galton, V.A.; Hernandez, A. Defining the roles of the iodothyronine deiodinases: Current concepts and challenges. Endocrinology 2009, 150, 1097–1107. [Google Scholar] [CrossRef]
- Yan, W.; Wang, L.; Huang, T.; Xu, G. Treatment for non-thyroidal illness syndrome in advanced chronic kidney diseases: A single-blind controlled study. J. Nephrol. 2017, 30, 557–565. [Google Scholar] [CrossRef]
- Mancini, A.; Capobianco, E.; Bruno, C.; Vergani, E.; Nicolazzi, M.; Favuzzi, A.M.R.; Panocchia, N.; Meucci, E.; Mordente, A.; Silvestrini, A. Non-thyroidal illness syndrome in chronic diseases: Role of irisin as modulator of antioxidants. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1582–1591. [Google Scholar] [CrossRef]
- Aronis, K.N.; Moreno, M.; Polyzos, S.A.; Moreno-Navarrete, J.M.; Ricart, W.; Delgado, E.; de la Hera, J.; Sahin-Efe, A.; Chamberland, J.P.; Berman, R.; et al. Circulating irisin levels and coronary heart disease: Association with future acute coronary syndrome and major adverse cardiovascular events. Int. J. Obes. 2015, 39, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.Y.; Panaglotu, G.; Mouglos, V.; Brinkoetter, M.; Vamvini, M.T.; Scneider, B.E.; Mantzoros, C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 2012, 61, 1725–1738. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Yan, W.; Li, J. An update for the controversies and hypotheses of regulating nonthyroidal illness syndrome in chronic kidney diseases. Clin. Exp. Nephrol. 2014, 18, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef]
- Marklund, S.L.; Hellner, L. Superoxide dismutase in extracellular fluids. Clin. Chim. Acta 1982, 126, 41–51. [Google Scholar] [CrossRef]
- Shimomura, H.; Maekata, E.; Takamiya, T.; Adachi, T.; Komoda, T. Blood extracellular superoxide dismutase levels in haemodialysis patients pre- and post-haemodialysis and its association with lipoprotein lipase mass and free fatty acid. Clin. Chim. Acta 2003, 328, 113–119. [Google Scholar] [CrossRef]
- Nakamura, M.; Ando, Y.; Sasada, K.; Haraoka, K.; Ueda, M.; Okabe, M.; Motomiya, Y. Role of extracellular Superoxide Dismutase in patients under maintenance haemodialysis. Nephron Clin. Pract. 2005, 101, c109–c115. [Google Scholar] [CrossRef]
- Bossola, M.; Laudisio, A.; Antocicco, M.; Panocchia, N.; Tazza, L.; Colloca, G.; Tosato, M.; Zuccalà, G. Intradialytic hypotension is associated with dialytic age in patients on chronic haemodialysis. Ren. Fail. 2013, 35, 1260–1263. [Google Scholar] [CrossRef]
- Tiano, L.; Belardinelli, R.; Carnevali, P.; Principi, F.; Seddaiu, G.; Littarru, G.P. Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: A double-blind, randomized controlled study. Eur. Heart J. 2007, 28, 2249–2255. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.J. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994, 234, 279–293. [Google Scholar] [PubMed]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical aspects and clinical significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef] [PubMed]
- Mebis, L.; Paletta, D.; Debaveye, Y.; Ellger, B.; Langouche, L.; D’Hoore, A.; Darras, V.M.; Visser, T.J.; Van den Berghe, G. Expression of thyroid hormone transporters during critical illness. Eur. J. Endocrinol. 2009, 161, 243–250. [Google Scholar] [CrossRef]
- Mancini, A.; Raimondo, S.; Di Segni, C.; Persano, M.; Gadotti, G.; Silvestrini, A.; Festa, R.; Tiano, L.; Pontecorvi, A.; Meucci, E. Thyroid hormones and antioxidant systems: Focus on oxidative stress in cardiovascular and pulmonary diseases. Int. J. Mol. Sci. 2013, 14, 23893–23909. [Google Scholar] [CrossRef] [PubMed]
- Montazerifa, F.; Hashemi, M.; Karajibani, M.; Sanadgol, H.; Dikshit, M. Evaluation of lipid peroxidation and erythrocyte glutathione peroxidase and superoxide dismutase in haemodialysis patients. Saudi J. Kidney Dis. Transpl. 2012, 23, 274–279. [Google Scholar]
