Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review
Abstract
:1. Introduction
2. Antioxidant Activity in Coffee
3. Measuring Methods
4. Coffee Beans
5. Brewing Temperature
6. Roasting Temperature
7. Brewing Time
8. Brewing Method (Immersion vs. Drip)
9. Grind Size
10. Indirect Assessment of Antioxidant Extraction through Spent Coffee Grounds
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coffee: World Markets and Trade. Available online: https://www.fas.usda.gov/data/coffee-world-markets-and-trade (accessed on 27 October 2023).
- Brown, N. Current Coffee Consumer Trends: Inside the NCA’s 2018 Report. Available online: https://dailycoffeenews.com/2018/03/21/current-coffee-consumer-trends-inside-the-ncas-2018-report/ (accessed on 15 September 2023).
- Cold Brew Coffee Market Size, Share & Trends Analysis Report by Distribution Channel (Supermarkets & Hypermarkets, Company Owned Outlets, Convenience Stores, Online), by Region, and Segment Forecasts, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/cold-brew-coffee-market (accessed on 27 October 2023).
- U.S. Cold Brew Coffee Market Size 2015–2025. Available online: https://www.statista.com/statistics/659724/cold-brew-coffee-sales-us/ (accessed on 27 October 2023).
- Gruber, J. The Mitochondrial Free Radical Theory of Ageing—Where Do We Stand? Front. Biosci. 2008, 13, 6554. [Google Scholar] [CrossRef]
- Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M.K. Mechanisms of Cell Death in Oxidative Stress. Antioxid. Redox Signal. 2007, 9, 49–89. [Google Scholar] [CrossRef]
- Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Mitochondrial Oxidative Stress: Implications for Cell Death. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 143–183. [Google Scholar] [CrossRef]
- Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S.J.; Gibson, S.B. Oxidative Stress Induces Autophagic Cell Death Independent of Apoptosis in Transformed and Cancer Cells. Cell Death Differ. 2008, 15, 171–182. [Google Scholar] [CrossRef]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Wiseman, H.; Halliwell, B. Damage to DNA by Reactive Oxygen and Nitrogen Species: Role in Inflammatory Disease and Progression to Cancer. Biochem. J. 1996, 313 Pt 1, 17–29. [Google Scholar] [CrossRef]
- Matés, J.M. Effects of Antioxidant Enzymes in the Molecular Control of Reactive Oxygen Species Toxicology. Toxicology 2000, 153, 83–104. [Google Scholar] [CrossRef]
- Khan, H.; Jan, S.U.; Hashmatullah; Khan, M.F.; Khan, K.A.; Rehman, A.U.; Wahab, A. Effect of Lithium Metal on the Chemical Status of Glutathione (GSH) Present in Whole Blood (especially in Plasma and Cytosolic Fraction in Human Blood). Pak. J. Pharm. Sci. 2010, 23, 188–193. [Google Scholar]
- Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative Stress Induced-Neurodegenerative Diseases: The Need for Antioxidants That Penetrate the Blood Brain Barrier. Neuropharmacology 2001, 40, 959–975. [Google Scholar] [CrossRef]
- Blankenship, R.E.; Hartman, H. The Origin and Evolution of Oxygenic Photosynthesis. Trends Biochem. Sci. 1998, 23, 94–97. [Google Scholar] [CrossRef]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.-H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F. Evolution of Dietary Antioxidants. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 136, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Thelle, D.S.; Heyden, S.; Fodor, J.G. Coffee and Cholesterol in Epidemiological and Experimental Studies. Atherosclerosis 1987, 67, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ranheim, T.; Halvorsen, B. Coffee Consumption and Human Health—Beneficial or Detrimental?—Mechanisms for Effects of Coffee Consumption on Different Risk Factors for Cardiovascular Disease and Type 2 Diabetes Mellitus. Mol. Nutr. Food Res. 2005, 49, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Gross, G.; Jaccaud, E.; Huggett, A.C. Analysis of the Content of the Diterpenes Cafestol and Kahweol in Coffee Brews. Food Chem. Toxicol. 1997, 35, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Urgert, R.; van der Weg, G.; Kosmeijer-Schuil, T.G.; van de Bovenkamp, P.; Hovenier, R.; Katan, M.B. Levels of the Cholesterol-Elevating Diterpenes Cafestol and Kahweol in Various Coffee Brews. J. Agric. Food Chem. 1995, 43, 2167–2172. [Google Scholar] [CrossRef]
- Nordestgaard, A.T.; Nordestgaard, B.G. Coffee Intake, Cardiovascular Disease and All-Cause Mortality: Observational and Mendelian Randomization Analyses in 95 000–223 000 Individuals. Int. J. Epidemiol. 2016, 45, 1938–1952. [Google Scholar] [CrossRef]
- Pauwels, E.K.J.; Volterrani, D. Coffee Consumption and Cancer Risk: An Assessment of the Health Implications Based on Recent Knowledge. Med. Princ. Pract. 2021, 30, 401–411. [Google Scholar] [CrossRef]
- Papadimitriou, N.; Markozannes, G.; Kanellopoulou, A.; Critselis, E.; Alhardan, S.; Karafousia, V.; Kasimis, J.C.; Katsaraki, C.; Papadopoulou, A.; Zografou, M.; et al. An Umbrella Review of the Evidence Associating Diet and Cancer Risk at 11 Anatomical Sites. Nat. Commun. 2021, 12, 4579. [Google Scholar] [CrossRef]
- Zhao, L.-G.; Li, Z.-Y.; Feng, G.-S.; Ji, X.-W.; Tan, Y.-T.; Li, H.-L.; Gunter, M.J.; Xiang, Y.-B. Coffee Drinking and Cancer Risk: An Umbrella Review of Meta-Analyses of Observational Studies. BMC Cancer 2020, 20, 101. [Google Scholar] [CrossRef]
- Sang, L.-X.; Chang, B.; Li, X.-H.; Jiang, M. Consumption of Coffee Associated with Reduced Risk of Liver Cancer: A Meta-Analysis. BMC Gastroenterol. 2013, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, D.; Zhang, Y.; Zheng, W.; Wang, P. Coffee Consumption and Risk of Colorectal Cancer: A Meta-Analysis of Observational Studies. Public Health Nutr. 2013, 16, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Je, Y.; Giovannucci, E. Coffee Consumption and Risk of Endometrial Cancer: Findings from a Large up-to-Date Meta-Analysis. Int. J. Cancer 2012, 131, 1700–1710. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Pugliese, G.; Frias-Toral, E.; El Ghoch, M.; Castellucci, B.; Chapela, S.P.; Carignano, M.D.L.A.; Laudisio, D.; Savastano, S.; Colao, A.; et al. Coffee Consumption, Health Benefits and Side Effects: A Narrative Review and Update for Dietitians and Nutritionists. Crit. Rev. Food Sci. Nutr. 2023, 63, 1238–1261. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, A.T. Causal Relationship from Coffee Consumption to Diseases and Mortality: A Review of Observational and Mendelian Randomization Studies Including Cardiometabolic Diseases, Cancer, Gallstones and Other Diseases. Eur. J. Nutr. 2022, 61, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.; Li, X.; Jiang, X. Coffee Consumption and Risk of the Metabolic Syndrome: A Meta-Analysis. Diabetes Metab. 2016, 42, 80–87. [Google Scholar] [CrossRef]
- Chrysant, S.G. The Impact of Coffee Consumption on Blood Pressure, Cardiovascular Disease and Diabetes Mellitus. Expert Rev. Cardiovasc. Ther. 2017, 15, 151–156. [Google Scholar] [CrossRef]
