Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs
Abstract
:1. Introduction
2. Overview of DESs
2.1. Definition of DESs
2.2. Brief Resumé on the Advantages of DESs over ILs
2.3. Green Characteristics of DESs
2.4. The Two Main Characteristics of DESs at the Basis of Their Extraction Performance: Viscosity and Polarity
3. General Analytical Procedures for the Determination of Bioactive Compounds from Plant Matrices
4. DESs in the Extraction of Olive Oil PCs
4.1. Olive Oil Is One of the Pillars of the Mediterranean Diet
4.2. Comprehensive List of Literature Studies with DESs Used in Olive oil PCs Extraction
4.3. Microwave-Assisted Extraction (MAE) of PCs from the Olive Oil Industry
4.4. Ultrasound-Assisted Extraction (UAE) of PCs from the Olive Oil Industry
DESs-NaDESs | Sample | Instrumental | Operating Conditions | Target Analytes | Key Findings | Total Polyphenol Yield (YTP) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Composition | MR | W Content | Type | Extraction Procedure | Analytical Technology | ||||||
ChCl:xylitol | (2:1) | 25% | VOO | LPME | HPLC-DAD-MS | Water bath at 40 °C with agitation for 1 h (vortexing for 1 min every 15 min); two phases centrifuged at 1200× g for 10 min; recovery of upper oil phase. | HT, TY, oleacein, oleocanthal, OLE agylcon, ligstroside aglycon | Increased extraction efficiency for the sugar-based DES over control; data expressed as: mg/kg of PCs extracted; recovery yield % of separated PC in respect to control; area of each peak in the HPLC-DAD chromatogram. | – | [61] | |
ChCl:1,2-propanediol | (1:1) | – | |||||||||
ChCl:glycerol | (1:2) | – | |||||||||
ChCl:sucrose | (1:1) | 25% | |||||||||
ChCl:sucrose | (4:1) | – | |||||||||
ChCl:1,4-butanediol | (1:5) | – | |||||||||
fructose:glucose:sucrose | (1:1:1) | – | |||||||||
ChCl:malonic acid | (1:1) | – | |||||||||
ChCl:lactic acid | (1:2) | – | |||||||||
ChCl:urea | (1:2) | – | |||||||||
ChCl:urea:glycerol | (1:1:1) | – | |||||||||
glycerol:glycine:water | (7:1:3) | Used as 80% aq. sol. | Dry Greek OLL powder | H&S | LC-DAD-MS | 70 °C for 280 min stirring at 600 rpm. | Oleoside, luteolin derivative, luteolin di-glycoside, luteolin rutinoside, quercetin derivative, OLE, OLE isomer, apigenin rutinoside | Increased polyphenol yield compared with conventional bio-solvents, such as aqueous ethanol and water. The DES extract also displayed stronger antioxidant effects. | 111.33 mg GAE/g | [161] | |
glycerol:glycine:water | (7:1:3) | Used as 80% aq. sol. | OLL powder | H&S | LC-DAD-MS | 50 °C for 180 min stirring at 600 rpm; centrifugation and collection of the diluted supernatant. | Luteolin glucoside, luteolin glucoside isomer, OLE, apigenin rutinoside | The presence of methyl β-cyclodextrin enhanced the YTP of the DES/CD (+17.8%) compared with that of AE (YTP of AE = 95.81 mg GAE/g). | 116.58 mg GAE/g | [162] | |
ChCl:citric acid | (1:2) | 30% | Croatian olive pomace and grape pomace | Combined UAE–MAE | HPLC-DAD | Microwave power of 300 W, ultrasound power 50W for 10 min; centrifugation and collection of the adjusted supernatant. | Gallic acid, HT, TY, vanillic acid, vanillin, pinoresinol, catechin from olive pomace and other molecules from grape pomace. | The total polyphenolic content for the olive pomace extracted with the DES was 645.99 (mg kg−1 dw), which was higher than those obtained with AE 511.08 (mg kg−1 dw). | – | [165] | |
lactic acid:glucose:water | (3:1:3) | 35% father dil. | 163 olive oils samples | LLE | UHPLC-UV | Intense vortex agitation; centrifugation; recovery of lower layer; further centrifugation; filtration. | HT and TY derivatives | Alternative method to correctly label the 98.2% of the 163 olive oils samples according to the legal requirements of the EFSA health claim. | – | [166] | |
octanoic acid:dodecanoic acid | (3:1) | – | OMWW | LLE | HPLC | Concoction agitated in orbital shaker at 25 °C to ensure thorough mixing; water phase sampled and filtered. | TY and endogenous phenols | HNaDESs are a promising food-safe solvent to improve existing processes for the separation of the healthy fraction of polyphenols from the endogenous phenols present in OMWW. | – | [70] | |
lauric acid:DL-menthol | (1:2) | – | |||||||||
aprylic acid:DL-menthol | (1:2) | – | |||||||||
ChCl:glycerol | (1:1.5) | extract:water (1:1.5) | EVOO | H&S-LLE | UPLC-DAD-MS | Magnetic stirring at 25 °C for 15 min; separatory funnel for decantation and phases separation. | HT, TY, oleacein, oleocanthal | The method allowed the quantitative recovery of analytes found in the extracts. | – | [168] | |
L-lactic acid:glycine | (5:1) | 70% | Dried Greek OLL | H&S | LC-DAD-MS; HPLC | Magnetic stirring at 500 rpm, at 50 °C, for 150 min; centrifugation. | HT, rutin, lutein glucosides, apigenin glucoside, OLE, quercetin, apigenin | Higher extraction values with the DES in respect to the controls; the DES yielded to the hydrolysis of OLE to HT. | 93.73 mg GAE/g | [169] | |
L-proline:oxalic acid | (1:4) | 50% | Turkish OLL | S | HPLC | Digital homogenization (10,000 rpm for 60 s); centrifugation; filtration. | OLE (also in trace amounts) | The method coupled with further electrochemistry analyses allowed the detection of trace amounts of OLE; the result of the total biophenol concentration was in line with the previous measurements of the group; OLE yield was 15.66 mg GAE/g. | 41 mg GAE/g | [42] | |
L-proline:xylitol | (1:1) | 50% | – | ||||||||
L-proline:sucrose | (1:2) | 50% | – | ||||||||
L-proline:maltose | (1:2) | 50% | – | ||||||||
L-proline:urea | (1:1) | 50% | – | ||||||||
L-proline:glycerol | (1:4) | 50% | – | ||||||||
L-proline:dimethyl urea | (1:1) | 50% | – | ||||||||
L-proline:dimethyl urea | (2:1) | 50% | – | ||||||||
L-proline:malonic acid | (1:1) | 50% | – | ||||||||
L-proline:malic acid | (1:1) | 50% | – | ||||||||
L-proline:N-methyl urea | (1:2) | 50% | – | ||||||||
ZnCl2:glycerol | (1:1) | 50% | – | ||||||||
ZnCl2:dimethyl urea | (1:1) | 50% | – | ||||||||
ZnCl2:dimethyl urea | (2:1) | 50% | – | ||||||||
ZnCl2:malonic acid | (1:1) | 50% | – | ||||||||
ZnCl2:malic acid | (2:1) | 50% | – | ||||||||
ZnCl2:N-methyl urea | (1:1) | 50% | – | ||||||||
dimethyl urea:sucrose | (2:1) | 50% | – | ||||||||
dimethyl urea:maltose | (2:1) | 50% | – | ||||||||
citric acid:glycerol | (1:4) | 50% | – | ||||||||
KCl:urea | (2:1) | 50% | – | ||||||||
imidazole:sucrose | (1:1) | 50% | – | ||||||||
imidazole:malic acid | (1:1) | 50% | – | ||||||||
L-lactic acid:ammonium acetate | (1:1) | 70% | Dry Greek OLL powder | H&S | LC-DAD-MS | Stirring at 500 rpm, at 50 °C, for 150 min; centrifugation and collection of supernatant. | OLE, OLE isomer, luteolin glycosides, luteolin rutinoside, apigenin glycoside | The DES at a molar ratio of 7:1 with 54.6% water addition and 0.7% (w/v) β-CD led to the maximum extraction yield at 80 °C. | – | [170] | |
L-lactic acid:ammonium acetate | (3:1) | 70% | – | ||||||||
L-lactic acid:ammonium acetate | (5:1) | 70% | – | ||||||||
L-lactic acid:ammonium acetate | (7:1) | 54.6% | 113.66 mg CAE/g | ||||||||
L-lactic acid:ammonium acetate | (9:1) | 70% | – | ||||||||
L-lactic acid:ammonium acetate | (11:1) | 70% | – | ||||||||
glycerol:sodium potassium tartrate:w | (7:1:2) | 50% | – | ||||||||
glycerol(aq.) with 7% 2-OH propyl β-CD | 60% | – | |||||||||
AE with 1g/L citric acid at pH 2 | 60% | 60.90 mg CAE/g | |||||||||
ChCl:xylitol:water | (2:1:3) | VOO | LPME | HPLC- DAD | Water bath at 40 °C under agitation for 1 h; centrifugation; recovery of polar phase. | HT, TY, oleacein, oleocanthal, OLE aglycon, ligstroside aglycone, l-acetoxy-pinoresinol, luteolin, apigenin | The technique led to a higher total recovery of polyphenols (555.36 mg/kg) in the case of prewashing of the column with acidified water. Recoveries ranged from 81% to 100%. | – | [171] | ||
