Fractionation of High-Value Compounds from Hops Using an Optimised Sequential Extraction Procedure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Biomasses
2.2. Development of a Sequential Extraction Method to Recover High-Value Compounds from Hops
2.3. Optimisation of the S-L Extraction Method
2.4. Analytical Methods
2.4.1. Moisture Content
2.4.2. Essential Oils Content
2.4.3. α-Acids and β-Acids Content
2.4.4. Xanthohumol Content
2.4.5. Total Phenolic Content
2.4.6. Antioxidant Activity
Ferric Reducing Antioxidant Power
DPPH Radical-Scavenging Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Six Hop Varieties
3.2. Development of a Sequential Extraction and Separation Procedure for Hops
3.3. Optimisation of High-Value Compounds Extraction from Hops
3.4. Application of the Optimal S-L Extraction Conditions to Other Hop Varieties: Chemical Composition of the Hop-Derived Fractions
3.5. Antioxidant Activities of Hop-Derived Fractions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruano-Rosa, D.; Garita-Cambronero, J. Microbial Secondary Metabolites in Plant Health. In The Chemical Dialogue between Plants and Beneficial Microorganisms; Academic Press: Cambridge, MA, USA, 2023; pp. 199–212. [Google Scholar] [CrossRef]
- Veiga, B.A.; Hamerski, F.; Clausen, M.P.; Errico, M.; de Paula Scheer, A.; Corazza, M.L. Compressed Fluids Extraction Methods, Yields, Antioxidant Activities, Total Phenolics and Flavonoids Content for Brazilian Mantiqueira Hops. J. Supercrit. Fluids 2021, 170, 105155. [Google Scholar] [CrossRef]
- Porteous-Álvarez, A.J.; Maldonado-González, M.M.; Mayo-Prieto, S.; Lorenzana, A.; Paniagua-García, A.I.; Casquero, P.A. Green Strategies of Powdery Mildew Control in Hop: From Organic Products to Nanoscale Carriers. J. Fungi 2021, 7, 490. [Google Scholar] [CrossRef] [PubMed]
- Olšovská, J.; Kameník, Z.; Čejka, P.; Jurková, M.; Mikyška, A. Ultra-High-Performance Liquid Chromatography Profiling Method for Chemical Screening of Proanthocyanidins in Czech Hops. Talanta 2013, 116, 919–926. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; López Vilariño, J.M.; Domínguez, H. What Is New on the Hop Extraction? Trends Food Sci. Technol. 2019, 93, 12–22. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A Story That Begs to Be Told. A Review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Wongchum, N.; Dechakhamphu, A. Xanthohumol Prolongs Lifespan and Decreases Stress-Induced Mortality in Drosophila melanogaster. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 244, 108994. [Google Scholar] [CrossRef]
- Sommella, E.; Pagano, F.; Salviati, E.; Chieppa, M.; Bertamino, A.; Manfra, M.; Sala, M.; Novellino, E.; Campiglia, P. Chemical Profiling of Bioactive Constituents in Hop Cones and Pellets Extracts by Online Comprehensive Two-Dimensional Liquid Chromatography with Tandem Mass Spectrometry and Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Sep. Sci. 2018, 41, 1548–1557. [Google Scholar] [CrossRef]
- Carbone, K.; Macchioni, V.; Petrella, G.; Cicero, D.O. Exploring the Potential of Microwaves and Ultrasounds in the Green Extraction of Bioactive Compounds from Humulus lupulus for the Food and Pharmaceutical Industry. Ind. Crop. Prod. 2020, 156, 112888. [Google Scholar] [CrossRef]
- The European Parliament and the Council of The European Union. Directive 2009/32/Ec. Off. J. Eur. Union 2009, 141, 3–11. [Google Scholar]
- Lorbeer, A.J.; Lahnstein, J.; Bulone, V.; Nguyen, T.; Zhang, W. Multiple-Response Optimization of the Acidic Treatment of the Brown Alga Ecklonia Radiata for the Sequential Extraction of Fucoidan and Alginate. Bioresour. Technol. 2015, 197, 302–309. [Google Scholar] [CrossRef]
- Hrnčič, M.K.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Kontek, B.; Jedrejek, D.; Oleszek, W.; Olas, B. Antiradical and Antioxidant Activity in Vitro of Hops-Derived Extracts Rich in Bitter Acids and Xanthohumol. Ind. Crop. Prod. 2021, 161, 113208. [Google Scholar] [CrossRef]
- Lyu, J.I.; Ryu, J.; Seo, K.S.; Kang, K.Y.; Park, S.H.; Ha, T.H.; Ahn, J.W.; Kang, S.Y. Comparative Study on Phenolic Compounds and Antioxidant Activities of Hop (Humulus lupulus L.) Strobile Extracts. Plants 2022, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- EBC, E.B.C. 7.2 Moisture Content of Hops and Hop. 1997, 7–9. Available online: https://brewup.eu/ebc-analytica/hops-and-hop-products/moisture-content-of-hops-and-hop-products/7.2 (accessed on 20 September 2023).