- Torabynasab, K.; Shahinfar, H.; Payandeh, N.; Jazayeri, S. Association between Dietary Caffeine, Coffee, and Tea Consumption and Depressive Symptoms in Adults: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Front Nutr. 2023, 10, 1051444. [Google Scholar] [CrossRef]
- Min, J.; Cao, Z.; Cui, L.; Li, F.; Lu, Z.; Hou, Y.; Yang, H.; Wang, X.; Xu, C. The Association between Coffee Consumption and Risk of Incident Depression and Anxiety: Exploring the Benefits of Moderate Intake. Psychiatry Res. 2023, 326, 115307. [Google Scholar] [CrossRef]
- Wang, L.; Shen, X.; Wu, Y.; Zhang, D. Coffee and Caffeine Consumption and Depression: A Meta-Analysis of Observational Studies. Aust. N. Z. J. Psychiatry 2016, 50, 228–242. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhang, M.; Yang, H.; Wang, Y. Consumption of Coffee and Tea with All-Cause and Cause-Specific Mortality: A Prospective Cohort Study. BMC Med. 2022, 20, 449. [Google Scholar] [CrossRef] [PubMed]
- Doepker, C.; Movva, N.; Cohen, S.S.; Wikoff, D.S. Benefit-Risk of Coffee Consumption and All-Cause Mortality: A Systematic Review and Disability Adjusted Life Year Analysis. Food Chem. Toxicol. 2022, 170, 113472. [Google Scholar] [CrossRef] [PubMed]
- Malerba, S.; Turati, F.; Galeone, C.; Pelucchi, C.; Verga, F.; La Vecchia, C.; Tavani, A. A Meta-Analysis of Prospective Studies of Coffee Consumption and Mortality for All Causes, Cancers and Cardiovascular Diseases. Eur. J. Epidemiol. 2013, 28, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Preedy, V.R. Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2014; ISBN 9780124167162. [Google Scholar]
- Josiane Alessandra Vignoli, J.A.; Viegas, M.C.; Bassoli, D.G.; Benassi, M.T. Coffee Brews Preparation: Extraction of Bioactive Compounds and Antioxidant Activity. In Coffee—Production, Consumption and Health Benefits; Massey, J.L., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2016; pp. 39–50. ISBN 9781634847254. [Google Scholar]
- Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant Activity, Polyphenols, Caffeine and Melanoidins in Soluble Coffee: The Influence of Processing Conditions and Raw Material. Food Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Sanchez, L.; Caemmerer, B.; Kroh, L.W.; De Peña, M.P.; Cid, C. Extraction of Coffee Antioxidants: Impact of Brewing Time and Method. Food Res. Int. 2012, 48, 57–64. [Google Scholar] [CrossRef]
- Sánchez-González, I.; Jiménez-Escrig, A.; Saura-Calixto, F. In Vitro Antioxidant Activity of Coffees Brewed Using Different Procedures (Italian, Espresso and Filter). Food Chem. 2005, 90, 133–139. [Google Scholar] [CrossRef]
- Vignoli, J.A.; Viegas, M.C.; Bassoli, D.G.; Benassi, M. de T. Roasting Process Affects Differently the Bioactive Compounds and the Antioxidant Activity of Arabica and Robusta Coffees. Food Res. Int. 2014, 61, 279–285. [Google Scholar] [CrossRef]
- Bekedam, E.K.; Schols, H.A.; Van Boekel, M.A.J.S.; Smit, G. Incorporation of Chlorogenic Acids in Coffee Brew Melanoidins. J. Agric. Food Chem. 2008, 56, 2055–2063. [Google Scholar] [CrossRef]
- Wu, H.; Gu, J.; Bk, A.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Effect of Processing on Bioaccessibility and Bioavailability of Bioactive Compounds in Coffee Beans. Food Biosci. 2022, 46, 101373. [Google Scholar] [CrossRef]
- Lara-Guzmán, O.J.; Álvarez-Quintero, R.; Osorio, E.; Naranjo-Cano, M.; Muñoz-Durango, K. GC/MS Method to Quantify Bioavailable Phenolic Compounds and Antioxidant Capacity Determination of Plasma after Acute Coffee Consumption in Human Volunteers. Food Res. Int. 2016, 89, 219–226. [Google Scholar] [CrossRef]
- Acosta-Otálvaro, E.; Domínguez-Perles, R.; Mazo-Rivas, J.C.; García-Viguera, C. Bioavailability and Radical Scavenging Power of Phenolic Compounds of Cocoa and Coffee Mixtures. Food Sci. Technol. Int. 2021, 28, 514–523. [Google Scholar] [CrossRef] [PubMed]
- López-Froilán, R.; Ramírez-Moreno, E.; Podio, N.S.; Pérez-Rodríguez, M.L.; Cámara, M.; Baroni, M.V.; Wunderlin, D.A.; Sánchez-Mata, M.C. In Vitro Assessment of Potential Intestinal Absorption of Some Phenolic Families and Carboxylic Acids from Commercial Instant Coffee Samples. Food Funct. 2016, 7, 2706–2711. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Nardini, M.; Belelli, F.; Scaccini, C. Coffee Drinking Induces Incorporation of Phenolic Acids into LDL and Increases the Resistance of LDL to Ex Vivo Oxidation in Humans. Am. J. Clin. Nutr. 2007, 86, 604–609. [Google Scholar] [CrossRef]
- Natella, F.; Nardini, M.; Giannetti, I.; Dattilo, C.; Scaccini, C. Coffee Drinking Influences Plasma Antioxidant Capacity in Humans. J. Agric. Food Chem. 2002, 50, 6211–6216. [Google Scholar] [CrossRef] [PubMed]
- Salamat, S.; Sharif, S.S.; Nazary-Vanani, A.; Kord-Varkaneh, H.; Clark, C.C.; Mohammadshahi, M. The Effect of Green Coffee Extract Supplementation on Serum Oxidized LDL Cholesterol and Total Antioxidant Capacity in Patients with Dyslipidemia: A Randomized. Eur. J. Integr. Med. 2019, 28, 109–113. [Google Scholar] [CrossRef]
- Andersen, L.F.; Jacobs, D.R., Jr.; Carlsen, M.H.; Blomhoff, R. Consumption of Coffee Is Associated with Reduced Risk of Death Attributed to Inflammatory and Cardiovascular Diseases in the Iowa Women’s Health Study. Am. J. Clin. Nutr. 2006, 83, 1039–1046. [Google Scholar] [CrossRef]
- Happonen, P.; Voutilainen, S.; Salonen, J.T. Coffee Drinking Is Dose-Dependently Related to the Risk of Acute Coronary Events in Middle-Aged Men. J. Nutr. 2004, 134, 2381–2386. [Google Scholar] [CrossRef]
- Kleemola, P.; Jousilahti, P.; Pietinen, P.; Vartiainen, E.; Tuomilehto, J. Coffee Consumption and the Risk of Coronary Heart Disease and Death. Arch. Intern. Med. 2000, 160, 3393–3400. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Kokkinos, P.; Toutouzas, P.; Stefanadis, C. The J-Shaped Effect of Coffee Consumption on the Risk of Developing Acute Coronary Syndromes: The CARDIO2000 Case-Control Study. J. Nutr. 2003, 133, 3228–3232. [Google Scholar] [CrossRef]
- Kouli, G.-M.; Panagiotakos, D.B.; Georgousopoulou, E.N.; Mellor, D.D.; Chrysohoou, C.; Zana, A.; Tsigos, C.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C. J-Shaped Relationship between Habitual Coffee Consumption and 10-Year (2002–2012) Cardiovascular Disease Incidence: The ATTICA Study. Eur. J. Nutr. 2018, 57, 1677–1685. [Google Scholar] [CrossRef]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee Extraction: A Review of Parameters and Their Influence on the Physicochemical Characteristics and Flavour of Coffee Brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Stanek, N.; Zarębska, M.; Biłos, Ł.; Barabosz, K.; Nowakowska-Bogdan, E.; Semeniuk, I.; Błaszkiewicz, J.; Kulesza, R.; Matejuk, R.; Szkutnik, K. Influence of Coffee Brewing Methods on the Chromatographic and Spectroscopic Profiles, Antioxidant and Sensory Properties. Sci. Rep. 2021, 11, 21377. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.; Rao, N.Z. The Effect of Time, Roasting Temperature, and Grind Size on Caffeine and Chlorogenic Acid Concentrations in Cold Brew Coffee. Sci. Rep. 2017, 7, 17979. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-K.; Yoo, H.S.; Shibamoto, T. Role of Roasting Conditions in the Level of Chlorogenic Acid Content in Coffee Beans: Correlation with Coffee Acidity. J. Agric. Food Chem. 2009, 57, 5365–5369. [Google Scholar] [CrossRef] [PubMed]