citric acid:lactic acid | (1:4) | From 0 to 100%. | Turkish OLL | HAEX | HPLC | Homogenizer-aided extraction for 60 s at 13,310 rpm; solution filtered. | OLE, verbascoside, rutin | The citric acid:lactic acid DES with 48.9% water addition led to the most efficient extraction of OLE, with an 8% higher performance than 75% ethanol. | – | [172] | |
citric acid:ethylene glycol | (1:4) | ||||||||||
citric acid:glycerol | (1:4) | ||||||||||
L-proline:lactic acid | (1:8) | ||||||||||
L-proline:ethylene glycol | (1:4) | ||||||||||
L-proline:glycerol | (1:4) | ||||||||||
glycerol:urea | (2:1) | ||||||||||
glycerol:dimethyl urea | (2:1) | ||||||||||
glycerol:D-sorbitol | (8:1) | ||||||||||
ethylimidazole:glycerol | (1:4) | ||||||||||
methylimidazole:glycerol | (1:4) | ||||||||||
lactic acid:glucose:water | (5:1:3) | 20% | EVOO | LLE | HPLC- UV-Vis | Intense agitation with a vortex (5 min); centrifugation; recovery of lower layer; centrifugation filtration. | HT, TY, derivatives | Attempt with satisfactory repeatability and limit of detection and quantification values to label olive oils according to the minimum amount of HT and its derivatives, as stated in the EFSA health claim. | – | [175] | |
ChCl:acetic acid | (1:2) | From 0 to 50%. | Brazilian OLL | H&S | UHPLC-MS | Agitation (3h at 50 °C) at 400–800 rpm according to the optimized conditions; dilution; filtration. | TY, trans-ferulic acid, caffeic acid, OLE, luteolin, kaempferol | The DES with 50% water addition extracted twice the amount of PCs in respect of AE (16.03 mg GAE/g), which, however, still extracted more OLE than the DES. | 34.61 mg GAE/g | [176] | |
ChCl:citric acid | (1:2) | – | |||||||||
ChCl:malic acid | (1:1) | – | |||||||||
ChCl:malonic acid | (1:1) | – | |||||||||
ChCl:xylitol:water | (2:1:3) | LOO, EVOO | LLE | HPLC-DAD | Agitation in a rotor at 40 °C for 1 h; centrifugation; further separtion. | Oleacein, oleocanthal | Both DESs allowed a significant increase in the extraction yield of oleacein in respect to the acidified and conventional methods. However, only the xylitol containing DES gave significant increase in respect to both methods for oleocanthal. | – | [177] | ||
ChCl:1,2-propanediol:water | (1:1:1) | ||||||||||
ChCl:malonic acid | (1:1) | 16.67% | Brazilian olive oil pomace | H&S | No further separation of crude extracts. | In Eppendorf vials in a dry bath under the stirrer at 800 rpm at 50 °C for 3 h. | Not specified. | In optimized conditions (66.3 °C), the best DES reached 27.61 mg GAE/g as YTP, which was 9% higher than MeOH (25.32 mg GAE/g). | 19.76 mg GAE/g | [180] | |
ChCl:malic acid | (1:1) | 16.67% | 10.81 mg GAE/g | ||||||||
ChCl:acetic acid | (1:2) | 16.67% | 11.71 mg GAE/g | ||||||||
ChCl:citric acid | (2:1) | 16.67% | 9.99 mg GAE/g | ||||||||
lactic acid:glycerol | (1:1) | 50% | Turkish OLL extracts | HAE | HPLC- UV-Vis | 90 s of extraction time under 14,000 rpm. | OLE | The best DES—lactic acid:glycerol (1:1)—surpassed the values of YTPs of AM (17.18 mg GAE/g), AE (16.94 mg GAE/g), and water (14.74 mg GAE/g); however, its OLE yield (14.06 mg) was still lower than the one of AM (15.49 mg GAE/g). | 39.41 mg GAE/g | [181] | |
lactic acid:glycerol | (1:2) | 50% | 14.09 mg GAE/g | ||||||||
lactic acid:glycerol | (2:1) | 50% | 15.67 mg GAE/g | ||||||||
lactic acid:ethylene glycol | (1:1) | 50% | 15.35 mg GAE/g | ||||||||
lactic acid:ethylene glycol | (1:2) | 50% | 15.41 mg GAE/g | ||||||||
lactic acid:ethylene glycol | (2:1) | 50% | 14.63 mg GAE/g | ||||||||
lactic acid:ammonium acetate | (1:1) | 50% | 9.72 mg GAE/g | ||||||||
lactic acid:ammonium acetate | (1:2) | 50% | 11.32 mg GAE/g | ||||||||
lactic acid:ammonium acetate | (2:1) | 50% | 11.18 mg GAE/g | ||||||||
lactic acid:sodium acetate | (1:1) | 50% | 14.25 mg GAE/g | ||||||||
lactic acid:sodium acetate | (1:2) | 50% | 11.25 mg GAE/g | ||||||||
lactic acid:sodium acetate | (2:1) | 50% | 14.25 mg GAE/g | ||||||||
citric acid:glycerol | (1:1) | 50% | 15.84 mg GAE/g | ||||||||
citric acid:glycerol | (1:2) | 50% | 10.77 mg GAE/g | ||||||||
citric acid:glycerol | (2:1) | 50% | 11.35 mg GAE/g | ||||||||
citric acid: ethylene glycol | (1:1) | 50% | 12.11 mg GAE/g | ||||||||
citric acid: ethylene glycol | (1:2) | 50% | 11.91 mg GAE/g | ||||||||
citric acid: ethylene glycol | (2:1) | 50% | 11.42 mg GAE/g | ||||||||
glycerol:arginine | (7:1) | 10% | Greek OLL | H&S | LC- MS/MS | Oil bath under continuous stirring for 150 min. | HT, TY, OLE luteolin glucoside, rutin | The glycerol:lysine DES was found as the most effective in extracting the PCs even over conventional solvents; however, selective behavior for the three DESs towards the extraction of TY in respect to the other quantified PCs was measured. | 100.01 mg GAE/g 188.39 mg GAE/g 95.96 mg GAE/g | [182] | |
glycerol:lysine | (3:1) | 10% | |||||||||
glycerol:proline | (3:1) | 10% | |||||||||
ChCl:glycerol | (2:1) | 10% | Spanish OLL | H&S | LC-UV-MS and LC-UV-MS/MS | 80 °C in a water bath for 2 h under constant stirring; centrifugation; filtration. | 24 different PCs but OLE, HT, and luteolin glucoside were the most abundant. | ChCl:glycerol (1:5) with 30% water addition gave the best results. Quantitatively luteolin glucoside, OLE, and HT were present in more than 100 mg/kg fw. | – | [183] | |
ChCl:glycerol | (1:2) | 20% | |||||||||
ChCl:glycerol | (1:5) | 30% | |||||||||
ChCl:urea | (1:2) | 10% | |||||||||
ChCl:lactic acid | (1:2) | 10% | |||||||||
citric acid:fructose | (1:1) | 19% | OMWW | H&S | HPLC-DAD | Stirring at 25 °C for 1 h; centrifugation; homogeniza-tion; filtration. | Oleacein, HT, glycosides of TY and HT, phenyl propanoid derivatives | Three-stage circular method for recycling and revalorizing fresh OMWW. The three best DES significantly exceeded the control extraction with MeOH in the amount of total phenol content expressed as mg/kg of OMWW. | – | [72] | |
glycolic acid:fructose | (1:1) | 13% | |||||||||
ChCl:glycerol | (1:2) | – | |||||||||
betaine:sucrose | (2:1) | 13% | |||||||||
glycerol:glucose | (1:1) | 21% | |||||||||
fructose:sucrose | (1:1) | 18% | |||||||||
ChCl:1,4-butanediol | (1:6) | 25% | Spanish OLL | MAE | HPLC-DAD-ESI-TOF- MS | 65 °C for 20 min; centrifugation and collection of the diluted supernatant after filtration. | Oleoside, elenolic acid glucoside, hydroxy-OLE, luteolin glucoside, OLE Glucoside, OLE, ligstroside | The best DESs gave slightly higher results in respect to AM extraction (YTP of AM = 23.57 mg GAE/g). | 15.68 mg GAE/g 25.00 mg GAE/g 16.22 mg GAE/g 21.06 mg GAE/g 23.92 mg GAE/g 26.61 mg GAE/g 24.10 mg GAE/g 12.10 mg GAE/g 23.75 mg GAE/g | [190] | |
ChCl:ethylene glycol | (1:2) | 25% | |||||||||
ChCl:xylitol | (2:1) | 25% | |||||||||
ChCl:1,2-propanediol | (1:1) | 25% | |||||||||
ChCl:lactic acid | (1:2) | 25% | |||||||||
ChCl:oxalic acid | (1:1) | 25% | |||||||||
ChCl:tartaric acid | (2:1) | 25% | |||||||||
ChCl:maltose | (3:1) | 25% | |||||||||
ChCl:urea | (1:2) | 25% | |||||||||
ChCl:urea | (1:2) | Both 0 and 20%. | Fresh and dried OLL; ripened olive drupes | MAE | LC-ESI-QTOF/MS | 10 or 30 min at 80 °C; centrifugation; collection of supernatant; filtration; dilution. | OLE, dimethyl-OLE, oleacein, traces of other PCs | ChCl:glycerol and ChCl:lactic acid had superior capabilities over the control extraction with water. | – | [191] | |
ChCl:glycerol | (1:1) | ||||||||||
ChCl:lactic acid | (1:1) | ||||||||||