- EBC, E.B.C. 7.10 Hop Oil Content of Hops and Hop. 2002, 1987, 3–6. Available online: https://brewup.eu/ebc-analytica/hops-and-hop-products/hop-oil-content-of-hops-and-hop-products/7.10 (accessed on 20 September 2023).
- EBC, E.B.C. 7.12 Hop Essential Oils by Capillary Gas Chromatography Flame Ionization Detection. 2006, 7–10. Available online: https://brewup.eu/ebc-analytica/hops-and-hop-products/hop-essential-oils-by-capillary-gas-chromatography-flame-ionization-detection/7.12 (accessed on 20 September 2023).
- EBC, E.B.C. 7.7 A and Β Acids in Hops and Hop Products by HPLC. 2012, 6–11. Available online: https://brewup.eu/ebc-analytica/hops-and-hop-products/and-acids-in-hops-and-hop-products-by-hplc7/7.7 (accessed on 20 September 2023).
- EBC, E.B.C. 7.15 Xanthohumol in Hops and Hop Products By Hplc (Vm). 2017, 7, 1–5. Available online: https://brewup.eu/ebc-analytica/hops-and-hop-products/xanthohumol-in-hops-and-hop-products-by-hplc/7.15 (accessed on 20 September 2023).
- EBC, E.B.C. 7.14 Total Polyphenols in Hops and Hop. 2015, 11, 7–10. Available online: https://brewup.eu/ebc-analytica/hops-and-hop-products/total-polyphenols-in-hops-and-hop-pellets/7.14 (accessed on 20 September 2023).
- Grudniewska, A.; Popłoński, J. Simple and Green Method for the Extraction of Xanthohumol from Spent Hops Using Deep Eutectic Solvents. Sep. Purif. Technol. 2020, 250, 117196. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Chiancone, B.; Guarrasi, V.; Leto, L.; Del Vecchio, L.; Calani, L.; Ganino, T.; Galaverni, M.; Cirlini, M. Vitro-Derived Hop (Humulus lupulus L.) Leaves and Roots as Source of Bioactive Compounds: Antioxidant Activity and Polyphenolic Profile. Plant Cell Tissue Organ Cult. 2023, 153, 295–306. [Google Scholar] [CrossRef]
- Squillaci, G.; Apone, F.; Sena, L.M.; Carola, A.; Tito, A.; Bimonte, M.; De Lucia, A.; Colucci, G.; La Cara, F.; Morana, A. Chestnut (Castanea sativa Mill.) Industrial Wastes as a Valued Bioresource for the Production of Active Ingredients. Process Biochem. 2018, 64, 228–236. [Google Scholar] [CrossRef]
- Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R. The Pharmacognosy of Humulus lupulus L. (Hops) with an Emphasis on Estrogenic Properties. Phytomedicine 2006, 13, 119–131. [Google Scholar] [CrossRef]
- Zanoli, P.; Zavatti, M. Pharmacognostic and Pharmacological Profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef]
- Proestos, C.; Komaitis, M. Antioxidant Capacity of Hops; Elsevier Inc.: Amsterdam, The Netherlands, 2008; ISBN 9780123738912. [Google Scholar]