- Farah, A.; de Paulis, T.; Trugo, L.C.; Martin, P.R. Effect of Roasting on the Formation of Chlorogenic Acid Lactones in Coffee. J. Agric. Food Chem. 2005, 53, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Schouten, M.A.; Tappi, S.; Angeloni, S.; Cortese, M.; Caprioli, G.; Vittori, S.; Romani, S. Acrylamide Formation and Antioxidant Activity in Coffee during roasting–A Systematic Study. Food Chem. 2021, 343, 128514. [Google Scholar] [CrossRef]
- Maksimowski, D.; Pachura, N.; Oziembłowski, M.; Nawirska-Olszańska, A.; Szumny, A. Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 2022, 12, 2582. [Google Scholar] [CrossRef]
- Bell, L.N.; Wetzel, C.R.; Grand, A.N. Caffeine Content in Coffee as Influenced by Grinding and Brewing Techniques. Food Res. Int. 1996, 29, 785–789. [Google Scholar] [CrossRef]
- Andueza, S.; De Peña, M.P.; Cid, C. Chemical and Sensorial Characteristics of Espresso Coffee as Affected by Grinding and Torrefacto Roast. J. Agric. Food Chem. 2003, 51, 7034–7039. [Google Scholar] [CrossRef]
- Khamitova, G.; Angeloni, S.; Borsetta, G.; Xiao, J.; Maggi, F.; Sagratini, G.; Vittori, S.; Caprioli, G. Optimization of Espresso Coffee Extraction through Variation of Particle Sizes, Perforated Disk Height and Filter Basket Aimed at Lowering the Amount of Ground Coffee Used. Food Chem. 2020, 314, 126220. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Kim, H.-T.; Jeong, I.-H.; Hong, S.-R.; Oh, M.-S.; Park, K.-H.; Shim, J.-H.; Abd El-Aty, A.M. Determination of Chlorogenic Acids and Caffeine in Homemade Brewed Coffee Prepared under Various Conditions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1064, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Derossi, A.; Ricci, I.; Caporizzi, R.; Fiore, A.; Severini, C. How Grinding Level and Brewing Method (Espresso, American, Turkish) Could Affect the Antioxidant Activity and Bioactive Compounds in a Coffee Cup. J. Sci. Food Agric. 2018, 98, 3198–3207. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, G.; Sun, L.; Liu, Z.; Song, Y.; Yang, T.; Sun, Y.; Guo, C.; Li, Z. Self-Assembly of Cinnamic Acid-Capped Gold Nanoparticles. Nanotechnology 2006, 17, 2907. [Google Scholar] [CrossRef]
- Scampicchio, M.; Wang, J.; Blasco, A.J.; Sanchez Arribas, A.; Mannino, S.; Escarpa, A. Nanoparticle-Based Assays of Antioxidant Activity. Anal. Chem. 2006, 78, 2060–2063. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, F.; Sun, M.; Zhang, R.; Wu, S.; Meng, C. Controllable Synthesis and Antioxidant Activity of Gold Nanoparticles Using Chlorogenic Acid. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2022, 52, 1345–1351. [Google Scholar] [CrossRef]
- Khandanlou, R.; Murthy, V.; Wang, H. Gold Nanoparticle-Assisted Enhancement in Bioactive Properties of Australian Native Plant Extracts, Tasmannia Lanceolata and Backhousia Citriodora. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110922. [Google Scholar] [CrossRef] [PubMed]
- Mohd Taib, S.H.; Shameli, K.; Moozarm Nia, P.; Etesami, M.; Miyake, M.; Rasit Ali, R.; Abouzari-Lotf, E.; Izadiyan, Z. Electrooxidation of Nitrite Based on Green Synthesis of Gold Nanoparticles Using Hibiscus Sabdariffa Leaves. J. Taiwan Inst. Chem. Eng. 2019, 95, 616–626. [Google Scholar] [CrossRef]
- Xin Lee, K.; Shameli, K.; Miyake, M.; Kuwano, N.; Bt Ahmad Khairudin, N.B.; Bt Mohamad, S.E.; Yew, Y.P. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia Mangostana Fruit Peels. J. Nanomater. 2016, 2016, 8489094. [Google Scholar] [CrossRef]
- Yust, B.G.; Rao, N.Z.; Schwarzmann, E.T.; Peoples, M.H. Quantification of Spent Coffee Ground Extracts by Roast and Brew Method, and Their Utility in a Green Synthesis of Gold and Silver Nanoparticles. Molecules 2022, 27, 5124. [Google Scholar] [CrossRef]
- Baghaienezhad, M.; Boroghani, M.; Anabestani, R. Silver Nanoparticles Synthesis by Coffee Residues Extract and Their Antibacterial Activity. Nanomed. Res. J. 2020, 5, 29–34. [Google Scholar]
- Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green Synthesis of Silver Nanoparticles Using Coffea arabica Seed Extract and Its Antibacterial Activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Nadagouda, M.N.; Varma, R.S. Green Synthesis of Silver and Palladium Nanoparticles at Room Temperature Using Coffee and Tea Extract. Green Chem. 2008, 10, 859–862. [Google Scholar] [CrossRef]
- Abbasian, R.; Jafarizadeh-Malmiri, H. Green Approach in Gold, Silver and Selenium Nanoparticles Using Coffee Bean Extract. Open Agric. 2020, 5, 761–767. [Google Scholar] [CrossRef]
- Chen, R.; Wu, S.; Meng, C. Size-Tunable Green Synthesis of Platinum Nanoparticles Using Chlorogenic Acid. Res. Chem. Intermed. 2021, 47, 1775–1787. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, K.; Gao, C.; Wang, J.; Mei, Y.; Zheng, X.; Zhu, P. Green Synthesis of Copper Nanoparticles Using Green Coffee Bean and Their Applications for Efficient Reduction of Organic Dyes. J. Environ. Chem. Eng. 2021, 9, 105331. [Google Scholar] [CrossRef]
- Taghavi Fardood, S.; Ramazani, A. Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract. J. Nanostructures 2016, 6, 167–171. [Google Scholar]
- Ghouri, Z.K.; Al-Meer, S.; Barakat, N.A.M.; Kim, H.Y. ZnO@C (core@shell) Microspheres Derived from Spent Coffee Grounds as Applicable Non-Precious Electrode Material for DMFCs. Sci. Rep. 2017, 7, 1738. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, P.; Debnath, N.; Saha, M. Microwave-Assisted Rapid Synthesis of Alumina Nanoparticles Using Tea, Coffee and Triphala Extracts. Adv. Manuf. 2013, 1, 357–361. [Google Scholar] [CrossRef]
- Crista, D.M.A.; El Mragui, A.; Algarra, M.; Esteves da Silva, J.C.G.; Luque, R.; Pinto da Silva, L. Turning Spent Coffee Grounds into Sustainable Precursors for the Fabrication of Carbon Dots. Nanomaterials 2020, 10, 1209. [Google Scholar] [CrossRef]
- Kim, D.J.; Yoo, J.M.; Suh, Y.; Kim, D.; Kang, I.; Moon, J.; Park, M.; Kim, J.; Kang, K.-S.; Hong, B.H. Graphene Quantum Dots from Carbonized Coffee Bean Wastes for Biomedical Applications. Nanomaterials 2021, 11, 1423. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Stanisz, E.; De Peña, M.P. Relationship between Antioxidant Capacity, Chlorogenic Acids and Elemental Composition of Green Coffee. LWT 2016, 73, 243–250. [Google Scholar] [CrossRef]