ChCl:ethylene glycol | (1:1) | ||||||||||
ChCl:citric acid | (1:1) | ||||||||||
ChCl:ethylene glycol | (1:2) | – | Olive oil; other vegetable oils | UALLME | HPLC-UV | Sonication for 5 min in ultrasound bath; centrifugation 10 min at 3000 rpm; recovery of lower phase. | Ferulic acid, caffeic acid, cinnamic acid | Increased extraction efficiency over pure ethylene glycol and glycerol; relative mean recoveries with DESs ranged from 94.7% to 104.6%. | – | [193] | |
ChCl:glycerol | (1:2) | – | |||||||||
ChCl:glycerol | (1:3) | 10% 10% | OLL; other wastes | UAE | No further separation of targeted analytes. | 80 °C for 90 min with sonication power of 140 W, frequency of 37 kHz and AED of 35 W/L; centrifugation and collection of the diluted supernatant. | Only evaluation of extraction efficiencies and of antioxidant activity. | AE was by far more efficient for olive leaves PCs’ extraction. | 36.75 mg GAE/g | [194] | |
sodium acetate:glycerol | (1:3) | 34.18 mg GAE/g | |||||||||
sodium potassium tartrate:glycerol:w | (1:5:4) | 27.68 mg GAE/g | |||||||||
sodium potassium tartrate:glycerol:w | (1:5:3) | – | |||||||||
glycerol:sodium-potassium tartrate:W | (7:1:3) | Used as 50% aq. sol. | OLL | UAE | LC-DAD-MS-UV-Vis | Sonication bath (140W, 37kHz, AED of 35W/L) for 30 min with temperature monitored; centrifugation; collection of diluted supernatant. | Luteolin and four glycosides thereof, apigenin rutinoside, OLE | The previous test DES with an initial molar ratio of 5:1:4 was adjusted to 7:1:3 and used as an aq. sol 50% (v/v), with a liquid-to-solid ratio of 45 mL/g and at 73 °C; it was as equally effective as AM but it displayed inferior antioxidant properties. | 26.75 mg CAE/g | [195] | |
lactic acid:glucose—(acidified DES) | (5:1) | 15% | Olive cake and other wastes | UAE | HPLC-DAD | 40 °C for 60 min with sonication power of 200W frequency of 20 kHz; centrifugation and collection of the diluted supernatant after filtration. | Gallic acid, HT, TY, catechin, caffeic acid, rutin, coumaric acid, trans-ferulic acid, OLE, cinnamic acid, quercetin, luteolin, naringenin, apigenin | The optimized DES with 0.1% (v/v) formic acid addition allowed 98% recovery of HT and 109.4% recovery of TY and better stability of the PCs in acidic conditions. | – | [102] | |
citric acid:glucose | (1:1) | – | |||||||||
fructose:citric acid | (1:1) | – | |||||||||
ChCl:citric acid | (1:2) | 20% | Virgin olive pomace | HAE | HPLC | Different conditions. | HT, TY, OLE, ligstroside, other secoiridoids and other molecules. | ChCl:citric acid was the best solvent for the extraction of PCs with HAE and UAE; ChCl:lactic acid excelled with MAE and HHPAE; HAE allowed for the best extraction efficiency; overall superior efficiency of all techniques over conventional extraction. | values ranging from 13 to 34 mg GA/g dw of pomace | [101] | |
ChCl:lactic acid | (1:2) | 20% | MAE | ||||||||
ChCl:glycerol | (1:2) | 20% | UAE | ||||||||
ChCl:maltose | (1:2) | 20% | HHPAE | ||||||||
ChCl:citric acid | (1:2) | 20% | Dried ground OLL | HAE | HPLC | Different conditions. | OLE, HT, rutin, with traces of caffeic acid, vanillin and luteolin. | ChCl:citric acid was the best solvent for the extraction of PCs with HAE; in most cases, however, the YTPs of ethanol extracts were still found to be more elevated than those of the NaDESs extracts. | 55.12 mg GAE/g | [196] | |
ChCl:lactic acid | (1:2) | 20% | MAE | 28.80 mg GAE/g | |||||||
ChCl:glycerol | (1:2) | 20% | UAE | 30.17 mg GAE/g | |||||||
ChCl:maltose | (1:2) | 20% | HHPAE | 31.96 mg GAE/g | |||||||
lactic acid:glucose | (5:1) | Chilean OLL | SLE-UAE | HPLC-UV | Ultrasonic bath at 35 °C for 24 h; centrifugation; filtration. | HT | The first two DESs had the highest extraction capacity towards HT (74 and 87 ppm range); these values were four times the ones obtained with water and AE. | – | [109] | ||
citric acid:glycine:water | (2:1:1) | ||||||||||
ChCl:fructose:water | (1:1:1) | ||||||||||
ChCl:fructose:water | (1:2:1) | ||||||||||
ChCl:citric acid:water | (1:1:1) | – | |||||||||
ChCl:lactic acid:water | (1:2:1) | – | |||||||||
ChCl:glucose:water | (1:1:1) | – | |||||||||
ChCl:citric acid | (2:1) | ||||||||||
lactic acid:glucose | (5:1) | ||||||||||
citric acid:glycine:water | (2:1:1) | ||||||||||
ChCl:ethylene glycol | (1:2) | – | OLL and semi-solid waste ‘alperu-jo’ | SLE combined with supercri-tical CO2 | HPLC-UV-Vis | Sonication in ultrasound bath at 30 °C and frequency of 40 kHz; centrifugation. | HT, TY, OLE | The methodology led to obtain good PC recoveries from the DES extracts. | – | [198] | |
ChCl:citric acid | (1:1) | – | |||||||||
matrine:octanoic acid | (1:1) | 30% | Chinese dry powder of olive pulp | Homogenization-UAE | HPLC | Homogeni-zation in a centrifuge tube at 1:20 g/mL, vortexing for 5 min; ultrasound bath (300W and 40kHz) at 30 °C for 30 min; centrifugation; collection of supernatant; filtration. | HT | The best DES (betaine:malic acid) reached an extraction efficiency for HT of 420.7 mg/Kg of olive fruit powder; also, matrine:azelaic acid exhibited excellent extraction performances under the four ultrasonication temperatures examined. | – | [200] | |
matrine:decanoic acid | (1:1) | 30% | |||||||||
matrine:lauric acid | (1:1) | 30% | |||||||||
matrine:cocinic acid | (1:1) | 30% | |||||||||
matrine:azelaic acid | (2:1) | 30% | |||||||||
betaine:malic acid | (1:1) | 30% | |||||||||
L-carnitine:gallic acid | (2:1) | 30% | |||||||||
betaine:glycerol | (1:2) | From 10% to 70%. | EVOO | LLE-UAE | HPLC-DAD-ESI-MS | Sonication in ultrasound bath at 25 °C with frequenccy of 37 kHz and heating power of 200W for 20 min. | HT, TY, dialdehydic form of OLE aglycon, OLE aglycon isomer, lygstroside aglycon | Betaine:glycerol (1:2) with 30% water addition (v/v) and 1:1 (w/v) sample-to-solvent ratio, performed as the best solvent. Recovery values of the targeted PCs ranged from 75% to 99%. | – | [201] | |
betaine:lactic acid | (1:2) | ||||||||||
betaine:urea | (1:2) | ||||||||||
betaine:ethylene glycol | (1:2) | ||||||||||
betaine:tryethylene glycol | (1:2) | ||||||||||
ChCl:glycerol | (1:2) | ||||||||||
ChCl:lactic acid | (1:2) | ||||||||||
ChCl:urea | (1:2) | ||||||||||
ChCl:ethylene glycol | (1:2) | ||||||||||
ChCl:tryethylene glycol | (1:2) | ||||||||||
ChCl:fructose:water | (5:2:5) | Turkish OLL | UAE | HPLC-ESI-QTOF-MS | Sonication bath (55–75 °C) for 60 min, at a sonication power of 140 W, frequency of 37 kHz, and AED of 35 W/L. | OLE, caffeic acid, luteolin | Glucose:fructose:water (1:1:11) led to a higher recovery of OLE and caffeic acid than MeOH. | 187.31 mg GAE/g | [202] | ||
ChCl:glucose:water | (5:2:5) | - | |||||||||
ChCl:sucrose:water | (4:1:4) | - | |||||||||
ChCl:lactic acid | (1:2) | 124.05 mg GAE/g | |||||||||
ChCl:malonic acid | (1:1) | - | |||||||||
ChCl:ethylene glycol | (1:2) | 99.45 mg GAE/g | |||||||||
ChCl:glycerol | (1:2) | - | |||||||||
glucose:fructose:sucrose:water | (1:1:1:11) | - | |||||||||
glucose:fructose:water | (1:1:11) | 122.47 mg GAE/g | |||||||||
glucose:sucrose:water | (1:1:11) | - | |||||||||
lactic acid:glucose:water | (5:1:9.3) | Lyophilized Argen-tine olive pomace | Homogenization-UAE | HPLC-UV | Homogeni-zation in a centrifuge tube at 75 mg/mL, vortexing during 15 s; ultrasound bath (power of 200 W, 20 kHz frequency) during 60 min at 40 °C; centrifugationand collection of supernatant; filtration. | Luteolin, HT | The first DES rendered the highest HT content; the bioaccessibility of the best extract was investigated during sequential in vitro digestion; values after exposure to the three simulated digesting solution were put into a graph as GAE µg/mL of olive pomace extract. | – | [203] | ||