- Koening, J.S.; Fischer, M.; Bulant, E.; Tiran, B.; Elmadfa, I.; Druml, W. Antioxidant status in patients on chronic haemodialysis therapy: Impact of parenteral selenium supplementation. Wien. Klin. Wochenschr. 1997, 109, 13–19. [Google Scholar]
- Danielsky, M.; Alp kizler, T.; McMonagle, E.; Conner Kane, J.; Pupim, L.; Morrow, J.; Himmelfarb, J. Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving maintenance haemodialysis therapy. Am. J. Kidney Dis. 2003, 42, 286–294. [Google Scholar] [CrossRef]
- Echterdiek, F.; Ranke, M.B.; Schwenger, V.; Heemann, U.; Latus, J. Kidney disease and thyroid dysfunction: The chicken or egg problem. Pediatr. Nephrol. 2022, 37, 3031–3042. [Google Scholar] [CrossRef]
- Adachi, T.; Ohta, H.; Futemna, A.; Kato, K.; Hirano, K. Quantitative analysis of extracellular-superoxide dismutase in serum and urine by ELISA with monoclonal antibody. Clin. Chim. Acta 1992, 212, 89–102. [Google Scholar] [CrossRef]
- Maehata, E.; Adachi, T.; Inoue, M.; Yano, M.; Shimomura, H.; Shiba, T. High blood superoxide dismutase (SOD) states in patients with diabetes mellitus-dependence on extracellular (EC)-SOD. J. Jpn. Diabetes Soc. 2001, 44, 935–991. [Google Scholar]
- Futemna, A.; Kitano, M.; Hara, T.; Miyai, H.; Yamada, H.; Kato, K. Extracellular superoxide dismutase level in chronic haemodialysis patients. J. Jpn. Soc. Dial. Ther. 1993, 26, 519–523. [Google Scholar] [CrossRef]
- Fattman, C.L.; Schaefer, L.M.; Oury, T.D. Extracellular superoxide dismutase in biology and medicine. Free Rad. Biol. Med. 2003, 35, 236–256. [Google Scholar] [CrossRef] [PubMed]
- Landmesser, U.; Merten, R.; Spiekermann, S.; Buttner, K.; Drexler, H.; Hornig, B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: Relation to endothelium-dependent vasodilation. Circulation 2000, 101, 2264–2270. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.J.; Zhou, D.; Xiao, L.; Zhou, L.; Li, Y.; Bastacky, S.I.; Oury, T.D.; Liu, Y. Extracellular Superoxide Dismutase Protects against Proteinuric Kidney Disease. Am. Soc. Nephrol. 2015, 26, 2447–2459. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Yamada, Y.; Adachi, T.; Fukatsu, A.; Sakuma, M.; Futemna, A.; Kakumu, S. Protective role of extracellular superoxide dismutase in haemodialysis patients. Nephron 2000, 84, 218–223. [Google Scholar] [CrossRef]
- Xiong, H.; Yan, P.; Huang, Q.; Shuai, T.; Liu, J.; Zhu, L.; Lu, J.; Shi, X.; Yang, K.; Liu, J. A prognostic role for non-thyroidal illness syndrome in chronic renal failure: A systematic review and meta-analysis. Int. J. Surg. 2019, 70, 44–52. [Google Scholar] [CrossRef]
- Qi, X.; Qiu, L.; Wang, S.; Chen, X.; Huang, Q.; Zhao, Y.; Ouyang, K.; Chen, Y. Non-thyroidal illness syndrome and the prognosis of heart failure: A systematic review and meta-analysis. Endocr. Connect. 2023, 12, e230048. [Google Scholar] [CrossRef]
- Hercbergs, A.; Mousa, S.A.; Davis, P.J. Nonthyroidal Illness Syndrome and Thyroid Hormone Actions at Integrin αvβ3. J. Clin. Endocrinol. Metab. 2018, 103, 1291–1295. [Google Scholar] [CrossRef]
Glucose (mg/dL) | Creatinine (mg/dL) | Uric Acid (mg/dL) | Triglycerides (mg/dL) | Cholesterol (mg/dL) | LDL-C (mg/dL) | HDL-C (mg/dL) | Albumin (g/dL) | GOT (U/L) | GPT (U/L) | CRP (mg/L) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AH | Mean (SD) | 103.5 (34.7) | 6.81 (2.92) | 7.04 (2.22) | 193 (28) | 115 (29.51) | 56 (6) | 25.50 (0.71) | 27 (5.69) | 14.67 (0.58) | 20.10 (20.06) | 37.25 (12.19) |
CH | Mean (SD) | 99.25 (34.14) | 9.54 (2.23) | 6.18 (1.20) | 151 (14) | 143.28 (37.15) | 77 (5) | 42.29 (14.01) | 14.66 (14.29) | 11.37 (4.6) | 10.56 (6.08) | 16.72 (7.16) |