- Panusa, A.; Zuorro, A.; Lavecchia, R.; Marrosu, G.; Petrucci, R. Recovery of Natural Antioxidants from Spent Coffee Grounds. J. Agric. Food Chem. 2013, 61, 4162–4168. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.; Estevinho, B.N.; Santos, L. Microencapsulation of Natural Antioxidants for Food Application—The Specific Case of Coffee Antioxidants—A Review. Trends Food Sci. Technol. 2016, 58, 21–39. [Google Scholar] [CrossRef]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of Binary Solvent Extraction System, Extraction Time and Extraction Temperature on Phenolic Antioxidants and Antioxidant Capacity from Mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Shang, Y.F.; Kim, S.M.; Um, B.-H. Optimisation of Pressurised Liquid Extraction of Antioxidants from Black Bamboo Leaves. Food Chem. 2014, 154, 164–170. [Google Scholar] [CrossRef]
- León-Carmona, J.R.; Galano, A. Is Caffeine a Good Scavenger of Oxygenated Free Radicals? J. Phys. Chem. B 2011, 115, 4538–4546. [Google Scholar] [CrossRef]
- Devasagayam, T.P.; Kamat, J.P.; Mohan, H.; Kesavan, P.C. Caffeine as an Antioxidant: Inhibition of Lipid Peroxidation Induced by Reactive Oxygen Species. Biochim. Biophys. Acta 1996, 1282, 63–70. [Google Scholar] [CrossRef]
- Zhao, E.H.; Ergul, B.; Zhao, W. Caffeine’s Antioxidant Potency Optically Sensed with Double-Stranded DNA-Encased Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2015, 119, 4068–4075. [Google Scholar] [CrossRef]
- Badarinath, A.V.; Rao, K.M.; Chetty, C.M.S.; Ramkanth, S.T.V.S.R.; Rajan, T.V.S.; Gnanaprakash, K. A Review on in-Vitro Antioxidant Methods: Comparisions, Correlations and Considerations. Int. J. PharmTech Res. 2010, 2, 1276–1285. [Google Scholar]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of Coffee Flavor: A Compositional and Sensory Perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Buffo, R.A.; Cardelli-Freire, C. Coffee Flavour: An Overview. Flavour Fragr. J. 2004, 19, 99–104. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic Acids and Other Cinnamates—Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 1999, 79, 362–372. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic Acids and Other Cinnamates—Nature, Occurrence, Dietary Burden, Absorption and Metabolism. J. Sci. Food Agric. 2000, 80, 1033–1043. [Google Scholar] [CrossRef]
- Oestreich-Janzen, S. 3.25—Chemistry of Coffee. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 1085–1117. ISBN 9780080453828. [Google Scholar]
- Clifford, M.N.; Jaganath, I.B.; Ludwig, I.A.; Crozier, A. Chlorogenic Acids and the Acyl-Quinic Acids: Discovery, Biosynthesis, Bioavailability and Bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [Google Scholar] [CrossRef]
- Babova, O.; Occhipinti, A.; Maffei, M.E. Chemical Partitioning and Antioxidant Capacity of Green Coffee (Coffea arabica and Coffea canephora) of Different Geographical Origin. Phytochemistry 2016, 123, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Stelmach, E.; Pohl, P.; Szymczycha-Madeja, A. The Content of Ca, Cu, Fe, Mg and Mn and Antioxidant Activity of Green Coffee Brews. Food Chem. 2015, 182, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Muzykiewicz-Szymańska, A.; Nowak, A.; Wira, D.; Klimowicz, A. The Effect of Brewing Process Parameters on Antioxidant Activity and Caffeine Content in Infusions of Roasted and Unroasted Arabica Coffee Beans Originated from Different Countries. Molecules 2021, 26, 3681. [Google Scholar] [CrossRef]
- Rao, N.Z.; Fuller, M. Acidity and Antioxidant Activity of Cold Brew Coffee. Sci. Rep. 2018, 8, 16030. [Google Scholar] [CrossRef]
- Bilge, G. Investigating the Effects of Geographical Origin, Roasting Degree, Particle Size and Brewing Method on the Physicochemical and Spectral Properties of Arabica Coffee by PCA Analysis. J. Food Sci. Technol. 2020, 57, 3345–3354. [Google Scholar] [CrossRef]
- Cordoba, N.; Pataquiva, L.; Osorio, C.; Moreno, F.L.M.; Ruiz, R.Y. Effect of Grinding, Extraction Time and Type of Coffee on the Physicochemical and Flavour Characteristics of Cold Brew Coffee. Sci. Rep. 2019, 9, 8440. [Google Scholar] [CrossRef]
- Gebeyehu, B.T.; Bikila, S.L. Determination of Caffeine Content and Antioxidant Activity of Coffee. Am. J. Appl. Chem. 2015, 3, 69–76. [Google Scholar] [CrossRef]
- Somporn, C.; Kamtuo, A.; Theerakulpisut, P.; Siriamornpun, S. Effect of Shading on Yield, Sugar Content, Phenolic Acids and Antioxidant Property of Coffee Beans (Coffea arabica L. cv. Catimor) Harvested from North-Eastern Thailand. J. Sci. Food Agric. 2012, 92, 1956–1963. [Google Scholar] [PubMed]
- Hallmann, E.; Ożga, M.; Rembiałkowska, E. The Content of Bioactive Compounds in Selected Kind of Coffee from Organic and Conventional Production. J. Res. Appl. Agric. Eng. 2010, 53, 99–104. [Google Scholar]
- Górecki, M.; Hallmann, E. The Antioxidant Content of Coffee and Its In Vitro Activity as an Effect of Its Production Method and Roasting and Brewing Time. Antioxidants 2020, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.M.S.; Abreu, C.M.P.; Menezes, H.C. Effect of Processing and Roasting on the Antioxidant Activity of Coffee Brews. Food Sci. Technol. 2005, 25, 387–393. [Google Scholar] [CrossRef]
- Haile, M.; Bae, H.M.; Kang, W.H. Comparison of the antioxidant activities and volatile compounds of coffee beans obtained using digestive bio-processing (elephant dung coffee) and commonly known processing methods. Antioxidants 2020, 9, 408. [Google Scholar] [CrossRef] [PubMed]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The Content of Polyphenols in Coffee Beans as Roasting, Origin and Storage Effect. Eur. Food Res. Technol. 2020, 246, 33–39. [Google Scholar] [CrossRef]
- Kitzberger, C.S.G.; Scholz, M.B.D.S.; Benassi, M.d.T. Bioactive Compounds Content in Roasted Coffee from Traditional and Modern Coffea arabica Cultivars Grown under the Same Edapho-Climatic Conditions. Food Res. Int. 2014, 61, 61–66. [Google Scholar] [CrossRef]
- Seninde, D.R.; Chambers, E. Coffee Flavor: A Review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Frega, N.G.; Pacetti, D.; Mozzon, M.; Balzano, M. Chapter 12—Authentication of Coffee Blends. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 107–115. ISBN 9780124095175. [Google Scholar]
- Šeremet, D.; Fabečić, P.; Vojvodić Cebin, A.; Mandura Jarić, A.; Pudić, R.; Komes, D. Antioxidant and Sensory Assessment of Innovative Coffee Blends of Reduced Caffeine Content. Molecules 2022, 27, 448. [Google Scholar] [CrossRef]
- Freitas, V.V.; Rodrigues Borges, L.L.; Dias Castro, G.A.; Henrique Dos Santos, M.; Teixeira Ribeiro Vidigal, M.C.; Fernandes, S.A.; Stringheta, P.C. Impact of Different Roasting Conditions on the Chemical Composition, Antioxidant Activities, and Color of Coffea canephora and Coffea arabica L. Samples. Heliyon 2023, 9, e19580. [Google Scholar] [CrossRef] [PubMed]
- Ram, A.S.; Sreenivasan, M.S.; Ramaiah, P.K. A Study of Peaberry Development: Its Implications in Coffee Breeding. J. Coffee Res. 1990, 20, 69–76. [Google Scholar]
- Christensen, A. What Is Peaberry Coffee? And Should You Try It? Available online: https://coffeechronicler.com/peaberry/ (accessed on 12 May 2023).