ChCL:citric acid:water | (1:1:2.7) | ||||||||||
ChCL:levulinic acid | (1:2) | ||||||||||
matrine:panthenol | (1:1) | 30% | OLL powder | H&S-UAE | HPLC-UV | Ultrasonic cleaning machine at power of 300, at 30 °C for 60 min; centrifugation; collection/dilu-tion of supernatant; filtration. | HT | The four DESs, under optimal conditions, led to a maximum HT yield of 4.98 mg/g; the possible mechanism of interaction between DES-HT was studied by FTIR, NMR, and DFT calculation; the study presented an alternative method for UAE-based HT extraction. | – | [204] | |
matrine:panthenol | (1:2) | 30% | |||||||||
matrine:panthenol | (1:3) | 30% | |||||||||
matrine:panthenol | (1:4) | 30–60% |
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Environment Agency. Towards a Green Economy in Europe. In EU Environmental Policy Targets and Objectives 2010–2050; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- Procopio, A.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Romeo, G. Mild and efficient method for the cleavage of benzylidene acetals by using erbium (III) triflate. Org. Biomol. Chem. 2005, 3, 4129–4133. [Google Scholar] [CrossRef] [PubMed]
- Oliverio, M.; Costanzo, P.; Macario, A.; De Luca, G.; Nardi, M.; Procopio, A. An Erbium-Based Bifuctional Heterogeneous Catalyst Erbium-Based: A Cooperative Route Towards C-C Bond Formation. Molecules 2014, 19, 10218–10229. [Google Scholar] [CrossRef] [PubMed]
- Procopio, A.; Das, G.; Nardi, M.; Oliverio, M.; Pasqua, L. A Mesoporous Er(III)-MCM-41 Catalyst for the Cyanosilylation of Aldehydes and Ketones under Solvent-free Conditions. Chem. Sustain. Chem. 2008, 1, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Procopio, A.; Dalpozzo, R.; De Nino, A.; Nardi, M.; Oliverio, M.; Russo, B. Er(OTf)3 as new efficient catalyst for the stereoselective synthesis of C-pseudoglycals. Synthesis 2006, 15, 2608–2612. [Google Scholar] [CrossRef]
- Procopio, A.; De Luca, G.; Nardi, M.; Oliverio, M.; Paonessa, R. General MW-assisted grafting of MCM-41: Study of the dependence on time dielectric heating and solvent. Green Chem. 2009, 11, 770–773. [Google Scholar] [CrossRef]
- Procopio, A.; Cravotto, G.; Oliverio, M.; Costanzo, P.; Nardi, M.; Paonessa, R. An Eco-Sustainable Erbium (III)-Catalysed Method for Formation/Cleavage of O-tert-butoxy carbonates. Green Chem. 2011, 13, 436–443. [Google Scholar] [CrossRef]
- Procopio, A.; Gaspari, M.; Nardi, M.; Oliverio, M.; Romeo, R. MW-assisted Er(OTf)3-catalyzed mild cleavage of isopropylidene acetals in Tricky substrates. Tetrahedron Lett. 2008, 49, 1961–1964. [Google Scholar] [CrossRef]
- Nardi, M.; Oliverio, M.; Costanzo, P.; Sindona, G.; Procopio, A. Eco-friendly stereoselective reduction of α,β-unsaturated carbonyl compounds by Er(OTf)3/NaBH4 in 2-MeTHF. Tetrahedron 2015, 71, 1132–1135. [Google Scholar] [CrossRef]
- Nardi, M.; Herrera Cano, N.; Costanzo, P.; Oliverio, M.; Sindona, G.; Procopio, A. Aqueous MW eco-friendly protocol for amino group protection. RSC Adv. 2015, 5, 18751–18760. [Google Scholar] [CrossRef]
- Nardi, M.; Di Gioia, M.L.; Costanzo, P.; De Nino, A.; Maiuolo, L.; Oliverio, M.; Olivito, F.; Procopio, A. Selective acetylation of small biomolecules and their derivatives catalyzed by Er(OTf)3. Catalysts 2017, 7, 269. [Google Scholar] [CrossRef]
- Nardi, M.; Costanzo, P.; De Nino, A.; Di Gioia, M.L.; Olivito, F.; Sindona, G. Water excellent solvent for the synthesis of bifunctionalized cyclopentenones from furfural. Green Chem. 2017, 19, 5403–5541. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef]
- Di Gioia, M.L.; Nardi, M.; Costanzo, P.; De Nino, A.; Maiuolo, L.; Oliverio, M.; Procopio, A. Biorenewable Deep Eutectic Solvent for Selective and Scalable Conversion of Furfural into Cyclopentenone Derivatives. Molecules 2018, 23, 1891. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, M.L.; Cassano, R.; Costanzo, P.; Herrera Cano, N.; Maiuolo, L.; Nardi, M.; Nicoletta, F.P.; Oliverio, M.; Procopio, A. Green Synthesis of Privileged Benzimidazole Scaffolds Using Active Deep Eutectic Solvent. Molecules 2019, 24, 2885. [Google Scholar] [CrossRef] [PubMed]
- Devi, B.K.; Naraparaju, S.; Soujanya, C.; Gupta, S.D. Green Chemistry and Green Solvents: An Overview. Curr. Green Chem. 2020, 7, 314–325. [Google Scholar] [CrossRef]
- Nardi, M.; De Luca, G.; Novelli, P.; Oliverio, M.; Romano, S.; Procopio, A. Amine protection by in situ formation of choline chloride-based deep eutectic solvents. Green Chem. 2023, 25, 3208–3213. [Google Scholar] [CrossRef]
- Romano, S.; Rescifina, A.; De Luca, G.; Nardi, M.; Oliverio, M.; Procopio, A. New Insights on Choline Chloride Role in Synthesis: The Case of Direct Amidation. ACS Sustain. Chem. Eng. 2023, 11, 11668–11680. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Voci, S.; Gagliardi, A.; Molinaro, R.; Fresta, M.; Cosco, D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021, 7, 33. [Google Scholar] [CrossRef]
- Gagliardi, A.; Voci, S.; Giuliano, E.; Salvatici, M.C.; Celano, M.; Fresta, M.; Cosco, D. Phospholipid/zein hybrid nanoparticles as promising carriers for the protection and delivery of all-trans retinoic acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 128, 128112331. [Google Scholar] [CrossRef] [PubMed]
- Silvia Voci, S.; Gagliardi, A.; Fresta, M.; Cosco, D. Ascorbic acid-loaded gliadin nanoparticles as a novel nutraceutical formulation. Food Res. Int. 2022, 161, 111869. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, A.; Voci, S.; Ambrosio, N.; Fresta, M.; Duranti, A.; Cosco, D. Characterization and Preliminary In Vitro Antioxidant Activity of a New Multidrug Formulation Based on the Co-Encapsulation of Rutin and the α-Acylamino-β-Lactone NAAA Inhibitor URB894 within PLGA Nanoparticles. Antioxidants 2023, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Zainal-Abidin, M.H.; Hayyan, M.; Ngoh, G.C.; Wong, W.F.; Looi, C.Y. Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. J. Control. Release 2019, 316, 168–195. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.R.; Ferreira, A.S.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.S. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Abo-Hamad, A.; Hayyan, M.; AlSaadi, M.A.H.; Hashim, M.A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015, 273, 551–567. [Google Scholar] [CrossRef]
- Majid, M.F.; Zaid, H.F.M.; Kait, C.F.; Jumbri, K.; Yuan, L.C.; Rajasuriyan, S. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. J. Mol. Liq. 2020, 306, 112870. [Google Scholar] [CrossRef]
- Cai, T.; Qiu, H. Application of deep eutectic solvents in chromatography: A review. TrAC Trends. Anal. Chem. 2019, 120, 115623. [Google Scholar] [CrossRef]
- Mota-Morales, J.D.; Sánchez-Leija, R.J.; Carranza, A.; Pojman, J.A.; del Monte, F.; Luna-Bárcenas, G. Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog. Polym. Sci. 2018, 78, 139–153. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Namieśnik, J. Ionic liquids and deep eutectic mixtures: Sustainable solvents for extraction processes. ChemSusChem 2014, 7, 1784–1800. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hadi, N.; Ng, M.H.; Choo, Y.M.; Hashim, M.A.; Jayakumar, N.S. Performance of choline-based deep eutectic solvents in the extraction of tocols from crude palm oil. J. Am. Oil Chem. Soc. 2015, 92, 1709–1716. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Ling, J.K.U.; Hadinoto, K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int. J. Mol. Sci. 2022, 23, 3381. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Durand, E.; Lecomte, J.; Villeneuve, P. From green chemistry to nature: The versatile role of low transition temperature mixtures. Biochimie 2015, 120, 119–123. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Yazar, S.; Ortaboy, S.; Atun, G.; Şahin, S. Evaluation of the phenolic antioxidants of olive (Olea europaea) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis. Chem. Eng. Commun. 2020, 51, 422–429. [Google Scholar] [CrossRef]
