Functional Properties and Sensory Quality of Kombucha Analogs Based on Herbal Infusions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Preparation of Fermented Kombucha Analogs
2.4. pH Determination
2.5. Organic Acid Analysis
2.6. Sugar Content Analysis
2.7. Analysis of Antioxidant Activity
2.8. Determination of Total Content of Phenolic Compounds
2.9. Determination of Phenolic Compounds by HPLC
2.10. Mineral Content Analysis
2.11. Sensory Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. The Changes in pH, Organic Acids, and Sugar Contents during Fermentation
3.2. Antioxidant Activities
3.3. TPC Values and HPLC Profile of Phenolic Compounds
3.4. Contents of Micro and Macroelements
3.5. Evaluation of Sensory Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bishop, P.; Pitts, E.R.; Budner, D.; Thompson-Witrick, K.A. Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chem. Adv. 2022, 1, 100025. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Yang, T.; Mac Regenstein, J.; Zhou, P. Functional properties and sensory characteristics of kombucha analogs prepared with alternative materials. Trends Food Sci. Technol. 2022, 129, 608–616. [Google Scholar] [CrossRef]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef] [PubMed]
- Klepacka, J.; Tońska, E.; Rafałowski, R.; Czarnowska-Kujawska, M.; Opara, B. Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules 2021, 26, 1487. [Google Scholar] [CrossRef] [PubMed]
- Klepacka, J. Tea infusions as a source of phenolic compounds in the human diet. Appl. Sci. 2022, 12, 4227. [Google Scholar] [CrossRef]
- Musiał, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Pintać, D.; Bekvalac, K.; Mimica-Dukić, N.; Rašeta, M.; Anđelić, N.; Lesjak, M.; Orčić, D. Comparison study between popular brands of coffee, tea and red wine regarding polyphenols content and antioxidant activity. Food Chem. Adv. 2022, 1, 100030. [Google Scholar] [CrossRef]
- Dobrinas, S.; Soceanu, A.; Popescu, V.; Carazeanu Popovici, I.; Jitariu, D. Relationship between total phenolic content, antioxidant capacity, Fe and Cu content from tea plant samples at different brewing times. Processes 2021, 9, 1311. [Google Scholar] [CrossRef]
- Raghunath, S.; Budaraju, S.; Gharibzahedi, S.M.T.; Koubaa, M.; Roohinejad, S.; Mallikarjunan, K. Processing technologies for the extraction of value-added bioactive compounds from tea. Food Eng. Rev. 2023, 15, 276–308. [Google Scholar] [CrossRef]
- Aksornsri, T.; Chaturapornchai, N.; Jitsayen, N.; Rojjanapaitoontip, P.; Peanparkdee, M. Development of kombucha—Like beverage using butterfly pea flower extract with the addition of tender coconut water. Int. J. Gastron. Food Sci. 2023, 34, 100825. [Google Scholar] [CrossRef]
- Kitwetcharoen, H.; Phung, L.T.; Klanrit, P.; Thanonkeo, S.; Tippayawat, P.; Yamada, M.; Thanonkeo, P. Kombucha Healthy Drink—Recent Advances in Production, Chemical Composition and Health Benefits. Fermentation 2023, 9, 48. [Google Scholar] [CrossRef]
- Xiong, R.-G.; Wu, S.-X.; Cheng, J.; Saimaiti, A.; Liu, Q.; Shang, A.; Zhou, D.-D.; Huang, S.-Y.; Gan, R.-Y.; Li, H.-B. Antioxidant Activities, Phenolic Compounds, and Sensory Acceptability of Kombucha-Fermented Beverages from Bamboo Leaf and Mulberry Leaf. Antioxidants 2023, 12, 1573. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-D.; Saimaiti, A.; Luo, M.; Huang, S.-Y.; Xiong, R.-G.; Shang, A.; Gan, R.-Y.; Li, H.-B. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 2007, 102, 392–398. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic Compounds and Biological Activity of Selected Mentha Species. Plants 2021, 10, 550. [Google Scholar] [CrossRef]