- Inui, T.; Okumura, K.; Matsui, H.; Hosoya, T.; Kumazawa, S. Effect of Harvest Time on Some in Vitro Functional Properties of Hop Polyphenols. Food Chem. 2017, 225, 69–76. [Google Scholar] [CrossRef]
- Kim, E.M.; Eom, J.H.; Um, Y.; Kim, Y.; Woo, H.M. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli. J. Agric. Food Chem. 2015, 63, 4606–4612. [Google Scholar] [CrossRef] [PubMed]
- Dresel, M.; Dunkel, A.; Hofmann, T. Sensomics Analysis of Key Bitter Compounds in the Hard Resin of Hops (Humulus lupulus L.) and Their Contribution to the Bitter Profile of Pilsner-Type Beer. J. Agric. Food Chem. 2015, 63, 3402–3418. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Taniguchi, H.; Yamada, M.; Matsukura, Y.; Koizumi, H.; Furihata, K.; Shindo, K. Analysis of the Components of Hard Resin in Hops (Humulus lupulus L.) and Structural Elucidation of Their Transformation Products Formed during the Brewing Process. J. Agric. Food Chem. 2014, 62, 11602–11612. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.F.; Page, J.E. Xanthohumol and Related Prenylflavonoids from Hops and Beer: To Your Good Health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Önder, F.C.; Ay, M.; Sarker, S.D. Comparative Study of Antioxidant Properties and Total Phenolic Content of the Extracts of Humulus lupulus L. and Quantification of Bioactive Components by LC-MS/MS and GC-MS. J. Agric. Food Chem. 2013, 61, 10498–10506. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Świeca, M.; Cichocka, J.; Gawlik-Dziki, U. The Phenolic Content and Antioxidant Activity of the Aqueous and Hydroalcoholic Extracts of Hops and Their Pellets. J. Inst. Brew. 2013, 119, 103–110. [Google Scholar] [CrossRef]
- Keskin; Şirin, Y.; Çakir, H.E.; Keskin, M. An Investigation of Humulus lupulus L.: Phenolic Composition, Antioxidant Capacity and Inhibition Properties of Clinically Important Enzymes. S. Afr. J. Bot. 2019, 120, 170–174. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Bonikowski, R.; Balawejder, M. Optimization of Extraction Process of Antioxidant Compounds from Yellow Onion Skin and Their Use in Functional Bread Production. LWT 2020, 117, 108614. [Google Scholar] [CrossRef]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of Extraction of Phenolics from Inga Edulis Leaves Using Response Surface Methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Vázquez, G.; Fernández-Agulló, A.; Gómez-Castro, C.; Freire, M.S.; Antorrena, G.; González-Álvarez, J. Response Surface Optimization of Antioxidants Extraction from Chestnut (Castanea sativa) Bur. Ind. Crop. Prod. 2012, 35, 126–134. [Google Scholar] [CrossRef]