- Gevorgyan, A.; Hopmann, K.H.; Bayer, A. Exploration of New Biomass-Derived Solvents: Application to Carboxylation Reactions. ChemSusChem 2020, 13, 2080–2088. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.F. Which Is the Best Food Emerging Solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. [Google Scholar] [CrossRef]
- Della Posta, S.; Gallo, V.; Gentili, A.; Fanali, C. Strategies for the recovery of bioactive molecules from deep eutectic solvents extracts. TrAC Trends Anal. Chem. 2022, 157, 116798. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data 2006, 51, 1280–1282. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Zhang, S.; Hao, Z.; Zhang, Z. Copper-decorated covalent organic framework as a heterogeneous photocatalyst for phosphorylation of terminal alkynes. Green Chem. 2022, 24, 4071–4081. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, M.; Li, Z.; Liu, H.; Xiong, C.; Zeng, X.; Hu, Y.L.; Liu, S.; Lei, T.; Lin, L. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem 2017, 10, 2696–2710. [Google Scholar] [CrossRef]
- Galehassadi, M.; Pourreza, S. Base and Catalyst-Free Preparation of Silyl Ethers in the Choline Chloride/Urea Deep Eutectic Solvent (DES). J. Inorg. Organomet. Polym. Mater. 2019, 29, 541–549. [Google Scholar] [CrossRef]
- Sunitha, S.; Kanjilal, S.; Reddy, P.S.; Prasad, R.B.B. Liquid–liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride· 2ZnCl2. Tetrahedron Lett. 2007, 48, 6962–6965. [Google Scholar] [CrossRef]
- Abbott, A.P.; Bell, T.J.; Handa, S.; Stoddart, B. O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem. 2005, 7, 705–707. [Google Scholar] [CrossRef]
- Gorke, J.T.; Srienc, F.; Kazlauskas, R.J. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem. Commun. 2008, 10, 1235–1237. [Google Scholar] [CrossRef]
- Bart, H.J. Extraction of Natural Products from Plants-An Introduction; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Fernández, M.L.Á.; Boiteux, J.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Natural Deep Eutectic Solvents-Mediated Extractions: The Way Forward for Sustainable Analytical Developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Choi, Y.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius. L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Espino, M.; de los Ángeles, F.M.; Gomez, F.J.V.; Silva, M.F. Natural designer solvents for greening analytical chemistry. TrAC Trends Anal. Chem. 2016, 76, 126–136. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of Phenolic Compounds from Virgin Olive Oil by Deep Eutectic Solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2001, 19, 2010–2011. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Mannu, A.; Blangetti, M.; Baldino, S.; Prandi, C. Promising technological and industrial applications of deep eutectic systems. Materials 2021, 14, 2494. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.; Witkamp, G.J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Tao-Xiang, Y.; Li-Qing, Z.; Juan, W.; Guo-Li, S.; Hai-Min, L.; Hui, C.; Zhen, Y. Improving Whole-Cell Biocatalysis by Addition of Deep Eutectic Solvents and Natural Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 5713–5722. [Google Scholar]
- van Osch, D.J.G.P.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.; Coelho, M.A.Z.; Marrucho, M.I. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Buldo, M.; Cicci, A.; Sed, G.; Sapone, V.; Bravi, M. Detoxification of Olive Oil Mill Wastewaters by Liquid-liquid Extraction with Natural Deep Eutectic Solvents. Chem. Eng. Trans. 2019, 74, 1495–1500. [Google Scholar]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Hydrophobic Eutectic Solvents for Extraction of Natural Phenolic Antioxidants from Winery Wastewater. Sep. Purif. Technol. 2021, 254, 117590. [Google Scholar] [CrossRef]
- Carmona, I.; Aguirre, I.; Griffith, D.M.; García-Borrego, A. Towards a circular economy in virgin olive oil production: Valorization of the olive mill waste (OMW) “alpeorujo” through polyphenol recovery with natural deep eutectic solvents (NADESs) and vermicomposting. Sci. Total Environ. 2023, 872, 162198. [Google Scholar] [CrossRef]
- Meksi, N.; Moussa, A. A review of progress in the ecological application of ionic liquids in textile processes. J. Clean. Prod. 2017, 161, 105–126. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs. ionic liquids: Similarities and differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.B.; Assis, R.S.; Barreto, J.A.; Bezerra, M.A.; Novaes, C.G.; Lemos, V.A. Deep eutectic solvents in liquid-phase microextraction: Contribution to green chemistry. TrAC Trends Anal. Chem. 2021, 146, 116478. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2021, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; del Monte, F. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 2009, 25, 5509–5515. [Google Scholar] [CrossRef]
- Gomez, F.J.V.; Espino, M.; Fernández, M.A.; Silva, M.F. A greener approach to prepare natural deep eutectic solvents. Chem. Select 2018, 3, 6122. [Google Scholar] [CrossRef]
- Santana, A.P.R.; Mora-Vargas, J.A.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J. Mol. Liq. 2019, 293, 111452. [Google Scholar] [CrossRef]
- Tolmachev, D.; Lukasheva, N.; Ramazanov, R.; Nazarychev, V.; Borzdun, N.; Volgin, I.; Andreeva, M.; Glova, A.; Melnikova, S.; Dobrovskiy, A.; et al. Computer simulations of deep eutectic solvents: Challenges, solutions, and perspectives. Int. J. Mol. Sci. 2022, 23, 645. [Google Scholar] [CrossRef] [PubMed]
- Redha, A.A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. J. Agric. Food Chem. 2021, 69, 878–912. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Ho, K. Recent developments in deep eutectic solvents in chemical sciences. Monatshefte Für Chem.-Chem. Mon 2013, 144, 1427–1454. [Google Scholar] [CrossRef]
- Chemat, F.; Anjum, H.; Shariff, M.D.; Kumar, P.; Murugesan, T. Thermal and physical properties of (Choline chloride + urea + L-arginine) deep eutectic solvents. J. Mol. Liq. 2016, 218, 301–308. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, T.; Fourmentin, S.; Greige-Gerges, H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Kellogg, J.J.; Paine, M.F.; McCune, J.S.; Oberlies, N.H.; Cech, N.B. Selection and characterization of botanical natural products for research studies: A NaPDI center recommended approach. Nat. Prod. Rep. 2019, 36, 1196–1221. [Google Scholar] [CrossRef]
- Kalra, P. Handbook of Reference Methods for Plant Analysis, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Ernst, W. Sampling of plant material for chemical analysis. Sci. Total Environ. 1995, 176, 15–24. [Google Scholar] [CrossRef]
- Zygmunt, B.; Namiésnik, J. Preparation of samples of plant material for chromatographic analysis. J. Chromatogr. Sci. 2003, 41, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Mylonaki, S.; Kiassos, E.; Makris, D.P.; Kefalas, P. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal. Bioanal. Chem. 2008, 392, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, M.; Şahin, S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J. Taiwan Inst. Chem. Eng. 2013, 44, 8–12. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Lee, S.; Kang, S.S.; Shin, H.S. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci. Technol. 2018, 82, 89–109. [Google Scholar] [CrossRef]