AH-CH | p-value | 0.730 | 0.003 * | 0.129 | 0.153 | 0.051 | 0.054 | 0.104 | 0.048 * | 0.228 | 0.015 * | 0.141 |
Group | TSH (μUI/mL) | fT4 (pg/mL) | fT3 (pg/mL) | LAG (s) | ec-SOD Basal 1 (Long) | ec-SOD Basal 2 (Short) | ec-SOD at 5 min | ec-SOD at 10 min | ec-SOD Final | |
---|---|---|---|---|---|---|---|---|---|---|
AH | Mean (SD) | 2.09 (1.52) | 10.30 (3.7) | 2.29 (0.91) | 90 (23.91) | 123.11 (19.8) | 101.84 (22.72) | 134.07 (32.95) | 130.27 (33.97) | 113.42 (28.15) |
CH | Mean (SD) | 2.08 (1.78) | 9.38 (1.73) | 2.30 (0.46) | 68.48 (17.52) | 247.61 (101.61) | 231.711 (102) | 276.88 (95.22) | 275.18 (99.87) | 226.74 (90.36) |
AH-CH | p-value | 0.993 | 0.311 | 0.952 | 0.006 * | 0.011 * | 0.001 * | <0.001 * | <0.001 * | <0.001 * |
Group | ec-SOD Basal 1 (Long) | ec-SOD Basal 2 (Short) | ec-SOD at 5 min | ec-SOD at 10 min | ec-SOD Final | |
---|---|---|---|---|---|---|
Low fT3 | Mean (SD) | 211.69 (88.34) | 207.30 (86.86) | 250.75 (93.80) | 247.06 (95.82) | 204.21 (90.64) |
Normal fT3 | Mean (SD) | 296.45 (74.47) | 261.62 (110.44) | 316.02 (78.55) | 312.04 (90.84) | 243.61 (93.21) |
Low-normal fT3 | p-value | 0.006 * | 0.108 | 0.031 * | 0.045 * | 0.208 |
Variables of Interest | fT3 | ec-SOD_Long | ec-SOD_Short | ec-SOD_5min | ec-SOD_10min | ec-SOD_Final |
---|---|---|---|---|---|---|
fT3 | 1 | |||||
ec-SOD_long | 0.443 ** (0.010) | 1 | ||||
ec-SOD_short | 0.251 (0.159) | 0.802 *** (0.000) | 1 | |||
ec-SOD_5min | 0.295 (0.096) | 0.820 *** (0.000) | 0.911 *** (0.000) | 1 | ||
ec-SOD_10min | 0.294 (0.096) | 0.811 *** (0.000) | 0.936 *** (0.000) | 0.975 *** (0.000) | 1 | |
ec-SOD_final | 0.115 (0.524) | 0.664 *** (0.000) | 0.686 *** (0.000) | 0.730 *** (0.000) | 0.717 *** (0.000) | 1 |
Group | ec-SOD at 5 min vs. Basal | ec-SOD at 10 min vs. Basal | ec-SOD at the End vs. Basal | Subgroup | ec-SOD at 5 min vs. Basal | ec-SOD at 10 min vs. Basal | ec-SOD at the End vs. Basal | |
---|---|---|---|---|---|---|---|---|
AH | Mean (SD) | 27.09 (11.83) | 22.06 (11.61) | 7.40 (20.84) | ||||
CH | Mean (SD) | 45.17 (34.13) | 43.47 (34.84) | −4.97 (53.95) | Low fT3 | 43.45 (18.69) | 39.76 (21.26) | −3.08 (87.09) |
Normal fT3 | 54.40 (58.01) | 50.42 (48.52) | −18.02 (65.09) | |||||
AH-CH | p-value | 0.011 * | 0.078 | 0.928 | 0.232 | 0.391 | 0.217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, A.; Silvestrini, A.; Marcheggiani, F.; Capobianco, E.; Silvestri, S.; Lembo, E.; Orlando, P.; Beccia, F.; Nicolotti, N.; Panocchia, N.; et al. Non-Thyroidal Illness in Chronic Renal Failure: Triiodothyronine Levels and Modulation of Extra-Cellular Superoxide Dismutase (ec-SOD). Antioxidants 2024, 13, 126. https://doi.org/10.3390/antiox13010126
Mancini A, Silvestrini A, Marcheggiani F, Capobianco E, Silvestri S, Lembo E, Orlando P, Beccia F, Nicolotti N, Panocchia N, et al. Non-Thyroidal Illness in Chronic Renal Failure: Triiodothyronine Levels and Modulation of Extra-Cellular Superoxide Dismutase (ec-SOD). Antioxidants. 2024; 13(1):126. https://doi.org/10.3390/antiox13010126
Chicago/Turabian StyleMancini, Antonio, Andrea Silvestrini, Fabio Marcheggiani, Emmanuele Capobianco, Sonia Silvestri, Erminia Lembo, Patrick Orlando, Flavia Beccia, Nicola Nicolotti, Nicola Panocchia, and et al. 2024. "Non-Thyroidal Illness in Chronic Renal Failure: Triiodothyronine Levels and Modulation of Extra-Cellular Superoxide Dismutase (ec-SOD)" Antioxidants 13, no. 1: 126. https://doi.org/10.3390/antiox13010126
APA StyleMancini, A., Silvestrini, A., Marcheggiani, F., Capobianco, E., Silvestri, S., Lembo, E., Orlando, P., Beccia, F., Nicolotti, N., Panocchia, N., & Tiano, L. (2024). Non-Thyroidal Illness in Chronic Renal Failure: Triiodothyronine Levels and Modulation of Extra-Cellular Superoxide Dismutase (ec-SOD). Antioxidants, 13(1), 126. https://doi.org/10.3390/antiox13010126