- Pawluś, P.; Kolniak-Ostek, J. Innovative Analogs of Unpasteurized Kombucha Beverages: Comparative Analysis of Mint/Nettle Kombuchas, Considering Their Health-Promoting Effect, Polyphenolic Compounds and Chemical Composition. Int. J. Mol. Sci. 2024, 25, 7572. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Chilczuk, B.; Materska, M.; Kontek, R.; Marciniak, B. Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts. Molecules 2023, 28, 7459. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Malin, V.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques. Molecules 2021, 26, 6153. [Google Scholar] [CrossRef]
- Đurović, S.; Pavlić, B.; Šorgić, S.; Popov, S.; Savić, S.; Pertonijević, M.; Radojković, M.; Cvetanović, A.; Zeković, Z. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 2017, 32, 18–26. [Google Scholar] [CrossRef]
- Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica spp.: Ordinary plants with extraordinary properties. Molecules 2018, 23, 1664. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Zielińska, D.; Kostyra, H. Antioxidant capacity of a new crispy type food products determined by updated analytical strategies. Food Chem. 2012, 130, 1098–1104. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of Phenolic Acids and Flavonoids of Red Beet and Its Fermentation Products. Does Long-Term Consumption of Fermented Beetroot Juice Affect Phenolics Profile in Human Blood Plasma and Urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Starowicz, M.; Barišić, V.; Kujawski, W. Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods 2022, 11, 3414. [Google Scholar] [CrossRef] [PubMed]
- Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Čanadanović-Brunet, J.M. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 2011, 127, 1727–1731. [Google Scholar] [CrossRef]
- Kumar, V.; Joshi, V.K. Kombucha: Technology, microbiology, production, composition and therapeutic value. Int. J. Food Ferment. Technol. 2016, 6, 13–24. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malini, K.; Sathishkumar, M.; Swaminathan, K.; Yun, S.E. Biochemical Characteristics of Tea Fungus Produced During Kombucha Fermentation. Food Sci. Biotechnol. 2010, 19, 843–847. [Google Scholar] [CrossRef]
- Malbaša, R.; Lončar, E.; Kolarov, L. Sucrose and inulin balance during tea fungus fermentation. Rom. Biotechnol. Lett. 2002, 7, 573–576. [Google Scholar]
- Masłowski, M.; Aleksieiev, A.; Miedzianowska, J.; Efenberger-Szmechtyk, M.; Strzelec, K. Antioxidant and anti–aging activity of freeze–dried alcohol–water extracts from common nettle (Urtica dioica L.) and pep-permint (Mentha piperita L.) in elastomer vulcanizates. Polymers 2022, 14, 1460. [Google Scholar] [CrossRef]
- Ahmed, R.F.; Hikal, M.S.; Abou-Taleb, K.A. Biological, chemical and antioxidant activities of different types Kombucha. Ann. Agric. Sci. 2020, 65, 35–41. [Google Scholar] [CrossRef]
- de Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A review of substrates, regulations, composition, and biological properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Emiljanowicz, K.E.; Malinowska-Pańczyk, E. Kombucha from alternative raw materials–The review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3185–3194. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Harangozo, Ľ.; Kántor, A.; Kačániová, M. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. J. Food Sci. Technol. 2020, 57, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Ścibisz, I.; Przybył, J.L.; Ziarno, M.; Żbikowska, A.; Majewska, E. Phenolic contents and antioxidant activity of extracts of selected fresh and dried herbal materials. Pol. J. Food Nutr. Sci. 2021, 71, 269–278. [Google Scholar] [CrossRef]