- Barba, F.J.; Mariutti, L.R.B.; Bragagnolo, N.; Mercadante, A.Z.; Barbosa-Cánovas, G.V.; Orlien, V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol. 2017, 67, 195–206. [Google Scholar] [CrossRef]
- Skrajda-Brdak, M.; Dąbrowski, G.; Konopka, I. Edible flowers, a source of valuable phytonutrients and their pro-healthy effect—A review. Trends Food Sci. Technol. 2020, 103, 179–199. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Fernández, M.L.Á.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Sci. Technol. Int. 2020, 26, 78–92. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Fernández-Prior, A.; Oria, A.B.; Rodríguez-Juan, E.M.; Pérez-Rubio, A.G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. Lwt-Food Sci. Technol. 2020, 130, 109645. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Oma, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Zurob, E.; Cabezas, R.; Villarroel, E.; Rosas, N.; Merlet, G.; Quijada-Maldonado, E.; Romero, J.; Plaza, A. Design of Natural Deep Eutectic Solvents for the Ultrasound-Assisted Extraction of Hydroxytyrosol from Olive Leaves Supported by COSMO-RS. Sep. Purif. Technol. 2020, 248, 117054. [Google Scholar] [CrossRef]
- Kumar, A.K.; Parikh, B.S.; Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 2016, 23, 9265–9275. [Google Scholar] [CrossRef]
- Concha, J.; Soto, C.; Chamy, R. Enzymatic pretreatment on Rose-Hip oil extraction: Hydrolysis and pressing conditions. J. Am. Oil Chem. Soc. 2004, 81, 549–552. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends Anal. Chem. 2020, 127, 115895. [Google Scholar] [CrossRef]
- Dheyab, A.S.; Abu Bakar, M.F.; AlOmar, M.; Sabran, S.F.; Muhamad Hanafi, A.F.; Mohamad, A. Deep Eutectic Solvents (DESs) as Green Extraction Media of Beneficial Bioactive Phytochemicals. Separations 2021, 8, 176. [Google Scholar] [CrossRef]
- Ling, J.K.U.; Chan, Y.S.; Nandong, J.; Chin, S.F.; Ho, B.K. Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: Characterization, solubilization capacity and antioxidant propert. LWT-Food Sci. Technol. 2020, 133, 110096. [Google Scholar] [CrossRef]
- Ge, L.; Li, S.P.; Lisak, G. Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2020, 179, 112913. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C.; Ortan, A.; Fierascu, I.C.; Fierascu, I. In vitro and in vivo evaluation of antioxidant properties of wild-growing plants. A short review. Curr. Opin. Food Sci. 2018, 24, 4132. [Google Scholar] [CrossRef]
- Christophoridou, S.; Dais, P. Detection and quantification of phenolic compounds in olive oil by high resolution 1H nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 2009, 633, 283–292. [Google Scholar] [CrossRef]
- Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M.J. Thin layer chromatography in drug discovery process. J. Chromatogr. A 2017, 1520, 9–22. [Google Scholar] [CrossRef]
- Ristivojević, P.; Trifković, J.; Vovk, I.; Milojković-Opsenica, D. Comparative study of different approaches for multivariate image analysis in HPTLC fingerprinting of natural products such as plant resin. Talanta 2017, 162, 72–79. [Google Scholar] [CrossRef]
- Glavnik, V.; Vovk, I.; Albreht, A. High performance thin-layer chromatography–mass spectrometry of Japanese knotweed flavan-3-ols and proanthocyanidins on silica gel plates. J. Chromatogr. A 2017, 1482, 97–108. [Google Scholar] [CrossRef]
- Kranjc, E.; Albreht, A.; Vovk, I.; Glavnik, V. High performance thin-layer chromatography–mass spectrometry enables reliable analysis of physalins in different plant parts of Physalis alkekengi L. J. Chromatogr. A 2017, 1526, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Brusotti, G.; Cesari, I.; Dentamaro, A.; Caccialanza, G.; Massolini, G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J. Pharm. Biomed. Anal. 2014, 87, 218–228. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. Representative List of the Intangible Cultural Heritage of Humanity. Paris. 2010. Available online: https://ich.unesco.org/doc/src/17331-EN.pdf (accessed on 26 December 2023).
- Lockyer, S.; Rowland, I. Authorised EU health claims for polyphenols in olive oil. In Technology and Nutrition Foods, Nutrients and Food Ingredients with Authorised EU Health Claims; Woodhead Publishing Series in Food Science; Woodhead Publishing: Sawston, Cambridge, 2014; pp. 212–228. [Google Scholar]
- Pérez, M.; López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Lamuela-Raventós, R.M.; Martin-Belloso, O.; Vallverdú-Queralt, A. Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants 2021, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Mancebo-Campos, V.; Salvador, M.D.; Fregapane, G. EFSA Health Claims-Based Virgin Olive Oil Shelf-Life. Antioxidants 2023, 12, 1563. [Google Scholar] [CrossRef] [PubMed]
- Tuck, K.L.; Hayball, P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem. 2002, 13, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Procopio, A.; Alcaro, S.; Nardi, M.; Oliverio, M.; Ortuso, F.; Sacchetta, P.; Pieragostino, D.; Sindona, G. Synthesis, biological evaluation, and molecular modeling of oleuropein and its semisynthetic derivatives as cyclooxygenase inhibitors. J. Agric. Food Chem. 2009, 57, 11161–11167. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, D.; Esposito, E.; Mazzon, E.; Paterniti, I.; Di Paola, R.; Bramanti, P.; Morittu, V.M.; Procopio, A.; Britti, D.; Cuzzocrea, S. The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clin. Nutr. 2011, 30, 533–540. [Google Scholar] [CrossRef]
- Procopio, A.; Celia, C.; Nardi, M.; Oliverio, M.; Paolino, D.; Sindona, G. Lipophilic Hydroxytyrosol Esters: Fatty Acid Conjugates for Potential Topical Administration. J. Nat. Prod. 2011, 74, 2377–23813. [Google Scholar] [CrossRef]
- Sindona, G.; Caruso, A.; Cozza, A.; Fiorentini, S.; Lorusso, B.; Marini, E.; Nardi, M.; Procopio, A.; Zicari, S. Anti-Inflammatory Effect of 3,4-DHPEA-EDA [2-(3,4 -Hydroxyphenyl) ethyl (3S, 4E)-4-Formyl-3-(2-Oxoethyl)Hex-4-Enoate] on Primary Human Vascular Endothelial Cells. Curr. Med. Chem. 2012, 19, 4006–4013. [Google Scholar] [CrossRef]
- Campolo, M.; Di Paola, R.; Impellizzeri, D.; Crupi, R.; Morittu, V.M.; Procopio, A.; Perri, E.; Britti, D.; Peli, A.; Esposito, E.; et al. Effects of a polyphenol present in olive oil, oleuropein aglycone, in a murine model ofintestinal ischemia/reperfusion injury. J. Leukoc. Biol. 2013, 93, 277–287. [Google Scholar] [CrossRef]
- Nardi, M.; Bonacci, S.; Cariati, L.; Costanzo, P.; Oliverio, M.; Sindona, G.; Procopio, A. Synthesis and antioxidant evaluation of lipophilic oleuropein aglycone derivatives. Food Funct. 2017, 8, 4684–4692. [Google Scholar] [CrossRef]
- Juli, G.; Oliverio, M.; Bellizzi, D.; Gallo Cantafio, M.E.; Grillone, K.; Passarino, G.; Colica, C.; Nardi, M.; Rossi, M.; Procopio, A.; et al. Anti-tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers 2019, 11, 990. [Google Scholar] [CrossRef]
- Nardi, M.; Baldelli, S.; Ciriolo, M.R.; Costanzo, P.; Procopio, A.; Colica, C. Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H2O2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules 2020, 25, 5472. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, R.; Piacentini, E.; Nardi, M.; Poerio, T.; Bazzarelli, F.; Procopio, A.; Di Gioia, M.L.; Rizza, P.; Ceraldi, R.; Morelli, C.; et al. Production of Plant-Derived Oleuropein Aglycone by a Combined Membrane Process and Evaluation of Its Breast Anticancer Properties. Front. Bioeng. Biotechnol. 2020, 8, 908. [Google Scholar] [CrossRef]