- Lakka, A.; Karageorgou, I.; Kaltsa, O.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D. Polyphenol Extraction from Humulus lupulus (Hop) Using a Neoteric Glycerol/L-Alanine Deep Eutectic Solvent: Optimisation, Kinetics and the Effect of Ultrasound-Assisted Pretreatment. AgriEngineering 2019, 1, 403–417. [Google Scholar] [CrossRef]
- Nagybákay, N.E.; Syrpas, M.; Vilimaitė, V.; Tamkutė, L.; Pukalskas, A.; Venskutonis, P.R.; Kitrytė, V. Optimized Supercritical CO2 Extraction Enhances the Recovery of Valuable Lipophilic Antioxidants and Other Constituents from Dual-Purpose Hop (Humulus lupulus L.) Variety Ella. Antioxidants 2021, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.d.R.; Maciel, M.V.d.O.B.; Machado, M.H.; Bazzo, G.C.; de Armas, R.D.; Vitorino, V.B.; Vitali, L.; Block, J.M.; Barreto, P.L.M. Bioactive Compounds and Antioxidant Activities of Brazilian Hop (Humulus lupulus L.) Extracts. Int. J. Food Sci. Technol. 2020, 55, 340–347. [Google Scholar] [CrossRef]
- Arruda, T.R.; Pinheiro, P.F.; Silva, P.I.; Bernardes, P.C. A New Perspective of a Well-Recognized Raw Material: Phenolic Content, Antioxidant and Antimicrobial Activities and α- and β-Acids Profile of Brazilian Hop (Humulus lupulus L.) Extracts. LWT 2021, 141, 110905. [Google Scholar] [CrossRef]
- Labieniec-Watala, M.; Przygodzki, T.; Siewiera, K.; Podsedek, A.; Watala, C. Facts and Artifacts in the Evaluation of the Anti-Diabetic Activity of Spent Hop Extract in Rat Hearts in the “Experimental Model of Diabetes”. Int. J. Pharm. Sci. Res. 2015, 2, 2394-1502. [Google Scholar] [CrossRef]
- Ting, P.L.; Lusk, L.; Refling, J.; Kay, S.; Ryder, D. Identification of Antiradical Hop Compounds. J. Am. Soc. Brew. Chem. 2008, 66, 116–126. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In Vitro Evaluation of Antibacterial, Anticollagenase, and Antioxidant Activities of Hop Components (Humulus lupulus) Addressing Acne Vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar] [CrossRef]
Hop Variety | Nugget | Columbus | Chinook | Magnum | Cascade | Fuggle |
---|---|---|---|---|---|---|
Chemical compostion (dry basis) | ||||||
Cohumulone (%, w/w) | 2.53 ± 0.04 C | 3.77 ± 0.05 A | 3.10 ± 0.12 B | 2.23 ± 0.01 D | 1.75 ± 0.01 E | 1.75 ± 0.06 E |
n+Adhumulone (%, w/w) | 8.86 ± 0.08 A | 9.07 ± 0.08 A | 6.88 ± 0.18 B | 5.39 ± 0.07 C | 3.39 ± 0.01 D | 5.17 ± 0.04 C |
Lupulone (%, w/w) | 2.02 ± 0.02 B | 2.46 ± 0.00 A | 1.61 ± 0.06 CD | 1.65 ± 0.02 C | 2.53 ± 0.02 A | 1.54 ± 0.02 D |
n+Adlupulone (%, w/w) | 2.03 ± 0.02 B | 1.97 ± 0.02 B | 1.25 ± 0.03 D | 1.27 ± 0.02 D | 2.50 ± 0.03 A | 1.75 ± 0.02 C |
α-Acids (%, w/w) | 11.39 ± 0.12 B | 12.84 ± 0.13 A | 9.97 ± 0.00 C | 7.61 ± 0.06‘D | 6.92 ± 0.01 E | 5.20 ± 0.00 F |