- Tritean, N.; Dima, Ș.-O.; Trică, B.; Stoica, R.; Ghiurea, M.; Moraru, I.; Cimpean, A.; Oancea, F.; Constantinescu-Aruxandei, D. Selenium-Fortified Kombucha–Pollen Beverage by In Situ Biosynthesized Selenium Nanoparticles with High Biocompatibility and Antioxidant Activity. Antioxidants 2023, 12, 1711. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Dula, M.; Matras, J.; Grela, E.R.; Niedziółka, I. Antioxidant and other health promoting properties of herbs. Żywność Nauka Technol. Jakość 2018, 25, 23–33. [Google Scholar] [CrossRef]
- Essawet, N.A.; Cvetković, D.; Velićanski, A.; Čanadanović-Brunet, J.; Vulić, J.; Maksimović, V.; Markov, S. Polyphenols and antioxidant activities of Kombucha beverage enriched with Coffeeberry® extract. Chem. Ind. Chem. Eng. Q. 2015, 21, 399–409. [Google Scholar] [CrossRef]
- Öztürk, T.; Eroğlu, B.E.; Delik, E.; Ciçek, M.; Çiçek, E. Comprehensive evaluation of three important herbs for kombucha fermentation. Food Technol. Biotechnol. 2023, 61, 127–137. [Google Scholar] [CrossRef]
- Ebrahimi Pure, A.; Ebrahimi Pure, M. Antioxidant and Antibacterial Activity of Kombucha Beverages Prepared using Banana Peel, Common Nettles and Black Tea Infusions. Appl. Food Biotechnol. 2016, 3, 125–130. [Google Scholar] [CrossRef]
- Kilic, G.; Sengun, I.Y. Bioactive properties of Kombucha beverages produced with Anatolian hawthorn (Crataegus orientalis) and nettle (Urtica dioica) leaves. Food Biosci. 2023, 53, 102631. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Portocarrero, A.C.M.; Miranda López, J.M.; Lombardo, M.; Koch, W.; Raposo, A.; El-Seedi, H.R.; de Brito Alves, J.L.; Esatbeyoglu, T.; Karav, S.; et al. The Impact of Fermentation on the Antioxidant Activity of Food Products. Molecules 2024, 29, 3941. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Wang, H.; Jiao, S.; Wu, J.; Hou, Y.; Sun, J.; Yuan, J. Chemical profile and antioxidant capacity of kombucha tea by the pure cultured kombucha. LWT 2022, 168, 113931. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Starowicz, M.; Paszczyk, B.; Klepacka, J.; Popielarczyk, M.; Tońska, E. The chemical, antioxidant and sensorial properties of milk and plant based kombucha analogues. LWT 2024, 206, 116610. [Google Scholar] [CrossRef]
- Tanticharakunsiri, W.; Mangmool, S.; Wongsariya, K.; Ochaikul, D. Characteristics and upregulation of antioxidant enzymes of kitchen mint and oolong tea kombucha beverages. J. Food Biochem. 2021, 45, e13574. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Gan, R.Y.; Shah, N.P.; Wang, M.F.; Lui, W.Y.; Corke, H. Lactobacillus plantarum WCFS1 Fermentation Differentially Affects Antioxidant Capacity and Polyphenol Content in Mung Bean (Vigna radiata) and Soya Bean (Glycine max) Milks. J. Food Process. Preserv. 2017, 41, e12944. [Google Scholar] [CrossRef]
- Tsakni, A.; Chatzilazarou, A.; Zoidis, E.; Halvatsiotis, P.; Houhoula, D. Antioxidant Activity of Mint (Mentha piperita L.) of Greek Flora and Identification of its Bioactive Compounds. Org. Med. Chem. 2021, 11, 555814. [Google Scholar] [CrossRef]
- Orcic, D.; Franciškovic, M.; Bekvalac, K.; Svircev, E.; Beara, I.; Lesjak, M.; Mimica-Dukic, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kupnicka, P.; Melkis, K.; Mielczarek, O.; Walczyńska, J.; Chlubek, D.; Janda-Milczarek, K. Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients 2022, 14, 4828. [Google Scholar] [CrossRef]
- Jarosz, M. Nutrition Standards for the Polish Population; Food and Nutrition Institute: Warsaw, Poland, 2017; Available online: http://zywnosc.com.pl/wp-content/uploads/2017/12/normy-zywienia-dla-populacji-polski-2017-1.pdf/ (accessed on 30 June 2024).