- Mancuso, S.; Costanzo, P.; Bonacci, S.; Nardi, M.; Oliverio, M.; Procopio, A. Green Semisynthetic Cascade to Ligstroside, Ligstroside Aglycone, and Oleocanthal. ACS Sustain. Chem. Eng. 2021, 9, 12614–12622. [Google Scholar] [CrossRef]
- Frisina, M.; Bonacci, S.; Oliverio, M.; Nardi, M.; Vatrano, T.P.; Procopio, A. Storage Effects on Bioactive Phenols in Calabrian Monovarietal Extra Virgin Olive Oils Based on the EFSA Health Claim. Foods 2023, 12, 3799. [Google Scholar] [CrossRef] [PubMed]
- Finicelli, M.; Squillaro, T.; Galderisi, U.; Peluso, G. Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives. Nutrients 2021, 13, 3831. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.N.; Zock, P.L.; Katan, M.B. Bioavailability and antioxidant effects of olive oil phenolic compounds in humans: A review. Ann. Ist. Super Sanita 2007, 58, 955–965. [Google Scholar]
- Celano, M.; Maggisano, V.; Lepore, S.M.; Russo, D.; Bulotta, S. Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: A critical analysis of experimental studies. Pharmacol. Res. 2019, 142, 77–86. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Fernandes, J.; Santos, V.; Silva, L.; Borges, F.; Rocha, S.; Belo, L.; Santos-Silva, A. Powerful protective role of 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde against erythrocyte oxidative-induced hemolysis. J. Agric. Food Chem. 2010, 58, 135–140. [Google Scholar] [CrossRef]
- Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Talorete, T.P.; Yamada, P.; Isoda, H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology 2009, 59, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, K.; Dong, L.; Navrot, N.; Schneider, T.; Burlat, V.; Pollier, J.; Woittiez, L.; van der Krol, S.; Lugan, R.; Ilc, T.; et al. The seco-iridoid pathway from Catharanthus roseus. Nat. Commun. 2014, 7, 3606. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.; Keast, R.; Morel, D. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, R. Anti-cancer properties of olive oil secoiridoid phenols: A systematic review of in vivo studies. Food Funct. 2005, 7, 4145–4159. [Google Scholar] [CrossRef] [PubMed]
- Abuznait, A.H.; Qosa, H.; Busnena, B.A.; El Sayed, K.A.; Kaddoumi, A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: In vitro and in vivo studies. ACS Chem. Neurosci. 2013, 4, 973–982. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef]
- Esposto, S.; Selvaggini, R.; Taticchi, A.; Veneziani, G.; Sordini, B.; Servili, M. Quality evolution of extra-virgin olive oils according to their chemical composition during 22 months of storage under dark conditions. Food Chem. 2020, 311, 126044. [Google Scholar] [CrossRef]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoroids, lignans and squalene. Food Chem. Toxicol. 2000, 38, 647–659. [Google Scholar] [CrossRef]
- De Nino, A.; Lombardo, N.; Perri, E.; Procopio, A.; Raffaelli, A.; Sindona, G. Direct identification of phenolic glucosides from olive leaf extracts by atmospheric pressure ionization tandem mass spectrometry. J. Mass Spectrom. 1997, 32, 533–541. [Google Scholar] [CrossRef]
- Mallamaci, R.; Budriesi, R.; Clodoveo, M.L.; Biotti, G.; Micucci, M.; Ragusa, A.; Curci, F.; Muraglia, M.; Corbo, F.; Franchini, C. Olive Tree in Circular Economy as a Source of Secondary Metabolites Active for Human and Animal Health Beyond Oxidative Stress and Inflammation. Molecules 2021, 26, 1072. [Google Scholar] [CrossRef] [PubMed]
- Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 2002, 50, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—A review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr. 2009, 49, 218–236. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Grigorakis, S.; Lalas, S.; Makris, D.P. Highly Efficient Extraction of Antioxidant Polyphenols from Olea europaea Leaves Using an Eco-friendly Glycerol/Glycine Deep Eutectic Solvent. Waste Biomass Valor. 2017, 9, 1985–1992. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Grigorakis, S.; Lalas, S.; Makris, D.P. Methyl β-cyclodextrin as a booster for the extraction for Olea europaea leaf polyphenols with a bio-based deep eutectic solvent. Biomass Conv. Bioref. 2018, 8, 345–355. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Salta, F.; Yannakopoulou, K.; Chiou, A.; Karathanos, V.T. Encapsulation of olive leaf extract in β-cyclodextrin. J. Agric. Food Chem. 2007, 55, 8088–8094. [Google Scholar] [CrossRef]
- Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 2014, 101, 121–135. [Google Scholar] [CrossRef]
- Panić, M.; Radić Stojković, M.; Kraljić, K.; Škevin, D.; Radojčić Redovniković, I.; Gaurina Srček, V.; Radošević, K. Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Squeo, G.; Pasqualone, A.; Caponio, F.; Summo, C. An easy and green tool for olive oils labelling according to the contents of hydroxytyrosol and tyrosol derivatives: Extraction with a natural deep eutectic solvent and direct spectrophotometric analysis. Food Chem. 2019, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sed, G.; Cicci, A.; Jessop, P.G.; Bravi, M. A novel switchable-hydrophilicity, natural deep eutectic solvent (NaDES)-based system for bio-safe biorefinery. RSC Adv. 2018, 8, 37092–37097. [Google Scholar] [CrossRef] [PubMed]
- Francioso, A.; Federico, R.; Maggiore, A.; Fontana, M.; Boffi, A.; D’Erme, M.; Mosca, L. Green route for the isolation and purification of hyrdoxytyrosol, tyrosol, oleacein and oleocanthal from extra virgin olive oil. Molecules 2020, 25, 3654. [Google Scholar] [CrossRef] [PubMed]
- Kaltsa, O.; Grigorakis, S.; Lakka, A.; Bozinou, E.; Lalas, S.; Makris, D.P. Green Valorization of Olive Leaves to Produce Polyphenol-Enriched Extracts Using an Environmentally Benign Deep Eutectic Solvent. AgriEngineering 2020, 2, 226–239. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Longobardi, F.; Fortunato, S.; Rotondi, P.; Bellumori, M.; Cecchi, L.; Cosma, P.; Mulinacci, N.; Caponio, F. Paving the Way to Food Grade Analytical Chemistry: Use of a Natural Deep Eutectic Solvent to Determine Total Hydroxytyrosol and Tyrosol in Extra Virgin Olive Oils. Foods 2021, 10, 677. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, D.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Enhanced-performance extraction of olive (Olea europaea) leaf polyphenols using L-lactic acid/ammonium acetate deep eutectic solvent combined with β-cyclodextrin: Screening, optimisation, temperature effects and stability. Biomass Conv. Bioref. 2021, 11, 1125–1136. [Google Scholar] [CrossRef]
- Rodríguez-Juan, E.; Rodríguez-Romero, C.; Fernández-Bolaños, J.; Florido, M.C.; Garcia-Borrego, A. Phenolic compounds from virgin olive oil obtained by natural deep eutectic solvent (NADES): Effect of the extraction and recovery conditions. J. Food Sci. Technol. 2021, 58, 552–561. [Google Scholar] [CrossRef]
- Şahin, S.; Kurtulbaş, E.; Bilgin, M. Special designed deep eutectic solvents for the recovery of high added-value products from olive leaf: A sustainable environment for bioactive materials. Prep. Biochem. Biotechnol. 2021, 51, 422–429. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical Water Extraction of Bioactive Compounds from Waste Onion Skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Buchner, N.; Krumbein, A.; Rohn, S.; Kroh, L.W. Effect of Thermal Processing on the Flavonols Rutin and Quercetin. Rapid Commun. Mass Spectrom. 2006, 20, 3229–3235. [Google Scholar] [CrossRef]