β-Acids (%, w/w) | 4.05 ± 0.04 B | 4.43 ± 0.02 A | 2.85 ± 0.02 D | 2.92 ± 0.01 D | 3.28 ± 0.04 C | 2.55 ± 0.01 E |
Xanthohumol (%, w/w) | 0.76 ± 0.01 A | 0.75 ± 0.01 A | 0.61 ± 0.02 B | 0.59 ± 0.00 B | 0.44 ± 0.00 C | 0.35 ± 0.00 D |
TPC (g GAE/100 g) | 2.33 ± 0.02 E | 1.88 ± 0.03 F | 3.04 ± 0.03 D | 3.13 ± 0.02 C | 3.60 ± 0.01 A | 3.28 ± 0.03 B |
Essential oils (%, v/w) | 1.60 ± 0.07 A | 1.70 ± 0.07 A | 1.20 ± 0.07 B | 1.20 ± 0.07 B | 0.75 ± 0.07 C | 0.90 ± 0.07 C |
Essential oils composition | ||||||
β-Pinene (%, rel) | 0.16 | 0.66 | 0.23 | 0.37 | 0.40 | 0.25 |
Myrcene (%, rel) | 51.84 | 56.43 | 29.70 | 64.00 | 44.18 | 42.30 |
Limonene (%, rel) | 0.66 | 0.66 | 0.50 | 0.84 | 0.61 | 0.61 |
Linalool (%, rel) | 1.15 | 0.77 | 0.59 | 0.63 | 0.61 | 0.75 |
Geraniol (%, rel) | 0.08 | 0.75 | 0.51 | 0.62 | 1.64 | 0.27 |
2-Undecanone (%, rel) | 0.52 | 0.19 | 0.32 | 0.62 | 0,24 | 0.49 |
β-Cariophyllene (%, rel) | 9.01 | 7.69 | 10.39 | 5.96 | 7.34 | 9.75 |
β-Farnesene (%, rel) | nd | nd | nd | nd | 7.96 | 4.37 |
Humulene (%, rel) | 19.84 | 15.03 | 24.42 | 14.29 | 18.16 | 25.74 |
Solvent | α-Acids | β-Acids | Xanthohumol | TPC |
---|---|---|---|---|
(Yield, %) | (Yield, %) | (Yield, %) | (Yield, %) | |
Soft resins | ||||
Methanol | 54.28 ± 0.57 F | 74.77 ± 1.33 F | 5.93 ± 0.69 CD | na |
Ethanol | 69.69 ± 0.79 DE | 80.54 ± 0.71 CDE | 11.61 ± 2.70 AB | na |
Dichloromethane | 91.55 ± 1.94 A | 88.68 ± 1.63 A | 10.05 ± 1.12 BC | na |
Acetone | 57.67 ± 1.02 F | 78.45 ± 1.25 DEF | 5.76 ± 0.70 CD | na |
Ethyl Acetate | 80.09 ± 0.49 BC | 86.15 ± 1.98 AB | 14.83 ± 1.01 A | na |
Hexane | 78.95 ± 1.25 BC | 85.59 ± 1.92 AB | 4.12 ± 0.47 D | na |
Methanol–Diethyl Ether (25:75) | 77.01 ± 1.24 C | 83.23 ± 1.44 BC | 9.03 ± 0.73 BC | na |
Methanol–Diethyl Ether (50:50) | 65.73 ± 1.85 E | 76.43 ± 1.29 EF | 10.49 ± 2.54 AB | na |
Methanol–Dichloromethane (25:75) | 82.16 ± 1.82 B | 88.18 ± 1.06 A | 8.36 ± 2.05 BCD | na |
Methanol–Dichloromethane (50:50) | 70.03 ± 1.99 D | 80.93 ± 1.44 CD | 9.24 ± 0.93 BC | na |
Hard resins | ||||
Methanol | 30.10 ± 1.52 A | 13.00 ± 2.05 A | 78.55 ± 0.46 AB | 61.98 ± 2.62A |
Ethanol | 14.84 ± 0.45 CD | 4.77 ± 0.52 CD | 74.38 ± 1.38 CD | 14.15 ± 0.86 CD |
Dichloromethane | 1.50 ± 0.18 G | 0.78 ± 0.13 E | 64.64 ± 1.48 F | 1.77 ± 0.81 E |
Acetone | 27.19 ± 0.77 A | 10.43 ± 1.22 AB | 73.62 ± 0.36 DE | 17.65 ± 1.32 C |
Ethyl Acetate | 5.83 ± 0.25 F | 1.26 ± 0.07 E | 64.76 ± 1.21 F | 3.79 ± 0.30 E |
Hexane | 12.36 ± 0.55 DE | 2.87 ± 0.18 DE | 64.89 ± 1.97 F | 15.44 ± 1.07 CD |
Methanol–Diethyl Ether (25:75) | 10.43 ± 1.38 E | 3.89 ± 0.71 DE | 70.92 ± 1.22 E | 11.65 ± 0.89 D |
Methanol–Diethyl Ether (50:50) | 22.84 ± 2.14 B | 11.22 ± 1.66 A | 75.29 ± 1.11 BCD | 23.56 ± 2.44 B |