- Jayabalan, R.; Malbaša, R.V.; Loncar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea–microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Cuvas-Limon, R.B.; Nobre, C.; Cruz, M.; Rodriguez-Jasso, R.M.; Ruíz, H.A.; Loredo-Treviño, A.; Texeira, J.A.; Belmares, R. Spontaneously Fermented Traditional Beverages as a Source of Bioactive Compounds: An Overview. Crit. Rev. Food Sci. Nutr. 2021, 61, 2984–3006. [Google Scholar] [CrossRef]
- Mamisahebei, S.; Khaniki, G.R.J.; Torabian, A.; Nasseri, S.; Naddafi, K. Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. J. Environ. Health Sci. Eng. 2007, 4, 85–92. [Google Scholar]
- Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 2019, 7, 700. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Dai, Y.; Wu, H.; Liu, X.; Wang, Y.; Yin, L.; Wang, Z.; Li, X.; Zhou, J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J. Funct. Foods 2019, 62, 103549. [Google Scholar] [CrossRef]
Tested Beverage | Acetic Acid | Citric Acid | Succinic Acid | D-Glucuronic Acid | Sucrose |
---|---|---|---|---|---|
[g/L] | [° Brix–g/100 mL] | ||||
Mint infusion | nd 1 | 0.23 a ± 0.041 | 0.04 b ± 0.011 | 0.01 b ± 0.001 | 9.8 a ± 0.00 |
Fermented mint infusion | 5.04 ± 0.064 2 | 0.13 b ± 0.002 | 0.19 a ± 0.011 | 0.06 a ± 0.001 | 8.0 b ± 0.00 |
Nettle infusion | nd | 0.011 b ± 0.000 | 0.06 b ± 0.000 | nd | 9.6 a ± 0.00 |
Fermented nettle infusion | 6.47 ± 0.837 | 0.023 a ± 0.016 | 0.20 a ± 0.052 | 0.05 ± 0.039 | 7.9 b ± 0.00 |
Blackcurrant leaves infusion | nd | 0.12 a ± 0.084 | 0.05 b ± 0.002 | nd | 9.7 a ± 0.00 |
Fermented blackcurrant leaves infusion | 3.43 ± 0.056 | 0.08 b ± 0.039 | 0.11 a ± 0.005 | nd | 9.0 b ± 0.00 |
Tested Beverage | PCL (µmol/mL) | Total PCL (µmol/mL) | DPPH (%) | |
---|---|---|---|---|
ACW | ACL | (ACW + ACL) | ||
Mint infusion | 2.45 b ± 0.02 1 | 6.70 b ± 0.11 | 9.14 b ± 0.13 | 80.2 a ± 0.05 |
Fermented mint infusion | 5.17 a ± 0.16 | 8.13 a ± 0.14 | 13.29 a ± 0.30 | 74.1 b ± 0.48 |
Nettle infusion | 0.16 b ± 0.01 | 0.62 b ± 0.02 | 0.79 b ± 0.02 | 15.2 b ± 0.32 |
Fermented nettle infusion | 1.08 a ± 0.04 | 2.31 a ± 0.02 | 3.39 a ± 0.06 | 33.6 a ± 0.52 |
Blackcurrant leaves infusion | 0.75 b ± 0.01 | 1.35 b ± 0.01 | 2.10 b ± 0.00 | 66.3 b ± 0.04 |
Fermented blackcurrant leaves infusion | 0.93 a ± 0.00 | 1.64 a ± 0.01 | 2.57 a ± 0.01 | 68.05 a ± 0.77 |