- Suhandy, D.; Yulia, M. Peaberry Coffee Discrimination Using UV-Visible Spectroscopy Combined with SIMCA and PLS-DA. Int. J. Food Prop. 2017, 20, S331–S339. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. Kusumiyati Chemometric Quantification of Peaberry Coffee in Blends Using UV–visible Spectroscopy and Partial Least Squares Regression. AIP Conf. Proc. 2018, 2021, 060010. [Google Scholar]
- Schwarzmann, E.T.; Washington, M.P.; Rao, N.Z. Physicochemical Analysis of Cold Brew and Hot Brew Peaberry Coffee. Processes 2022, 10, 1989. [Google Scholar] [CrossRef]
- Kang, D.-E.; Lee, H.-U.; Davaatseren, M.; Chung, M.-S. Comparison of Acrylamide and Furan Concentrations, Antioxidant Activities, and Volatile Profiles in Cold or Hot Brew Coffees. Food Sci. Biotechnol. 2020, 29, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-W.; Boo, H.; Chung, M.-S. Effects of Extraction Conditions on Acrylamide/furan Content, Antioxidant Activity, and Sensory Properties of Cold Brew Coffee. Food Sci. Biotechnol. 2020, 29, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, W.; Liu, X.; Yuan, F.; Gao, Y. Antioxidative Phenolics Obtained from Spent Coffee Grounds (Coffea arabica L.) by Subcritical Water Extraction. Ind. Crops Prod. 2015, 76, 946–954. [Google Scholar] [CrossRef]
- Pan, L.; Xiao, Y.; Jiang, F.; Jiang, T.; Zhu, J.; Tang, W.; Liu, X.; Zhou, Y.; Yu, L. Comparison of Characterization of Cold Brew and Hot Brew Coffee Prepared at Various Roasting Degrees. J. Food Process. Preserv. 2023, 2023, 3175570. [Google Scholar] [CrossRef]
- Wang, X.; Lim, L.-T. Effects of Grind Size, Temperature, and Brewing Ratio on Immersion Cold Brewed and French Press Hot Brewed Coffees. Appl. Food Res. 2023, 3, 100334. [Google Scholar] [CrossRef]
- Trugo, L.C.; Macrae, R. A Study of the Effect of Roasting on the Chlorogenic Acid Composition of Coffee Using HPLC. Food Chem. 1984, 15, 219–227. [Google Scholar] [CrossRef]
- Jaiswal, R.; Matei, M.F.; Golon, A.; Witt, M.; Kuhnert, N. Understanding the Fate of Chlorogenic Acids in Coffee Roasting Using Mass Spectrometry Based Targeted and Non-Targeted Analytical Strategies. Food Funct. 2012, 3, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N. Chlorogenic Acids. In Coffee: Volume 1: Chemistry; Clarke, R.J., Macrae, R., Eds.; Elsevier Science Publishers, LTD.: Essex, UK, 1985; pp. 153–202. ISBN 9789400949485. [Google Scholar]
- Hucke, J.; Maier, H.G. Chinasäurelacton Im Kaffee. Z. Lebensm.-Unters. Forsch. 1985, 180, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Schrader, K.; Kiehne, A.; Engelhardt, U.H.; Gerhard Maier, H. Determination of Chlorogenic Acids with Lactones in Roasted Coffee. J. Sci. Food Agric. 1996, 71, 392–398. [Google Scholar] [CrossRef]
- Bennat, C.; Engelhardt, U.H.; Kiehne, A.; Wirries, F.-M.; Maier, H.G. HPLC Analysis of Chlorogenic Acid Lactones in Roasted Coffee. Z. Lebensm.-Unters. Forsch. 1994, 199, 17–21. [Google Scholar] [CrossRef]
- Rao, N.Z.; Fuller, M.; Grim, M.D. Physiochemical Characteristics of Hot and Cold Brew Coffee Chemistry: The Effects of Roast Level and Brewing Temperature on Compound Extraction. Foods 2020, 9, 902. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, G.; Di Mattia, C.; Pittia, P.; Mastrocola, D. Effect of Roasting Degree, Equivalent Thermal Effect and Coffee Type on the Radical Scavenging Activity of Coffee Brews and Their Phenolic Fraction. J. Food Eng. 2009, 90, 74–80. [Google Scholar] [CrossRef]
- Catelani, T.A.; Páscoa, R.N.M.J.; Santos, J.R.; Pezza, L.; Pezza, H.R.; Lima, J.L.F.C.; Lopes, J.A. A Non-Invasive Real-Time Methodology for the Quantification of Antioxidant Properties in Coffee During the Roasting Process Based on Near-Infrared Spectroscopy. Food Bioprocess Technol. 2017, 10, 630–638. [Google Scholar] [CrossRef]
- Herawati, D.; Giriwono, P.E.; Dewi, F.N.A.; Kashiwagi, T.; Andarwulan, N. Critical Roasting Level Determines Bioactive Content and Antioxidant Activity of Robusta Coffee Beans. Food Sci. Biotechnol. 2019, 28, 7–14. [Google Scholar] [CrossRef]
- Liang, N.; Xue, W.; Kennepohl, P.; Kitts, D.D. Interactions between Major Chlorogenic Acid Isomers and Chemical Changes in Coffee Brew That Affect Antioxidant Activities. Food Chem. 2016, 213, 251–259. [Google Scholar] [CrossRef]
- Opitz, S.E.W.; Smrke, S.; Goodman, B.A.; Keller, M.; Schenker, S.; Yeretzian, C. Antioxidant Generation during Coffee Roasting: A Comparison and Interpretation from Three Complementary Assays. Foods 2014, 3, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Cämmerer, B.; Kroh, L.W. Antioxidant Activity of Coffee Brews. Eur. Food Res. Technol. 2006, 223, 469–474. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the Antioxidant Activity of Melanoidins from Coffee Brews by Different Antioxidant Methods. J. Agric. Food Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, R.C.; Visconti, A.; Mennella, C.; Anese, M.; Fogliano, V. Chemical Characterization and Antioxidant Properties of Coffee Melanoidins. J. Agric. Food Chem. 2002, 50, 6527–6533. [Google Scholar] [CrossRef] [PubMed]
- Severini, C.; Ricci, I.; Marone, M.; Derossi, A.; De Pilli, T. Changes in the Aromatic Profile of Espresso Coffee as a Function of the Grinding Grade and Extraction Time: A Study by the Electronic Nose System. J. Agric. Food Chem. 2015, 63, 2321–2327. [Google Scholar] [CrossRef] [PubMed]
- Frank, O.; Zehentbauer, G.; Hofmann, T. Bioresponse-Guided Decomposition of Roast Coffee Beverage and Identification of Key Bitter Taste Compounds. Eur. Food Res. Technol. 2006, 222, 492–508. [Google Scholar] [CrossRef]