Methanol–Dichloromethane (25:75) | 9.69 ± 2.24 E | 2.82 ± 1.69 DE | 78.99 ± 0.81 A | 14.56 ± 2.59 CD |
Methanol–Dichloromethane (50:50) | 18.08 ± 0.89 C | 7.73 ± 1.04 BC | 77.43 ± 0.42 ABC | 24.93 ± 0.52 B |
Spent solids | ||||
Methanol | 3.09 ± 0.89 BCD | 1.92 ± 0.74 BC | 2.67 ± 0.87 D | 39.19 ± 2.03 D |
Ethanol | 4.74 ± 1.08 AB | 2.89 ± 0.95 AB | 5.26 ± 1.22 C | 58.86 ± 1.14 C |
Dichloromethane | 2.21 ± 0.17 CDE | 0.35 ± 0.27 CD | 15.27 ± 0.70 A | 72.08 ± 2.51 A |
Acetone | 3.67 ± 0.44 BC | 1.66 ± 0.36 BCD | 8.77 ± 0.41 B | 64.16 ± 2.28 B |
Ethyl Acetate | 5.81 ± 1.23 A | 3.65 ± 1.33 A | 15.01 ± 1.14 A | 74.57 ± 1.73 A |
Hexane | 1.08 ± 0.08 E | 0.00 ± 0.00 D | 6.92 ± 0.58 BC | 64.74 ± 2.02 B |
Methanol–Diethyl Ether (25:75) | 2.25 ± 0.30 CDE | 1.12 ± 0.24 CD | 7.78 ± 0.37 B | 58.96 ± 1.28 C |
Methanol–Diethyl Ether (50:50) | 1.57 ± 0.29 DE | 0.70 ± 0.20 CD | 2.82 ± 0.46 D | 57.76 ± 1.19 C |
Methanol–Dichloromethane (25:75) | 1.50 ± 0.06 DE | 0.43 ± 0.06 CD | 1.91 ± 0.18 D | 64.14 ± 0.42 B |
Methanol–Dichloromethane (50:50) | 1.47 ± 0.08 DE | 0.47 ± 0.05 CD | 1.33 ± 0.09 D | 54.76 ± 1.30 C |
Trial | Methanol Concentration (% v/v) | Stirring Time (min) | α-Acids in Soft Resins Yield (%) | β-Acids in Soft Resins Yield (%) | Xanthohumol in Hard Resins Yield (%) | TPC in Spent Solids Yield (%) |
---|---|---|---|---|---|---|
1 | 25 | 62.5 | 88.03 | 92.50 | 80.28 | 65.86 |
2 | 25 | 62.5 | 78.59 | 82.66 | 78.48 | 67.76 |
3 | 50 | 62.5 | 70.43 | 82.45 | 78.01 | 61.89 |
4 | 25 | 62.5 | 81.23 | 86.06 | 79.20 | 65.42 |
5 | 25 | 62.5 | 86.74 | 90.91 | 79.96 | 65.52 |
6 | 25 | 120 | 87.99 | 91.50 | 78.69 | 66.45 |
7 | 7 | 21.8 | 79.81 | 82.24 | 74.43 | 76.27 |
8 | 25 | 5.0 | 75.96 | 86.46 | 77.07 | 69.47 |
9 | 43 | 103.2 | 71.90 | 79.71 | 78.65 | 59.76 |
10 | 0 | 62.5 | 87.45 | 87.16 | 65.47 | 73.58 |
11 | 25 | 62.5 | 81.89 | 85.61 | 77.05 | 69.22 |
12 | 43 | 21.8 | 71.31 | 81.29 | 77.56 | 65.77 |
13 | 7 | 103.2 | 83.91 | 83.00 | 77.71 | 69.83 |
Calculated | Observed | ||||||
---|---|---|---|---|---|---|---|
(Yield, %) | (Yield, %) | ||||||
Nugget | Nugget | Columbus | Chinook | Magnum | Cascade | Fuggle | |
α-Acids in soft resins | 86.57 | 81.67 ± 1.52 AB | 62.84 ± 1.67 C | 77.92 ± 1.08 B | 84.89 ± 2.57 A | 78.21 ± 1.21 B | 78.76 ± 1.28 B |
β-Acids in soft resins | 89.14 | 88.00 ± 1.38 A | 72.58 ± 2.18 B | 83.82 ± 2.79 A | 89.87 ± 2.93 A | 88.06 ± 1.84 A | 87.97 ± 2.20 A |
Xanthohumol in hard resins | 78.48 | 79.65 ± 0.78 A | 66.00 ± 1.36 C | 72.76 ± 0.61 B | 72.27 ± 0.94 B | 70.06 ± 0.65 B | 72.28 ± 2.13 B |