Tested Beverages | Mint Infusion | Fermented Mint Infusion | Nettle Infusion | Fermented Nettle Infusion | Blackcurrant Leaves Infusion | Fermented Blackcurrant Leaves Infusion | |
---|---|---|---|---|---|---|---|
TPC (mg/100 mL) | 64.4 b ± 1.09 1 | 102.2 a ± 0.75 | 24.6 b ± 1.60 | 45.4 a ± 0.97 | 69.1 b ± 1.89 | 82.0 a ± 2.18 | |
Phenolic acids (µg/mL) | p-hydroxybenzoic acid | 0.01 b ± 0.00 | 0.02 a ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | n.d. | 0.15 ± 0.01 |
salicylic acid | <0.01 b | 0.07 a ± 0.01 | 0.01 b ± 0.00 | 0.13 a ± 0.02 | n.d. | 0.01 ± 0.00 | |
m-hydroxyphenylacetic acid | n.d. | n.d. | 0.01 ± 0.00 | n.d. | n.d. | n.d. | |
protocatechuic acid | 0.02 b ± 0.00 | 0.08 a ± 0.01 | 0.07 a ± 0.01 | 0.05 b ± 0.01 | 0.08 ± 0.00 | 0.08 ± 0.01 | |
gentisic acid | 0.06 a ± 0.00 | 0.01 b ± 0.00 | 0.03 b ± 0.00 | 0.05 a ± 0.01 | 0.03 b ± 0.00 | 0.05 a ± 0.00 | |
p-coumaric acid | 0.07 a ± 0.00 | 0.04 b ± 0.00 | 0.15 a ± 0.02 | 0.06 b ± 0.01 | 0.41 a ± 0.02 | 0.15 b ± 0.02 | |
vanilic acid | 0.13 b ± 0.02 | 0.48 a ± 0.05 | 0.20 b ± 0.01 | 0.49 a ± 0.08 | 0.39 a ± 0.01 | 0.24 b ± 0.04 | |
hippuric acid | 0.21 ± 0.04 | 0.29 ± 0.04 | 0.14 b ± 0.02 | 0.22 a ± 0.02 | 0.36 a ± 0.01 | 0.11 b ± 0.01 | |
caffeic acid | 0.03 b ± 0.00 | 0.12 a ± 0.01 | 0.02 b ± 0.00 | 0.14 a ± 0.02 | 0.16 a ± 0.03 | 0.03 b ± 0.00 | |
ferulic acid | n.d. | 1.73 ± 0.27 | n.d. | 0.26 ± 0.02 | 0.68 ± 0.02 | n.d. | |
syringic acid | n.d. | 48.61 ± 0.59 | 0.58 b ± 0.06 | 25.19 a ± 1.15 | 4.06 b ± 0.10 | 6.40 a ± 0.23 | |
sinapic acid | 0.15 b ± 0.01 | 0.43 a ± 0.07 | 0.13 b ± 0.01 | 0.25 a ± 0.02 | 0.25 ± 0.03 | 0.23 ± 0.04 | |
chlorogenic acid | 0.01 b ± 0.00 | 0.02 a ± 0.00 | 0.16 a ± 0.00 | 0.01 b ± 0.00 | 0.30 a ± 0.03 | 0.09 b ± 0.00 | |
sum of phenolic acids | 0.69 b ± 0.07 | 52.09 a ± 10.08 | 1.51 b ± 0.13 | 26.86 a ± 1.36 | 6.72 a ± 0.25 | 7.54 a ± 0.36 | |
Flavonoids (µg/mL) | kaempferol | n.d. | 0.01 ± 0.00 | n.d. | n.d. | n.d. | n.d. |
epicatechin | 0.30 a ± 0.05 | 0.18 b ± 0.03 | 0.28 a ± 0.02 | 0.19 b ± 0.02 | 0.27 a ± 0.02 | 0.16 b ± 0.02 | |
myricetin | n.d. | n.d. | n.d. | 0.01 ± 0.00 | 0.02 b ± 0.00 | 0.12 a ± 0.02 | |
rutin | n.d. | n.d. | 0.05 ± 0.00 | n.d. | 0.02 ± 0.00 | n.d. | |
Sum of flavonoids | 0.30 a ± 0.05 | 0.19 b ± 0.03 | 0.33 ± 0.02 | 0.20 b ± 0.02 | 0.31 ± 0.02 | 0.28 ± 0.04 | |
Sum of phenolic acids and flavonoids (µg/mL) | 0.98 b ± 0.13 | 52.10 a ± 10.07 | 1.84 b ± 0.17 | 27.04 a ± 1.38 | 7.03 ± 0.29 | 7.82 ± 0.41 |