- Mestdagh, F.; Glabasnia, A.; Giuliano, P. The Brew—Extracting for Excellence. In The Craft and Science of Coffee; Elsevier: Amsterdam, The Netherlands, 2017; pp. 355–380. [Google Scholar]
- Batali, M.E.; Ristenpart, W.D.; Guinard, J.-X. Brew Temperature, at Fixed Brew Strength and Extraction, Has Little Impact on the Sensory Profile of Drip Brew Coffee. Sci. Rep. 2020, 10, 16450. [Google Scholar] [CrossRef]
- Moroney, K.M.; Lee, W.T.; O’Brien, S.B.G.; Suijver, F.; Marra, J. Modelling of Coffee Extraction during Brewing Using Multiscale Methods: An Experimentally Validated Model. Chem. Eng. Sci. 2015, 137, 216–234. [Google Scholar] [CrossRef]
- Moroney, K.M.; Lee, W.T.; O’Brien, S.B.; Suijver, F.; Marra, J. Coffee Extraction Kinetics in a Well Mixed System. J. Math. Ind. 2016, 7, 3. [Google Scholar] [CrossRef]
- Kim, A.R.; Kim, J.S. Flavor Contributing Nonvolatile Chemical and Sensory Characterization of Cold Water Extraction-Based Coffee by Different Extraction Methods (Dripping vs. Steeping) and Time. J. Korea Soc. Coffee Ind. 2014, 3, 1–9. [Google Scholar]
- Angeloni, G.; Guerrini, L.; Masella, P.; Innocenti, M.; Bellumori, M.; Parenti, A. Characterization and Comparison of Cold Brew and Cold Drip Coffee Extraction Methods. J. Sci. Food Agric. 2019, 99, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Spiro, M.; Selwood, R.M. The Kinetics and Mechanism of Caffeine Infusion from Coffee: The Effect of Particle Size. J. Sci. Food Agric. 1984, 35, 915–924. [Google Scholar] [CrossRef]
- Perry, R.H.; Green, D.W.; Maloney, J.O. Perry’s Handbook of Chemical Engineering; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Córdoba, N.; Moreno, F.L.; Osorio, C.; Velásquez, S.; Ruiz, Y. Chemical and Sensory Evaluation of Cold Brew Coffees Using Different Roasting Profiles and Brewing Methods. Food Res. Int. 2021, 141, 110141. [Google Scholar] [CrossRef] [PubMed]
- Corrochano, B.R.; Melrose, J.R.; Bentley, A.C.; Fryer, P.J.; Bakalis, S. A New Methodology to Estimate the Steady-State Permeability of Roast and Ground Coffee in Packed Beds. J. Food Eng. 2015, 150, 106–116. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Different Extracts Obtained from Spent Coffee Ground and Coffee Silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef] [PubMed]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The Chemical Composition of Exhausted Coffee Waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Balzano, M.; Loizzo, M.R.; Tundis, R.; Lucci, P.; Nunez, O.; Fiorini, D.; Giardinieri, A.; Frega, N.G.; Pacetti, D. Spent Espresso Coffee Grounds as a Source of Anti-Proliferative and Antioxidant Compounds. Innov. Food Sci. Emerg. Technol. 2020, 59, 102254. [Google Scholar] [CrossRef]
- Głowacka, R.; Górska, A.; Wirkowska-Wojdyła, M.; Wołosiak, R.; Majewska, E.; Derewiaka, D. The Influence of Brewing Method on Bioactive Compounds Residues in Spent Coffee Grounds of Different Roasting Degree and Geographical Origin. Int. J. Food Sci. Technol. 2019, 54, 3008–3014. [Google Scholar] [CrossRef]
- Monente, C.; Ludwig, I.A.; Irigoyen, A.; De Peña, M.-P.; Cid, C. Assessment of Total (free and Bound) Phenolic Compounds in Spent Coffee Extracts. J. Agric. Food Chem. 2015, 63, 4327–4334. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Bravo, J.; Monente, C.; Juániz, I.; De Peña, M.P.; Cid, C. Influence of Extraction Process on Antioxidant Capacity of Spent Coffee. Food Res. Int. 2013, 50, 610–616. [Google Scholar] [CrossRef]
- Cruz, R.; Cardoso, M.M.; Fernandes, L.; Oliveira, M.; Mendes, E.; Baptista, P.; Morais, S.; Casal, S. Espresso Coffee Residues: A Valuable Source of Unextracted Compounds. J. Agric. Food Chem. 2012, 60, 7777–7784. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.; Juániz, I.; Monente, C.; Caemmerer, B.; Kroh, L.W.; De Peña, M.P.; Cid, C. Evaluation of Spent Coffee Obtained from the Most Common Coffeemakers as a Source of Hydrophilic Bioactive Compounds. J. Agric. Food Chem. 2012, 60, 12565–12573. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, P.; Jiménez, V.M. Functional Properties of Coffee and Coffee by-Products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Chongsrimsirisakhol, O.; Pirak, T. Total Polyphenol Content and Antioxidant Properties of Cold Brew Coffee Extracts as Affected by Ultrasound Treatment and Their Application in Low Fat Pork Sausage. Int. J. Food Prop. 2022, 25, 813–826. [Google Scholar] [CrossRef]
- López-Barrera, D.M.; Vázquez-Sánchez, K.; Loarca-Piña, M.G.F.; Campos-Vega, R. Spent Coffee Grounds, an Innovative Source of Colonic Fermentable Compounds, Inhibit Inflammatory Mediators in Vitro. Food Chem. 2016, 212, 282–290. [Google Scholar] [CrossRef]
- Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. What Kind of Coffee Do You Drink? An Investigation on Effects of Eight Different Extraction Methods. Food Res. Int. 2018, 116, 1327–1335. [Google Scholar] [CrossRef]
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef]
- HT Nguyen, V.; Prabhakar; Lee, D.-W.; Song, J.-I. Spent Coffee Grounds: An Intriguing Biowaste Reinforcement of Thermoplastic Starch with Potential Application in Green Packaging. Polym. Compos. 2022, 43, 5488–5499. [Google Scholar] [CrossRef]
- Ranic, M.; Nikolic, M.; Pavlovic, M.; Buntic, A.; Siler-Marinkovic, S.; Dimitrijevic-Brankovic, S. Optimization of Microwave-Assisted Extraction of Natural Antioxidants from Spent Espresso Coffee Grounds by Response Surface Methodology. J. Clean. Prod. 2014, 80, 69–79. [Google Scholar] [CrossRef]