TPC in spent solids | 67.10 | 67.07 ± 1.04 D | 72.86 ± 1.87 C | 79.14 ± 2.26 B | 77.72 ± 2.22 BC | 78.42 ± 1.40 BC | 86.62 ± 2.86 A |
Nugget | Columbus | Chinook | Magnum | Cascade | Fuggle | |
---|---|---|---|---|---|---|
Soft resins | ||||||
FRAP (g AAE/100 g) | 3.46 ± 0.05 A | 3.43 ± 0.09 A | 3.16 ± 0.11 A | 3.26 ± 0.17 A | 3.91 ± 0.10 A | 3.84 ± 0.23 A |
(*) RSAmax (%) | 80.57 ± 0.21 A | 69.93 ± 0.17 F | 76.18 ± 0.32 B | 72.16 ± 0.22 E | 74.63 ± 0.17 C | 73.50 ± 0.33 D |
(*) C RSAmax (mg/mL) | 0.39 ± 0.02 A | 0.32 ± 0.02 B | 0.33 ± 0.03 B | 0.34 ± 0.01 AB | 0.32 ± 0.01 B | 0.31 ± 0.01 B |
(*) EC50 (mg/mL) | 0.16 ± 0.01 B | 0.14 ± 0.00 C | 0.14 ± 0.01 C | 0.21 ± 0.00 A | 0.20 ± 0.00 A | 0.16 ± 0.00 B |
Hard resins | ||||||
FRAP (g AAE/100 g) | 1.84 ± 0.01 AB | 1.89 ± 0.09 AB | 2.05 ± 0.30 AB | 1.45 ± 0.38 B | 1.86 ± 0.16 AB | 2.35 ± 0.09 A |
(*) RSAmax (%) | 78.08 ± 0.17 A | 67.00 ± 0.15 F | 73.82 ± 0.30 B | 72.83 ± 0.32 C | 71.28 ± 0.22 D | 69.90 ± 0.23 E |
(*) C RSAmax (mg/mL) | 2.52 ± 0.03 B | 1.22 ± 0.02 D | 1.78 ± 0.03 C | 3.80 ± 0.05A | 1.74 ± 0.02 C | 0.81 ± 0.02 E |
(*) EC50 (mg/mL) | 0.83 ± 0.02 A | 0.74 ± 0.01 B | 0.76 ± 0.02 B | 0.72 ± 0.02 B | 0.65 ± 0.01 C | 0.51 ± 0.02 D |
Spent solids | ||||||
FRAP (g AAE/100 g) | 1.16 ± 0.07 C | 1.29 ± 0.02 C | 2.15 ± 0.05 B | 2.17 ± 0.03 B | 2.06 ± 0.01 B | 2.75 ± 0.05 A |
(*) RSAmax (%) | 86.36 ± 0.30 A | 77.15 ± 0.21 D | 74.82 ± 0.35 E | 82.31 ± 0.21 B | 80.76 ± 0.18 C | 80.91 ± 0.32 C |
(*) C RSAmax (mg/mL) | 5.10 ± 0.07 A | 2.01 ± 0.01 B | 1.01 ± 0.02 C | 2.07 ± 0.03 B | 2.07 ± 0.02 B | 1.01 ± 0.01 C |
(*) EC50 (mg/mL) | 1.59 ± 0.02 A | 1.20 ± 0.00 B | 0.66 ± 0.01 C | 0.63 ± 0.01 D | 0.65 ± 0.01 CD | 0.51 ± 0.00 E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paniagua-García, A.I.; Ruano-Rosa, D.; Díez-Antolínez, R. Fractionation of High-Value Compounds from Hops Using an Optimised Sequential Extraction Procedure. Antioxidants 2024, 13, 45. https://doi.org/10.3390/antiox13010045
Paniagua-García AI, Ruano-Rosa D, Díez-Antolínez R. Fractionation of High-Value Compounds from Hops Using an Optimised Sequential Extraction Procedure. Antioxidants. 2024; 13(1):45. https://doi.org/10.3390/antiox13010045
Chicago/Turabian StylePaniagua-García, Ana I., David Ruano-Rosa, and Rebeca Díez-Antolínez. 2024. "Fractionation of High-Value Compounds from Hops Using an Optimised Sequential Extraction Procedure" Antioxidants 13, no. 1: 45. https://doi.org/10.3390/antiox13010045
APA StylePaniagua-García, A. I., Ruano-Rosa, D., & Díez-Antolínez, R. (2024). Fractionation of High-Value Compounds from Hops Using an Optimised Sequential Extraction Procedure. Antioxidants, 13(1), 45. https://doi.org/10.3390/antiox13010045