- de Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Juan, E.; Román, F.M.; Sánchez-García, A.; Fernández-Bolaños, J.; García-Borrego, A. From Low-Quality Olive Oils to Valuable Bioactive Compounds: Obtaining Oleacein and Oleocanthal from Olive Oils Intended for Refining. J. Agric. Food Chem. 2022, 70, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Brenes, M.; Romero, C.; García, A.; Hidalgo, F.J.; Ruiz-Méndez, M.V. Phenolic compounds in olive oils intended for refining: Formation of 4-ethylphenol during olive paste storage. J. Agric. Food Chem. 2004, 52, 8177–8181. [Google Scholar] [CrossRef] [PubMed]
- López-Yerena, A.; Ninot, A.; Jiménez-Ruiz, N.; Lozano-Castellón, J.; Pérez, M.; Escribano-Ferrer, E.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Influence of the ripening stage and extraction conditions on the phenolic fingerprint of ‘corbella’ extra-virgin olive oil. Antioxidants 2021, 10, 877. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Pontes, P.V. Aline Czaikoski, Naara Aparecida Almeida, Sara Fraga, Liliana de Oliveira Rocha, Rosiane Lopes Cunha, Guilherme José Maximo, Eduardo Augusto Caldas Batista. Extraction optimization, biological activities, and application in O/W emulsion of deep eutectic solvents-based phenolic extracts from olive pomace. Food Res. Int. 2022, 161, 111753. [Google Scholar]
- Yücel, M.; Selin, Ş. An eco-friendly and sustainable system for monitoring the oleuropein-rich extract from olive tree (Olea europaea) leaves. Biomass Convers. Biorefinery 2022, 12, 47–60. [Google Scholar] [CrossRef]
- Akli, H.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P.; Calokerinos, A.; Mati, A.; Lydakis-Simantiris, N. Extraction of Polyphenols from Olive Leaves Employing Deep Eutectic Solvents: The Application of Chemometrics to a Quantitative Study on Antioxidant Compounds. Appl. Sci. 2022, 12, 831. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Granados, M.; Saurina, J.; Sentellas, S. Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents. Antioxidants 2023, 12, 995. [Google Scholar] [CrossRef]
- Jeong, K.M.; Lee, M.S.; Nam, M.W.; Zhao, J.; Jin, Y.; Lee, D.K.; Kwon, S.W.; Jeong, J.H.; Lee, J. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J. Chromatogr. A 2015, 1424, 10–17. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-functioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Nie, J.; Yu, G.; Song, Z.; Wang, X.; Li, Z.; She, Y.; Lee, M. Microwave-assisted deep eutectic solvent extraction coupled with headspace solid-phase microextraction followed by GC-MS for the analysis of volatile compounds from tobacco. Anal. Methods 2017, 9, 856–863. [Google Scholar] [CrossRef]
- Wei, Z.F.; Wang, X.Q.; Peng, X.; Wang, W.; Zhao, C.J.; Zu, Y.G.; Fu, Y.J. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind. Crops Prod. 2015, 63, 175–181. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Wang, Q.; Du, H.; Zhang, L. Deep eutectic Solvent-Based Microwave-Assisted method for extraction of hydrophilic and hydrophobic components from radix salviae miltiorrhizae. Molecules 2016, 21, 1383. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Bonacci, S.; Di Gioia, M.L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural deep eutectic solvent as extraction media for the main phenolic compounds from olive oil processing wastes. Antioxidants 2020, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Nardella, M.; Moscetti, R.; Nallan Chakravartula, S.S.; Bedini, G.; Massantini, R. A Review on High-Power Ultrasound-Assisted Extraction of Olive Oils: Effect on Oil Yield, Quality, Chemical Composition and Consumer Perception. Foods 2021, 10, 2743. [Google Scholar] [CrossRef] [PubMed]
- Khezeli, T.; Daneshfar, A.; Sahraei, R. A Green Ultrasonic-Assisted Liquid−Liquid Microextraction Based on Deep Eutectic Solvent for the HPLC-UV Determination of Ferulic, Caffeic and Cinnamic Acid from Olive, Almond, Sesame and Cinnamon Oil. Talanta 2016, 150, 577–585. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass. Waste Biomass Valor. 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Dedousi, M.; Mamoudaki, V.; Grigorakis, S.; Makris, D.P. Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM). Environments 2017, 4, 31. [Google Scholar] [CrossRef]
- Chanioti, S.; Katsouli, M.; Tzia, C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021, 26, 1781. [Google Scholar] [CrossRef] [PubMed]
- Siamandoura, P.; Tzia, C. Comparative Study of Novel Methods for Olive Leaf Phenolic Compound Extraction Using NADES as Solvents. Molecules 2023, 28, 353. [Google Scholar] [CrossRef] [PubMed]
- Plaza, A.; Tapia, X.; Yañez, C. Obtaining Hydroxytyrosol from Olive Mill Waste Using Deep Eutectic Solvents and Then Supercritical CO2. Waste Biomass Valor. 2020, 11, 6273–6284. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Chemical characterization and properties of a polymeric phenolic fraction obtained from olive oil waste. Food Res. Int. 2013, 54, 2122–2129. [Google Scholar] [CrossRef]
- Liang, Y.; Pan, Z.; Chen, Z.; Fei, Y.; Zhang, J.; Yuan, J.; Zhang, L.; Zhang, J. Ultrasound-Assisted Natural Deep Eutectic Solvents as Separation-Free Extraction Media for Hydroxytyrosol from Olives. Chem. Sel. 2020, 5, 10939–10944. [Google Scholar] [CrossRef]
- Fanali, C.; Posta, S.D.; Dugo, L.; Russo, M.; Gentili, A.; Mondello, L.; De Gara, L. Application of deep eutectic solvents for the extraction of phenolic compounds from extra-virgin olive oil. Electrophoresis 2020, 41, 1752–1759. [Google Scholar] [CrossRef]
- Ünlü, A.E. Green and Non-conventional Extraction of Bioactive Compounds from Olive Leaves: Screening of Novel Natural Deep Eutectic Solvents and Investigation of Process Parameters. Waste Biomass Valor. 2021, 12, 5329–5346. [Google Scholar] [CrossRef]
- Morgana, N.M.; Magdalena, E.; Fernandez, M.d.l.A.; Fernanda, S.M. NADES for food industry innovation: Novel bioadditives based on olive oil byproducts. Food Bioprod. Process. 2022, 134, 193–201. [Google Scholar] [CrossRef]
- Hu, M.; Han, B.; Xie, L.; Lu, B.; Bai, D.; Shi, N.; Liao, Y.; Wang, Y.; Liu, L.; Wu, S.; et al. Ultrasonic assisted natural deep eutectic solvents as a green and efficient approach for extraction of hydroxytyrosol from olive leaves. Ind. Chem. Mat. 2024. advance article. [Google Scholar] [CrossRef]
Type | General Formula | Terms |
---|---|---|
I | Cat+X− zMClx | M = Zn, Sn, Fe, Al, Ga, In |
II | Cat+X− zMClx yH2O | M = Cr, Co, Cu, Ni, Fe |
III | Cat+X− zRZ | Z = CONH2, COOH, OH |
IV | MClx RZ | M = Al, Zn and Z = CONH2, COOH |
V | Non-ionic DESs | Composed only of molecular substances |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coscarella, M.; Nardi, M.; Alipieva, K.; Bonacci, S.; Popova, M.; Procopio, A.; Scarpelli, R.; Simeonov, S. Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants 2024, 13, 62. https://doi.org/10.3390/antiox13010062
Coscarella M, Nardi M, Alipieva K, Bonacci S, Popova M, Procopio A, Scarpelli R, Simeonov S. Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants. 2024; 13(1):62. https://doi.org/10.3390/antiox13010062
Chicago/Turabian StyleCoscarella, Mario, Monica Nardi, Kalina Alipieva, Sonia Bonacci, Milena Popova, Antonio Procopio, Rosa Scarpelli, and Svilen Simeonov. 2024. "Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs" Antioxidants 13, no. 1: 62. https://doi.org/10.3390/antiox13010062
APA StyleCoscarella, M., Nardi, M., Alipieva, K., Bonacci, S., Popova, M., Procopio, A., Scarpelli, R., & Simeonov, S. (2024). Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants, 13(1), 62. https://doi.org/10.3390/antiox13010062