- Pettinato, M.; Casazza, A.A.; Ferrari, P.F.; Palombo, D.; Perego, P. Eco-Sustainable Recovery of Antioxidants from Spent Coffee Grounds by Microwave-Assisted Extraction: Process Optimization, Kinetic Modeling and Biological Validation. Food Bioprod. Process. 2019, 114, 31–42. [Google Scholar] [CrossRef]
- Arauzo, P.J.; Lucian, M.; Du, L.; Olszewski, M.P.; Fiori, L.; Kruse, A. Improving the Recovery of Phenolic Compounds from Spent Coffee Grounds by Using Hydrothermal Delignification Coupled with Ultrasound Assisted Extraction. Biomass Bioenergy 2020, 139, 105616. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. Development and Validation of Ultrasound-Assisted Solid-Liquid Extraction of Phenolic Compounds from Waste Spent Coffee Grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Andrade, K.S.; Gonçalvez, R.T.; Maraschin, M.; Ribeiro-do-Valle, R.M.; Martínez, J.; Ferreira, S.R.S. Supercritical Fluid Extraction from Spent Coffee Grounds and Coffee Husks: Antioxidant Activity and Effect of Operational Variables on Extract Composition. Talanta 2012, 88, 544–552. [Google Scholar] [CrossRef]
- Araújo, M.N.; Azevedo, A.Q.P.L.; Hamerski, F.; Voll, F.A.P.; Corazza, M.L. Enhanced Extraction of Spent Coffee Grounds Oil Using High-Pressure CO2 plus Ethanol Solvents. Ind. Crops Prod. 2019, 141, 111723. [Google Scholar] [CrossRef]
- Getachew, A.T.; Chun, B.S. Influence of Pretreatment and Modifiers on Subcritical Water Liquefaction of Spent Coffee Grounds: A Green Waste Valorization Approach. J. Clean. Prod. 2017, 142, 3719–3727. [Google Scholar] [CrossRef]
Bean Origin | Degree of Roast | Brew Temperature | Antioxidant Activity (DPPH Assay, mg TE/g) | Antioxidant Activity (ABTS Assay mg TE/g) | Total Phenolic Content (TPC, mg GAE/g) | Total Flavonoid Content (TFC, mg QE/g) | 5-CQA (mg/100 g) | Caffeine (mg/100 g) | Total Antioxidant Capacity (mmol Trolox/L) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Guatemala, Coffea Arabica | Medium-Dark | 19.3 °C | 34.99 ± 2.53 | 33.73 ± 0.71 | 25.92 ± 1.87 | 3.07 ± 0.13 | 260 ± 2 | 711 ± 9 | Stanek [58] | |
96 °C | 45.53 ± 0.34 | 51.14 ± 1.56 | 33.46 ± 1.10 | 3.67 ± 0.06 | 279 ± 2 | 770 ± 3 | ||||
El Salvador, Coffea Arabica | Medium-Dark | 19.3 °C | 27.63 ± 2.88 | 39.80 ± 0.33 | 21.50 ± 0.68 | 3.04 ± 0.05 | 227 ± 1 | 668 ± 17 | Stanek [58] | |
96 °C | 32.61 ± 1.14 | 39.80 ± 0.33 | 23.04 ± 0.89 | 3.70 ± 0.11 | 229 ± 5 | 705 ± 17 | ||||
Brazil, Coffea Arabica | Medium-Dark | 19.3 °C | 39.08 ± 1.20 | 37.86 ± 0.53 | 23.46 ± 0.44 | 3.11 ± 0.22 | 261 ± 17 | 705 ± 44 | Stanek [58] | |
96 °C | 40.03 ± 1.74 | 49.17 ± 3.02 | 23.43 ± 0.62 | 3.44 ± 0.19 | 234 ± 15 | 689 ± 40 | ||||
Bolivia, Coffea Arabica | Medium-Dark | 19.3 °C | 42.87 ± 1.02 | 54.68 ± 0.49 | 23.77 ± 0.61 | 3.18 ± 0.12 | 280 ± 3 | 605 ± 13 | Stanek [58] | |
96 °C | 39.07 ± 1.47 | 55.02 ± 2.77 | 26.90 ± 1.31 | 3.39 ± 0.23 | 263 ± 13 | 601 ± 24 | ||||
Uganda, Coffea Arabica | Medium | 5 °C | 3249.31 ± 287.82 mg VcE/L | 9 μmol/mL GAE a | Kang [125] | |||||
20 °C | 4243.40 ± 290.46 mg VcE/L | 10.91 ± 0.48 μmol/mL GAE | ||||||||
95 °C | 3604.00 ± 354.61 mg VcE/L | 7.5 μmol/mL GAE a | ||||||||
Uganda, Coffea Arabica | Medium | 5 °C | 1075 mg VcE/L a | 9 μmol/mL GAE a | Han [126] | |||||
10 °C | 1100 ish mg VcE/L a | 9 μmol/mL GAE a | ||||||||
20 °C | 1175 mg VcE/L a | 11.5 ish μmol/mL GAE a | ||||||||
Kona, Coffea Arabica, Kona Typica | Medium | 21–25 °C | 485 ± 47 mg/L | 1095 ± 55 mg/L | Fuller [59] | |||||
Dark | 21–25 °C | 355 ± 51 mg/L | 950 ± 51 mg/L | |||||||
Colombia, Coffea Arabica | Light | 21–25 °C | 757 ± 27 mg/L | 1114 ± 56 mg/L | 13.09 ± 0.22 | Rao [105] | ||||
Medium | 21–25 °C | 353 ± 15 mg/L | 1036 ± 19 mg/L | 11.11 ± 0.33 | ||||||
Dark | 21–25 °C | 147 ± 14 mg/L | 962 ± 41 mg/L | 10.13 ± 0.59 | ||||||
Sumatra, Coffea Arabica | Light | 5 °C | 6.75 ± 0.12 mmol Trolox/L | 2.14 ± 0.07 mmol Trolox/L | 0.83 ± 0.03 mg/mL | Pan [128] | ||||
Medium | 6.01 ± 0.11 mmol Trolox/L | 1.74 ± 0.09 mmol Trolox/L | 0.68 ± 0.08 mg/mL | |||||||
Dark | 4.03 ± 0.13 mmol Trolox/L | 1.44 ± 0.08 mmol Trolox/L | 0.58 ± 0.02 mg/mL | |||||||
Light | 92 °C | 7.61 ± 0.17 mmol Trolox/L | 2.25 ± 0.05 mmol Trolox/L | 0.95 ± 0.05 mg/mL | ||||||
Medium | 6.89 ± 0.12 mmol Trolox/L | 2.03 ± 0.07 mmol Trolox/L | 0.80 ± 0.03 mg/mL | |||||||
Dark | 5.54 ± 0.14 mmol Trolox/L | 1.62 ± 0.07 mmol Trolox/L | 0.67 ± 0.03 mg/mL | |||||||
Yunnan, Coffea Arabica | Light | 5 °C | 6.41 ± 0.15 mmol Trolox/L | 1.93 ± 0.03 mmol Trolox/L | 0.75 ± 0.03 mg/mL | Pan [128] | ||||
Medium | 5.66 ± 0.12 mmol Trolox/L | 1.57 ± 0.06 mmol Trolox/L | 0.66 ± 0.02 mg/mL | |||||||
Dark | 3.13 ± 0.23 mmol Trolox/L | 1.08 ± 0.05 mmol Trolox/L | 0.51 ± 0.03 mg/mL | |||||||
Light | 92 °C | 7.22 ± 0.12 mmol Trolox/L | 2.23 ± 0.08 mmol Trolox/L | 0.86 ± 0.02 mg/mL | ||||||
Medium | 6.45 ± 0.12 mmol Trolox/L | 1.88 ± 0.06 mmol Trolox/L | 0.81 ± 0.04 mg/mL | |||||||
Dark | 5.33 ± 0.21 mmol Trolox/L | 1.32 ± 0.11 mmol Trolox/L | 0.58 ± 0.07 mg/mL |
Brewing Duration | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Measurement | Bean Origin | Degree of Roast | Brew Method | Brew Temperature | 3 min | 15 min | 1 h | 3 h | 6 h | 9 h | 12 h | 18 h | 24 h | Reference |
3-CQA (mg/L) | Kona, Coffea Arabica | Medium | Steep | 21–25 °C | 64.9 ± 46.1 | 164.7 ± 89.9 | 319.5 ± 66 | 442.3 ± 72 | 479.6 ± 40 | 475.1 ± 47 | 508.8 ± 29.8 | Fuller [59] | ||
Dark | Steep | 21–25 °C | 83.3 ± 37.7 | 148.8 ± 12.4 | 271.4 ± 48.8 | 302.1 ± 73.5 | 361.9 ± 17.6 | 410.3 ± 33.6 | 393.8 ± 67.8 | |||||