Tested beverage | Cu | Mn | Fe | Zn |
---|---|---|---|---|
Mint infusion | 2.76 a ± 0.040 1 | 9.01 a ± 0.013 | 6.10 b ± 0.021 | 16.22 a ± 0.035 |
Fermented mint infusion | 1.55 b ± 0.035 | 8.19 b ± 0.050 | 6.65 a ± 0.077 | 7.66 b ± 0.065 |
Nettle infusion | 2.45 a ± 0.021 | 5.23 b ± 0.051 | 1.38 b ± 0.035 | 22.60 a ± 0.165 |
Fermented nettle infusion | 1.20 b ± 0.020 | 8.25 a ± 0.040 | 2.92 a ± 0.035 | 13.62 b ± 0.015 |
Blackcurrant leaves infusion | 2.41 a ± 0.010 | 12.66 a ± 0.062 | 1.67 b ± 0.010 | 12.78 b ± 0.026 |
Fermented blackcurrant leaves infusion | 2.19 b ± 0.005 | 9.36 b ± 0.097 | 2.89 a ± 0.020 | 16.21 a ± 0.068 |
Tested Beverage | Mg | Ca | Na | K | P |
---|---|---|---|---|---|
Mint infusion | 3.19 b ± 0.052 1 | 9.01 b ± 0.016 | 2.19 b ± 0.012 | 22.16 a ± 0.050 | 3.85 a ± 0.031 |
Fermented mint infusion | 4.49 a ± 0.059 | 9.78 a ± 0.066 | 2.44 a ± 0.033 | 18.45 b ± 0.037 | 3.12 b ± 0.032 |
Nettle infusion | 3.18 b ± 0.022 | 13.20 b ± 0.208 | 2.48 a ± 0.066 | 13.10 b ± 0.064 | 5.59 a ± 0.031 |
Fermented nettle infusion | 4.96 a ± 0.037 | 14.52 a ± 0.178 | 2.23 b ± 0.062 | 14.42 a ± 0.044 | 5.34 b ± 0.015 |
Blackcurrant leaves infusion | 2.40 b ± 0.014 | 7.29 b ± 0.070 | 2.19 b ± 0.008 | 10.46 a ± 0.092 | 5.85 a ± 0.050 |
Fermented blackcurrant leaves infusion | 3.79 a ± 0.043 | 7.81 a ± 0.042 | 2.44 a ± 0.043 | 10.20 b ± 0.065 | 5.11 b ± 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarnowska-Kujawska, M.; Klepacka, J.; Starowicz, M.; Lesińska, P. Functional Properties and Sensory Quality of Kombucha Analogs Based on Herbal Infusions. Antioxidants 2024, 13, 1191. https://doi.org/10.3390/antiox13101191
Czarnowska-Kujawska M, Klepacka J, Starowicz M, Lesińska P. Functional Properties and Sensory Quality of Kombucha Analogs Based on Herbal Infusions. Antioxidants. 2024; 13(10):1191. https://doi.org/10.3390/antiox13101191
Chicago/Turabian StyleCzarnowska-Kujawska, Marta, Joanna Klepacka, Małgorzata Starowicz, and Patrycja Lesińska. 2024. "Functional Properties and Sensory Quality of Kombucha Analogs Based on Herbal Infusions" Antioxidants 13, no. 10: 1191. https://doi.org/10.3390/antiox13101191
APA StyleCzarnowska-Kujawska, M., Klepacka, J., Starowicz, M., & Lesińska, P. (2024). Functional Properties and Sensory Quality of Kombucha Analogs Based on Herbal Infusions. Antioxidants, 13(10), 1191. https://doi.org/10.3390/antiox13101191