CQA (ppm) | Kenya, Coffea Arabica | Dark | Drip | 21–25 °C | 2122.54 ± 194.98 | 1461.33 ± 203.56 | 1176.12 ± 70.37 | 612.23 ± 12.61 | Kim [151] | |||||
Steep | 21–25 °C | 193.94 ± 14.06 | 233.16 ± 32.74 | 255.26 ± 29.39 | 291.05 ± 40.77 | |||||||||
CQA (mg/L) | Brazil, Coffea Arabica | Light | Steep | 5 °C | 1036.2 ± 22.5 | 902.5 ± 12.5 | 949.2 ± 16.3 | Maksimowski [63] | ||||||
10 °C | 1034.5 ± 23.2 | 930.5 ± 29.4 | 964.0 ± 11.6 | |||||||||||
15 °C | 919.4 ± 4.7 | 931.9 ± 6.9 | 921.4 ± 29.4 | |||||||||||
Caffeine (mg/L) | Kona, Coffea Arabica | Medium | Steep | 21–25 °C | 158.3 ± 114.7 | 390.2 ± 172.9 | 730 ± 123.5 | 983.4 ± 62 | 1077 ± 82.8 | 1071.7 ± 61.3 | 1182.9 ± 124.2 | Fuller [59] | ||
Dark | Steep | 21–25 °C | 156.4 ± 63.1 | 440.2 ± 45.4 | 776 ± 96.5 | 805.9 ± 101.4 | 991.8 ± 38.1 | 1124.7 ± 92.8 | 1075.8 ± 91.4 | |||||
Caffeine (ppm) | Kenya, Coffea Arabica | Dark | Drip | 21–25 °C | 5288.99 ± 480.58 | 3818.39 ± 503.48 | 3139.42 ± 166.88 | 1606.05 ± 30.98 | Kim [151] | |||||
Steep | 21–25 °C | 509.99 ± 44.64 | 619.39 ± 100.88 | 685.13 ± 63.65 | 755.64 ± 106.47 | |||||||||
Caffeine (mg/L) | Brazil, Coffea Arabica | Light | Steep | 5 °C | 460.2 ± 8.1 | 474.6 ± 10.6 | 540.4 ± 24.3 | Maksimowski [63] | ||||||
15 °C | 516.1 ± 11.7 | 526.0 ± 26.2 | 497.4 ± 10.8 | |||||||||||
25 °C | 471.2 ± 9.4 | 473.5 ± 6.5 | 500.9 ± 9.9 | |||||||||||
Total Phenolic Content (TPC, μmol GAE/mL) | Uganda, Coffea Arabica | Medium | Drip | 5 °C | 6.75 a | Kang [125] | ||||||||
20 °C | 10.75 a | |||||||||||||
Pour Over | 80 °C | 7 a | ||||||||||||
95 °C | 7.75 a | |||||||||||||
Steep | 5 °C | 8.75 a | ||||||||||||
20 °C | 11 a | |||||||||||||
Total Phenolic Content (TPC, μmol GAE/mL | Uganda, Coffea Arabica | Medium | Steep | 5 °C | 6 a | 7.5 a | 8.75 a | 9 a | Han [126] | |||||
10 °C | 7 a | 7.5 a | 8.75 a | 9 a | ||||||||||
20 °C | 7.5 a | 8.75 a | 11.25 a | 11.5 a | ||||||||||
Drip | 10 °C | 6.75 a | 7.5 a | 8.5 a | ||||||||||
20 °C | 7.5 a | 8.5 a | 10.5 a | |||||||||||
Antioxidant Activity (AA-ABTS assay mg VcE/L) | Uganda, Coffea Arabica | Medium | Drip | 5 °C | 3250 a | Kang [125] | ||||||||
20 °C | 4400 a | |||||||||||||
Pour Over | 80 °C | 3300 a | ||||||||||||
95 °C | 3600 a | |||||||||||||
Steep | 5 °C | 3250 a | ||||||||||||
20 °C | 4300 a | |||||||||||||
Antioxidant Activity (AA-ABTS assay mg VcE/L) | Uganda, Coffea Arabica | Medium | Steep | 5 °C | 550 a | 775 a | 1000 a | 1075 a | Han [126] | |||||
10 °C | 575 a | 800 a | 1050 a | 1100 a | ||||||||||
20 °C | 650 a | 850 a | 1100 a | 1175 a | ||||||||||
Drip | 10 °C | 550 a | 750 a | 1000 a | ||||||||||
20 °C | 600 a | 800 a | 1050 a |
Drip | Steeping | Reference |
---|---|---|
1.03 ± 0.19 mg/mL | 0.85 ± 0.15 mg/mL | Angeloni [152] |
3.46 ± 0.30 mg/mL | 0.64 ± 0.08 mg/mL | Kim [151] |
1.42 ± 0.008 mg/mL | 0.995 ± 0.005 mg/mL | Cordoba [155] |
1.33 ± 0.009 mg/mL | 0.944 ± 0.005 mg/mL | Cordoba [155] |
Compound | Drip | Steeping | Reference |
---|---|---|---|
5-CQA | 0.36 ± 0.07 mg/mL | 0.29 ± 0.06 mg/mL | Angeloni [152] |
TPC a,b | 10.76 ± 0.49 µmol/mL GAE | 10.91 ± 0.48 µmol/mL GAE | Kang [125] |
TPC a,c | 10.2 µmol/mL GAE | 10.8 µmol/mL GAE | Han [126] |
AA d | 3747.36 ± 289.1 mg VcE/L | 3817.61 ± 297.6 mg/VcE/L | Kang [125] |
AA d,c | 1000 mg VcE/L | 1100 mg VcE/L | Han [126] |
Origin, Degree of Roast | Initial Brewing Method | Total CQA Concentration (mg/L of Extract) | ABTS (mmol TE/L Extract) | DPPH (mmol TE/L Extract) | TPC (mg GAE/L Extract) | FRAP (mg FeSO4/L Extract) | Reference |
---|---|---|---|---|---|---|---|
Colombia, Coffea Arabica Medium | Cold, Immersion | 480.65 ± 8.31 a,A | 5.69 ± 0.59 a,A | 4.23 ± 0.68 a,A | 420.5 ± 16.7 a,A | 145.6 ± 4.2 a,A | Yust [75] |
Hot, French Press | 716.02 ± 7.70 b,A | 6.94 ± 0.64 b,A | 5.69 ± 1.54 ab,A | 534.2 ± 14.0 b,A | 217.1 ± 12.3 b,A | ||
Hot, Espresso | 221.12 ± 1.17 c,A | 5.5 ± 0.37 b,A | 3.57 ± 0.72 b,A | 313.5 ± 8.9 c,A | 111.4 ± 6.8 c,A | ||
Colombia, Coffea Arabica Dark | Cold, Immersion | 202.72 ± 3.67 a,B | 7.15 ± 0.78 a,B | 5.41 ± 1.05 a,B | 503.2 ± 12.6 a,B | 193.3 ± 6.9 a,B | Yust [75] |
Hot, French Press | 277.86 ± 4.47 b,B | 8.92 ± 0.59 b,B | 7.6 ± 0.79 b,A | 595.2 ± 11.0 b,B | 254.6 ± 16.6 b,B | ||
Hot, Espresso | 38.88 ± 0.71 c,B | 3.43 ± 0.20 c,B | 2.53 ± 0.39 c,A | 206.2 ± 21.1 c | 73.1 ± 2.7 c,B | ||
Colombia, Coffea Arabica | Hot, Espresso | 0.75 mg TE/100 g DW + | 52 mg TE/100 g DW + | 41.6 ± 2.1 mg GAE/100 g DW | Andrade [170] | ||
Brazil, Coffea Arabica | Hot, Espresso | 0.85 mg TE/100 g DW + | 78.1 ± 7.3 TE/100 g DW | 53.7 ± 3.1 mg GAE/100 g DW | Andrade [170] | ||
Guatemala, Coffea Arabica | Hot, Espresso | 0.5 ± 0.04 mg TE/100 g DW | 50.6 ± 5.3 mg TE/100 g DW | 52 mg GAE/100 g DW + | 50.6 ± 5.3 mg TE/100 g DW | Andrade [170] | |
Ethiopia, Coffea Arabica | Hot, Espresso | 1.8 ± 0.2 mg TE/100 g DW | 66 mg TE/100 g DW + | 42 mg GAE/100 g DW + | Andrade [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yust, B.G.; Wilkinson, F.; Rao, N.Z. Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants 2024, 13, 29. https://doi.org/10.3390/antiox13010029
Yust BG, Wilkinson F, Rao NZ. Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants. 2024; 13(1):29. https://doi.org/10.3390/antiox13010029
Chicago/Turabian StyleYust, Brian G., Frank Wilkinson, and Niny Z. Rao. 2024. "Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review" Antioxidants 13, no. 1: 29. https://doi.org/10.3390/antiox13010029
APA StyleYust, B. G., Wilkinson, F., & Rao, N. Z. (2024). Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants, 13(1), 29. https://doi.org/10.3390/antiox13010029